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Abstract

The ENCODE project has produced a collection of RNA sequencing experiments from many cell lines
and bulk tissues that constitutes an extensive catalogue of the expression programs utilized in the human
body. However, the relationship between the transcriptomes of tissues and those of the constituent primary
cells, and how these impact tissue phenotypes has not been well established. Here we have produced
RNA sequencing data for a number of primary cells from ten human body locations. The analysis of this
data, together with additional epigenetic data from a total of 146 primary cells, indicates that many cells
in the human body belong to five major cell types of similar transcriptional complexity: three, epithelial,
endothelial, and mesenchymal, are broadly distributed across the human body acting as components for
many tissues and organs, and two, neural and blood cells, are more anatomically localized. Based on gene
expression, these redefine the basic histological types by which tissues have been traditionally classified.
We have identified genes whose expression is specific to these cell types, and have estimated the relative
proportion of the major cell types in human tissues using the transcriptional profiles produced by the GTEx
project. The inferred cellular composition is a characteristic signature of tissues and reflects tissue mor-
phological heterogeneity and histology. We identified changes in cellular composition in different tissues
associated with age and sex and found that departures from the normal cellular composition correlate with
histological phenotypes associated to disease. This transcriptionally based classification of human cells

provide a new view of human biology and disease.
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Transcriptional profiles reflect cell type, condition and function. In tissues and organs, they are moni-
tored in RNA extracted from millions to billions of cells (116 — 10°Y, likely including multiple cell types. As a
consequence, the transcriptional profiles obtained from tissue samples represent the average expression
of genes across heterogeneous cellular collections, and gene expression differences measured in bulk tis-
sue transcriptomes may thus reflect changes in cellular composition rather than changes in the expression
of genes in individual cells. Single-cell RNA sequencing (scRNA-seq) has indeed revealed large cellular
heterogeneity in many tissues and organs®, and the Human Cell Atlas (HCA) project® has been recently
initiated with the aim of defining all human cell types and to infer the cellular taxonomy of the human body.
As a step in that direction and to bridge the transcriptomes of tissues with the transcriptomes of the con-
stituent primary cells, and to understand how these impact tissue phenotypes, we have generated bulk
expression profiles of 53 primary cell lines isolated from ten different anatomical sites in the human body.
These profiles include long and short strand-specific RNA-seq, and RAMPAGE data (Fig. 1a, Table S1-4).

Maijor cell types in the human body

Clustering of the primary cells based on the expression profiles of 14,475 protein coding, 1,618 long non-
coding RNAs (IncRNAs) and 1,347 pseudogenes revealed a number of well defined clusters (Fig. 1b-c,
Fig. S1, Supplementary Information). One cluster was composed of endothelial cells, a second large
cluster included a mixture of cell types: fibroblasts, stem cells and muscle cells, among others, which
we collectively termed as mesenchymal, two smaller clusters, which clustered together, were composed
of epithelial cells, and finally, the melanocytes clustered separately. The clustering is supported by the
silhouette analysis and the elbow method*® (Fig. S2a-b). Almost all of the individual primary cells are
assigned to the proper major cell type. The exceptions are renal mesangial cells, which have contractile
properties, but are classified as epithelial, and lung epithelial cells, that are classified as mesenchymal.
These two cell types, however, are of embryonic origin — in contrast to the vast majority of primary cells in
our study, which are adult (Table S1) — and their transcriptomes may not reflect the transcriptomes of fully
differentiated cells.

