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ABSTRACT

Antiparasitic resistance in malaria is a growing concern affecting many areas of the eastern world. Since the emergence of
artemisinin resistance in the late 2000s in Cambodia, research into the underlying mechanisms has been underway.
The 2019 Malaria Dream Challenge posited the task of developing computational models that address important problems in
advancing the fight against malaria. The first goal was to accurately predict Artemisinin drug resistance levels of Plasmodium
falciparum isolates, as quantified by the IC50. The second goal was to predict the parasite clearance rate of malaria parasite
isolates based on in vitro transcriptional profiles.
In this work, we develop machine learning models using novel methods for transforming isolate data and handling the tens of
thousands of variables that result from these data transformation exercises. This is demonstrated by using massively parallel
processing of the data vectorization for use in scalable machine learning. In addition, we show the utility of ensemble machine
learning modeling for highly effective predictions of both goals of this challenge. This is demonstrated by the use of multiple
machine learning algorithms combined with various scaling and normalization preprocessing steps. Then, using a voting
ensemble, multiple models are combined to generate a final model prediction.

Introduction
Malaria is a serious disease caused by parasites belonging to the genus Plasmodium which are vectored by Anopheles mosquitoes
in the genus. The World Health Organization (WHO) reports that there were 219 million cases of malaria in 2017 across 87
countries1. Plasmodium falciparum poses one of greatest health threats in the eastern world, being responsible for 62.8% of
malaria cases in southeast Asia in 20171.

Artemisinin-based therapies are among the best treatment options for malaria caused by P. falciparum2. However, emergence
of artemisinin resistance in Thailand and Cambodia in 2007 has been cause for research3. While there are polymorphisms
in the kelch domain–carrying protein K13 in P. falciparum that are known to be associated with artemisinin resistance, the
underlying molecular mechanism that confers resistance remain unknown4. The established pharmacodynamics benchmark for
P. falciparum sensitivity to artemisinin-based therapy is the parasite clearance rate5, 6. Resistance to artemisinin-based therapy
is considered to be present with a parasite clearance rate greater than 5 hours7. By understanding the genetic factors that affect
resistance in malaria, targeted development can occur in an effort to abate further resistance or infections of resistance strains.
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Prediction of Artemisinin IC50

First, we created a machine learning model to predict the IC50 of malaria parasites based on transcription profiles of
experimentally-tested isolates. IC50, also known as the half maximal inhibitory concentration, is the drug concentration
at which 50% of parasites die. This value indicates a population of parasites’ ability to withstand various doses of anti-malarial
drugs, such as Artemisinin.

Materials and Methods
The training data, from Turnbull, et al.8, consists of gene expression data of 5,540 genes of 30 isolates from the malaria parasite,
Plasmodium falciparum. For each malaria parasite isolate, transcription data was collected at two time points [6 hours post
invasion (hpi) and 24 hpi], with and without treatment of dihydroartemisinin (the metabolically active form of artemisinin),
each with a biological replicate. This yields a total of at eight data points for each isolate. The initial form of the training
dataset contains 272 rows and 5,546 columns, as shown in Table 1.

Sample_Name Isolate Timepoint Treatment BioRep Gene1 ... Gene5540 DHA_IC50
isolate_01.24HR.DHA.BRep1 isolate_01 24HR DHA BRep1 0.008286 ... -2.48653 2.177
isolate_01.24HR.DHA.BRep2 isolate_01 24HR DHA BRep2 -0.87203 ... -1.79457 2.177
isolate_01.24HR.UT.BRep1 isolate_01 24HR UT BRep1 0.03948 ... -2.49517 2.177
isolate_01.24HR.UT.BRep2 isolate_01 24HR UT BRep2 0.125177 ... -1.73531 2.177
isolate_01.6HR.DHA.BRep1 isolate_01 6HR DHA BRep1 1.354956 ... -0.82169 2.177
isolate_01.6HR.DHA.BRep2 isolate_01 6HR DHA BRep2 -0.21807 ... -1.61839 2.177
isolate_01.6HR.UT.BRep1 isolate_01 6HR UT BRep1 1.31135 ... -2.62262 2.177
isolate_01.6HR.UT.BRep2 isolate_01 6HR UT BRep2 0.997722 ... -2.24719 2.177
... ... ... ... ... ... ... ... ...
isolate_30.6HR.UT.BRep2 isolate_30 6HR UT BRep2 -0.26639 ... -1.72273 1.363

Table 1. Initial IC50 model training data format.