The clustering of primary cells does not reflect body location or embryological origin. Body location
actually contributes very little to the expression profile of primary cells, explaining only about 4% of the
variance in gene expression (Fig. S2c). Variation of gene expression among organs is similar for the
different clusters (Fig. S2d). Remarkably, the transcriptional diversity among cells within a given organ can
be as high as that across the entire human body (Fig. S2e). A similar clustering is obtained using FANTOM
CAGE-based transcriptomic data on 105 primary cells® (Fig. 1d, Fig. S3a,b, Table S6), which reveals, in
addition, two clusters corresponding to blood and neural cells, which were not represented in our set of
primary cells. The analysis of a different set of primary cells from the ENCODE encyclopedia Candidate
Regulatory Elements (cREs”, Table S5), based on DNAse Hypersensitive Sites (DHSs), also recapitulates
the clustering (Fig. 1e, Fig. S3c). The clustering remains in the set of 146 non-redundant primary cells,

that results from merging the RNA-Seq, the CAGE and the DHS data. The clustering is thus conserved
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despite the heterogeneity of the underlying assays and experimental protocols used to generate these
different data sets (Fig. S4). In the clustering, neural cells (mostly astrocytes from different brain regions
and neurons) cluster together with a few neuroepithelial primary cells (we labelled them epithelial, but they
are mostly ciliate cells from different sites in the eye). While the neural cells profiled by CAGE seem to have
a distinct transcriptional signature (Fig. S3c), neural cells profiled by DNAse-seq exhibit a gene expression
pattern similar to mesenchymal cells (Fig. S3a). However, the neural cells profiled by DNAse-seq are,
in contrast to most primary cells investigated here, of embryonic origin, and thus they are not likely to
express the transcriptional program characteristic of adult neural cells. The analysis of publicly available
transcriptomics data from nervous tissues including single-cell and bulk RNA-seq strongly support that the
neural cell type is a proper major type clearly differentiated from the other major types (Supplementary
Information, Fig. S5-S7).

These results, all together, suggest the existence of a limited number of core transcriptional programs
encoded in the human genome. These programs underlie the morphology and function common to a few
major cellular types, which are at the root of the hierarchy of the many cell types that exist in the human
body (Table 1). Three of these major cell types, epithelial, endothelial and mesenchymal, have a broad
anatomical distribution and are present in almost any human organ. The other two, neural and blood cells,
are more anatomically localized. They all show similar transcriptional heterogeneity, with blood being the
most transcriptionally diverse (Fig. S8). These transcriptionally defined major cell types match broadly,
but not exactly, the basic histological types in which tissues are usually classified (see for example®19):
epithelial, of which endothelial is often considered a subtype, muscular, connective, which includes blood,
and neural. However, from the transcriptional standpoint, endothelial and blood constitute separate cell
types, and are not subtypes of epithelial and connective types, respectively, while the connective (but not
blood) and muscular histological types cluster together into a single mesenchymal transcriptional type (Fig.
1f).

Within each of the major types, further hierarchical organization of cell types may exist. While we have
not profiled enough diversity of primary cells to resolve the taxonomic substructure within each major cell
type, hints of this substructure can be clearly seen in the epithelial type. Within the epithelial cluster, two
well defined subclusters can be identified (Fig. 1b-e; see also Fig. S2a). One of the clusters is made mostly
by renal cells, suggesting that body location may actually play a role in subtype specialization. Remarkably,
the epithelial cluster includes primary cells of all embryonic origin (ectoderm, endoderm and mesoderm),
suggesting that the transcriptional programs of cells may not be majoritarily inherited through development,
but partially adopted through function.

Our results also suggest that, while many cells are likely to adhere to these basic transcriptional pro-
grams, many other primary cells are likely highly specialized and very tissue specific. As with melanocytes

in our analyses, these specialized cells are likely to have their unique transcriptional program.
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Cell type specific genes

We identified a total of 2,871 genes (including 2,463 protein coding genes, 283 long non-coding RNAs
and 125 pseudogenes), the expression of which is specific to the epithelial, endothelial, mesenchymal or
melanocyte cell types (Fig. 2a, Fig. S9, Table S7). These cell type specific genes include nearly all genes
that we identified as the major drivers of the clustering (Supplementary Information, Fig. S10). Examples of
these genes include collagen (COL 1/3/6), expressed in mesenchymal cells, epithelial transcription factors
genes OVOL1 -2, VWF gene encoding for the endothelial marker von Willebrand Factor, and TYR gene
encoding for the melanocyte-specific enzyme tyrosinase (see Table S8 for a list of manually curated driver
genes). Figure 2b shows the expression pattern of RP11-536018.2, an endothelial specific long non-coding
RNA (IncRNA) of unknown function. The gene is expressed in nearly all endothelial cells analyzed here,
but not in cells from other types, and its expression is correlated to protein coding genes with endothelial-
related functions (Fig. S11a). The gene, however, is expressed in multiple tissues, and, therefore, it is not
tissue specific.