The transcription data was collected as described in Table 2. The transcription data set consists of transcription values for
100 MAL genes (SNARE protein-coding genes9) followed by 5,440 PF3D7 genes (circumsporozoite protein-coding genes10).
The MAL genes are 92 non-coding RNAs while the PF3D7 genes are protein coding genes. The feature to predict is DHA_IC50.

Training Set
Array Bozdech
Platform Printed
Plexes 1
Unique Probes 10159
Range of Probes per Exon N/A
Average Probes per Gene 2
Genes Represented 5363
Transcript Isoform Profiling No
ncRNAs No
Channel Detection Method Two Color
Scanner PowerScanner
Data Extraction GenePix Pro

Table 2. IC50 training data information. (Adapted from Turnbull et al., (2017) PLoS One8)

Data Preparation
We used Apache Spark11, to pivot the dataset such that each isolate was its own row and each of the transcription values for each
gene and attributes (i.e. timepoint, treatment, biological replicate) combination was its own column. This exercise transformed
the training dataset from 272 rows and 5,546 columns to 30 rows and 44,343 columns, as shown in Table 3.

We completed this pivot by slicing the data by each of the eight combinations of timepoint, treatment, and biological
replicate, dynamically renaming the variables (genes) for each slice, and then joining all eight slices back together.
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Example code shown below in the section labeled code 1. By using the massively parallel architecture of Spark, this
transformation can be completed in a minimal amount of time on a relatively small cluster environment (e.g., <10 minutes
using a 8-worker/36-core cluster with PySpark on Apache Spark 2.4.3).

1 ## Separate Dependent Variable
2 y = train.select(col("Isolate"),
3 col("DHA_IC50")) \
4 .distinct()
5

6 ## Create Slice [Timepoint: 24HR, Treatment: DHA, BioRep: BRep1]
7 hr24_trDHA_br1 = train.drop("Sample_Name","DHA_IC50") \
8 .filter((col("Timepoint") == "24HR") &
9 (col("Treatment") == "DHA") &

10 (col("BioRep") == "BRep1"))
11 ## Rename Columns
12 column_list = hr24_trDHA_br1.columns
13 prefix = "hr24_trDHA_br1_"
14 new_column_list = [prefix + s if s != "Isolate" else s for s in column_list]
15

16 column_mapping = [[o, n] for o, n in zip(column_list, new_column_list)]
17

18 hr24_trDHA_br1 = hr24_trDHA_br1.select(list(map(lambda old, new: col(old) \
19 .alias(new),*zip(*column_mapping))))
20

21 ## Join Slices Together
22 data = y.join(hr24_trDHA_br1, "Isolate", how='left') \
23 .join(hr24_trDHA_br2, "Isolate", how='left') \
24 .join(hr24_trUT_br1, "Isolate", how='left') \
25 .join(hr24_trUT_br2, "Isolate", how='left') \
26 .join(hr6_trDHA_br1, "Isolate", how='left') \
27 .join(hr6_trDHA_br2, "Isolate", how='left') \
28 .join(hr6_trUT_br1, "Isolate", how='left') \
29 .join(hr6_trUT_br2, "Isolate", how='left')

Isolate DHA_IC50 hr24_trDHA_br1_Gene1 hr24_trDHA_br2_Gene1 ... hr6_trUT_br2_Gene5540
isolate_01 2.177 0.008286 -0.87203 ... -2.24719
... ... ... ... ... ...
isolate_30 1.363 0.195032 0.031504 ... -1.72273

Table 3. Post-transformation format of the IC50 model training data.

Lastly, the dataset is then vectorized using the Spark VectorAssembler, and converted into a Numpy12-compatible
array. Example code shown below in Code 1. Vectorization allows for highly scalable parallelization of the machine learning
modeling in the next step.
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1 ## Transform Data using VectorAssembler
2 assemblerInputs = numericalColumns
3 assembler = VectorAssembler(inputCols = assemblerInputs, outputCol="features") \
4 .setHandleInvalid("keep")
5 stages += [assembler]
6

7 prepPipeline = Pipeline().setStages(stages)
8 pipelineModel = prepPipeline.fit(data)
9 vectordata = pipelineModel.transform(data) \

10 .select(col("DHA_IC50"), col("features")) \
11 .withColumnRenamed("DHA_IC50","label")
12

13 ## Convert to Numpy Array
14 import numpy as np
15 pddata = vectordata.toPandas()
16 seriesdata = pddata['features'].apply(lambda x : np.array(x.toArray())) \
17 .as_matrix().reshape(-1,1)
18 X_train = np.apply_along_axis(lambda x : x[0], 1, seriesdata)
19 y_train = pddata['label'].values.reshape(-1,1).ravel()
20

21 ## Example Output (X_train) After Vectorization
22 array([[-0.62161893, -0.60860881, -1.11331369, ..., -1.457377 ,
23 -3.292903 , -1.869169 ],
24 [-0.55719008, -2.41660489, -1.39244109, ..., -1.770098 ,
25 -3.698841 , -1.740082 ],
26 ...,
27 [-0.17072536, -2.32828532, -1.08406554, ..., -1.402658 ,
28 -5.314896 , -1.328886 ],
29 [-0.1923732 , -1.88763881, -1.23867258, ..., -1.971246 ,
30 -3.567355 , -1.904116 ]])

Machine Learning
We used Microsoft Azure Machine Learning Service as the tracking platform for retaining model performance metrics as the
various models were generated. For this use case, 498 machine learning models were trained using various scaling techniques
and algorithms. We then created two ensemble models of the individual models using Stack Ensemble and Voting ensemble
methods.

The Microsoft AutoML package allows for the parallel creation and testing of various models, fitting based on a primary
metric. For this use case, models were trained using Decision Tree, Elastic Net, Extreme Random Tree, Gradient Boosting,
Lasso Lars, LightGBM, RandomForest, and Stochastic Gradient Decent algorithms along with various scaling methods from
Maximum Absolute Scaler, Min/Max Scaler, Principal Component Analysis, Robust Scaler, Sparse Normalizer, Standard Scale
Wrapper, Truncated Singular Value Decomposition Wrapper (as defined in Table 14). All of the machine learning algorithms
are from the scikit-learn package13 except for LightGBM, which is from the LightGBM package14. That the settings for the
model sweep are defined in Table 4. The ‘Preprocess Data?’ parameter enables the scaling and imputation of the features in the
data.

Parameter Value
Task Regression
Number of Iterations 500
Iteration Timeout (minutes) 20
Max Cores per Iteration 7
Primary Metric Normalized Root Mean Squared Error
Preprocess Data? True
k-Fold Cross-Validations 20 folds

Table 4. Model search parameter setting for the IC50 model search.
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Once the 498 individual models were trained, two ensemble models (voting ensemble and stack ensemble) were then
created and tested. The voting ensemble method makes a prediction based on the weighted average of the previous models’
predicted regression outputs whereas the stacking ensemble method combines the previous models and trains a meta-model
using the elastic net algorithm based on the output from the previous models. The model selection method used was the Caruana
ensemble selection algorithm15.

Results
The voting ensemble model (using soft voting) was selected as the best model, having the lowest normalized Root Mean
Squared Error (RMSE), as shown in Table 5. All 500 models trained are reported in Table 6. Having a normalized RMSE of
only 0.1228 and a Mean Absolute Percentage Error (MAPE) of 24.27%, this model is expected to accurately predict IC50 in
malaria isolates.

Metric Value
Normalized Root Mean Squared Error 0.1228
Root Mean Squared Log Error 0.1336
Normalized Mean Absolute Error 0.1097
Mean Absolute Percentage Error 24.27
Normalized Median Absolute Error 0.1097
Root Mean Squared Error 0.3398
Explained Variance -1.755
Normalized Root Mean Squared Log Error 0.1379
Median Absolute Error 0.3035
Mean Absolute Error 0.3035

Table 5. Model metrics of the final IC50 ensemble model.

Iteration Preprocessor Algorithm Normalized RMSE
498 VotingEnsemble 0.12283293
370 SparseNormalizer RandomForest 0.132003138
432 StandardScalerWrapper LightGBM 0.133180215
240 SparseNormalizer RandomForest 0.133779391
430 StandardScalerWrapper RandomForest 0.137084337
65 SparseNormalizer RandomForest 0.13884791
56 SparseNormalizer RandomForest 0.14417843
68 MaxAbsScaler ExtremeRandomTrees 0.151925822
470 StandardScalerWrapper RandomForest 0.152262231
181 MinMaxScaler LightGBM 0.15279075

Table 6. Top 10 training iterations of the IC50 model search, evaluated by RMSE.
Note that the top performing model (VotingEnsemble) is the final IC50 model discussed in this paper.
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Figure 1. RMSE by iteration of the IC50 model search. Each orange dot is an iteration with the blue line representing the
minimum RMSE up to that iteration.

Figure 2. Model residuals of the final IC50 ensemble model.

Prediction of Resistance Status
The second task of this work was to create a machine learning model that can predict the parasite clearance rate (fast versus
slow) of malaria isolates. When resistance rates change in a pathogen, it can be indicative of regulatory changes in the
pathogen’s genome. These changes can be exploited for the prevention of further resistance spread. Thus, a goal of this work is
to understand genes important in the prediction of artemisinin resistance.

Materials and Methods
An in vivo transcription data set from Mok et al., (2015) Science16 was used to predict the parasite clearance rate of malaria
parasite isolates based on in vitro transcriptional profiles. See Table 8.

The training data consists of 1,043 isolates with 4,952 genes from the malaria parasite, Plasmodium falciparum. For each
malaria parasite isolate, transcription data was collected for various PF3D7 genes. The form of the training dataset contains
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1,043 rows and 4,957 columns, as shown in Table 7. The feature to predict is ClearanceRate.

Sample_Names Country Asexual_stage__hpi_ Kmeans_Grp PF3D7_0100100 ... PF3D7_1480100 ClearanceRate
GSM1427365 Bangladesh 20 B 0.226311 ... -0.64171 Fast
... ... ... ... ... ... ... ...
GSM1427537 Cambodia 12 C 0.81096 ... -1.72825 Slow
... ... ... ... ... ... ... ...
GSM1428407 Vietnam 8 A 0.999095 ... NaN Fast

Table 7. Format of the clearance rate model training data.

Training Set
Number
of Isolates 1043

Isolate
Collection Site Southeast Asia

Isolate
Collection Years 2012-2014

Sample
Type in vivo

Synchronized? Not Synchronized
Number
of Samples per Isolate 1

Additional
Attributes

~18 hpi,
Non-perturbed,
No replicates

Table 8. Training dataset information from Mok et al., 201516.

Data Preparation

The training data for this use case did not require the same pivoting transformations as in the last use case as each
record describes a single isolate. Thus, only the vectorization of the data was necessary, which was performed using
the Spark VectorAssembler and then converted into a Numpy-compatible array12. Example code shown below in
Code 1. Note that this vectorization only kept the numerical columns, which excludes the Country, Kmeans_Grp, and
Asexual_stage__hpi_ attributes as they are either absent or contain non-matching factors (i.e. different set of countries)
in the testing data.
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1 ## Transform Data using VectorAssembler
2 assemblerInputs = numericalColumns
3 assembler = VectorAssembler(inputCols = assemblerInputs, outputCol="features") \
4 .setHandleInvalid("keep")
5 stages += [assembler]
6

7 prepPipeline = Pipeline().setStages(stages)
8 pipelineModel = prepPipeline.fit(data)
9 vectordata = pipelineModel.transform(data)

10

11 ## Convert to Numpy Array
12 import numpy as np
13 pddata = vectordata.toPandas()
14 seriesdata = pddata['features'].apply(lambda x : np.array(x.toArray())) \
15 .as_matrix().reshape(-1,1)
16 X_train = np.apply_along_axis(lambda x : x[0], 1, seriesdata)
17 y_train = pddata['label'].values.reshape(-1,1).ravel()
18

19 ## Example Output (X_train) After Vectorization
20 array([[ 0.2263112 , -0.39682897, -1.80458125, ..., nan,
21 -1.30952803, -0.64170958],
22 [ 0.55442743, 0.54200115, -1.56157279, ..., 1.83083869,
23 0.21021662, -1.06553341],
24 ...,
25 [ 1.24446867, -0.09076431, -1.62156926, ..., 3.18060844,
26 -0.43056353, nan],
27 [ 0.99909549, -1.47208829, -1.91898139, ..., 2.59463935,
28 -1.21233458, nan]])

Machine Learning
Once the 98 individual models were trained, two ensemble models (voting ensemble and stack ensemble) were then created and
tested as before.

Parameter Value
Task Regression
Number of Iterations 100
Iteration Timeout (minutes) 20
Max Cores per Iteration 14
Primary Metric Weighted AUC
Preprocess Data? True
k-Fold Cross-Validations 10 folds

Table 9. Model search parameter settings for the clearance rate model search.

Results
The voting ensemble model (using soft voting) was selected as the best model, having the highest Area Under the Receiver
Operating Characteristic curve (AUC), as shown in Table 11. The top 10 of the 100 models trained are reported in Table 10.
Having a weighted AUC of 0.87 and a weighted F1 score of 0.80, this model is expected to accurately predict isolate clearance
rates.

0.1 Feature Importance
Feature importances were calculated using mimic-based model explanation of the ensemble model. The mimic explainer works
by training global surrogate models to mimic blackbox models. The surrogate model is an interpretable model, trained to
approximate the predictions of a black box model as accurately as possible. See Figure 6 and Table 13.
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Iteration Preprocessor Algorithm Weighted AUC
98 VotingEnsemble 0.870471056
99 StackEnsemble 0.865215516
65 StandardScalerWrapper LogisticRegression 0.86062304
33 StandardScalerWrapper LogisticRegression 0.859881677
97 StandardScalerWrapper LogisticRegression 0.858791006
44 StandardScalerWrapper LogisticRegression 0.856105491
73 StandardScalerWrapper LogisticRegression 0.855502817
17 RobustScaler SVM 0.855452622
43 StandardScalerWrapper LogisticRegression 0.855368394
61 RobustScaler LogisticRegression 0.854357599

Table 10. Top 10 training iterations of the clearance rate model search.
Note that the top performing model (VotingEnsemble) is the clearance rate model discussed in this paper.

Metric Accuracy
f1_score_macro 0.6084
AUC_micro 0.9445
AUC_macro 0.8475
recall_score_micro 0.8101
recall_score_weighted 0.8101
average_precision_score_weighted 0.8707
weighted_accuracy 0.8585
precision_score_macro 0.6217
precision_score_micro 0.8101
balanced_accuracy 0.6027
log_loss 0.4455
recall_score_macro 0.6027
precision_score_weighted 0.8
AUC_weighted 0.8705
average_precision_score_micro 0.8911
f1_score_weighted 0.8019
f1_score_micro 0.8101
norm_macro_recall 0.354
average_precision_score_macro 0.7344
accuracy 0.8101

Table 11. Model metrics of the final clearance rate ensemble model.

Prediction
Class Fast (ID: 0) Slow (ID: 1) Null (ID: 2)

Actual
Fast (ID: 0) 661 74 0
Slow (ID: 1) 115 184 0
Null (ID: 2) 6 3 0

Table 12. Confusion matrix of clearance rate predictions versus actual.
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Figure 3. AUC by iteration of the clearance rate model. Each orange dot is an iteration with the blue line representing the
maximum AUC up to that iteration.

Figure 4. ROC curve of the clearance rate model.

Figure 5. Precision-Recall curve of the clearance rate model.
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Rank PF3D7 Gene "Fast" Importance "Slow" Importance Overall Importance
1 1245300 0.292 0.118 0.41
2 1107700 0.02 0.274 0.294
3 1328400 0.154 0.123 0.277
4 1372000 0.172 0.095 0.267
5 1115600 0.083 0.179 0.262
6 0523000 0.154 0.087 0.241
7 1129100 0.008 0.191 0.199
8 0935400 0.117 0.058 0.175
9 1246300 0.079 0.095 0.174
10 0805000 0.049 0.124 0.173

Table 13. Top 10 PF3D7 genes (features) in predicting clearance rate.

Figure 6. Derived feature importances using the black box mimic model explanation of the clearance rate model
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Discussion
By using distributed processing of the data preparation, we can successfully shape and manage large malaria datasets. We
efficiently transformed a matrix of over 40,000 genetic attributes for the IC50 use case and over 4,000 genetic attributes for the
resistance rate use case. This was completed with scalable vectorization of the training data, which allowed for many machine
learning models to be generated. By tracking the individual performance results of each machine learning model, we can
determine which model is most useful. In addition, ensemble modeling of the various singular models proved effective for both
tasks in this work.

The resulting model performance of both the IC50 model and the clearance rate model show relatively adequate fitting of
the data for their respective predictions. While additional model tuning may provide a lift in model performance, we have
demonstrated the utility of ensemble modeling in these predictive use cases in malaria.

In addition, this exercise helps to quantify the importance of genetic features, spotlighting potential genes that are significant
in artemisinin resistance. The utility of these models will help in directing development of alternative treatment or coordination
of combination therapies in resistant infections.

Supplementary Materials

Scaling and Normalization Description

StandardScaleWrapper
Standardize features by removing the mean
and scaling to unit variance

MinMaxScalar
Transforms features by scaling each feature
by that column’s minimum and maximum

MaxAbsScaler Scale each feature by its maximum absolute value
RobustScalar This Scaler features by their quantile range

PCA
Linear dimensionality reduction using
singular value decomposition of the data to
project it to a lower dimensional space

TruncatedSVDWrapper

This transformer performs linear dimensionality
reduction by means of truncated singular value
decomposition.
Contrary to PCA, this estimator does not center the
data before computing the singular value decomposition.
This means it can efficiently work with sparse matrices.

SparseNormalizer
Each sample (each record of the data) with
at least one non-zero component is re-scaled independently
of other samples so that its norm (L1 or L2) equals one

Table 14. Scaling function information for machine learning model search.

All code, datasets, models, and results are hosted at github.com/colbyford/malaria_DREAM2019.
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