The functions of annotated tissue-specific genes closely match the expected biology of the primary cells
in each type (Fig. S11b). Cell type specific genes show consistent restricted expression in the FANTOM
CAGE data (Fig. S12), and they are enriched for encyclopedia cREs! specifically in the primary cells of
that type (Fig. S13). Using ChIP-seq histone modification data obtained in a number of primary cells!?
(Supplementary Information, Table S9), we found the promoters of genes specific to a given type to be
enriched for activating chromatin marks in primary cells of that type compared with primary cells of different
type (Fig. S14a). However, overall, except for H3K4me1, we found low levels of most activating marks in
the promoters of cell type specific genes compared with all genes, even after controlling for differences
in gene expression. In contrast, the promoters of cell type specific genes exhibit similar or higher levels
of repressive histone modifications compared to all genes (Fig. S14b). This is consistent with previous
reports showing that genes under tighter regulation show lower levels of activating histone modifications
than broadly expressed genes (see, for example, Rach et al., 201113, Pervouchine et al. 201514).

Among cell type specific genes, we identified 167 Transcription Factors (TFs) from a total of 1,544
TFs annotated in the human genome™. We focused on 56 that showed the strongest co-expression pat-
terns (Pearson’s correlation coefficient > 0.85, Fig. 2c, Fig. S15). They include previously annotated cell
type-specific transcriptional regulators, such as ERG, which has been shown to regulate endothelial cell dif-
ferentiation'®, and TP63, which is an established regulator of epithelial cell fate and is often altered in tumor
cells'”. Consistent with the hypothesis that the cell type specific TFs might regulate cell type specificity, we
found that genes specific to a given type are enriched for binding motifs for TFs specific to that type in most
cell lines (Fig. 2d). The enrichment arises specifically when the motifs occur in open chromatin domains in
primary cells of that type (e.g. in epithelial primary cells, epithelial specific genes are enriched, compared
to genes specific to other types, in epithelial specific TF motifs occurring in open chromatin domains, Fig.
2d, Fig. S16).

We found that transcriptional regulation appears to play the major role compared to post-transcriptional
5
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regulation, both in defining the major cell types as well the individual primary cells within the types. We
estimated the fraction of the variation in isoform abundance explained by variation in gene expression’®
to be on average 67% across transcriptional types and 55% across primary cells (Fig. 3a). The lower
proportion of variance explained across primary cells suggests that post-transcriptional regulation plays
comparatively a more important role in defining the transcriptomes of primary cells within a given type,
than in setting the transcriptional programs of the major cell types. In additional support of this conclusion,
we have found that while the number of differentially expressed genes in pairwise comparisons of primary
cells is much larger between than within cell types, the number of differentially spliced genes is similar (Fig.
3b, Fig. S17, Supplementary Information).

While bulk gene expression is the main contributor to define cell type specificity, other transcriptional
events are also cell type specific. First, using RAMPAGE data, we identified a number of cell-type spe-
cific TSSs (Fig. S18, Table S10, Supplementary Information). Figure 3c shows the case of the gene
coding for the S100 Calcium Binding Protein A16 (S100A16) which is selectively transcribed from a prox-
imal TSS in endothelial cells, whereas in the other cell types transcription starts from a more distal TSS.
Second, examination of splicing isoforms revealed 230 cell-type specific alternative splicing events (Table
S11, Supplementary Information), independently of the tissue of origin, consistent with earlier reports'?.
As an example, exon 6 of the MYL6 gene, coding for the myosin light chain 6 protein has been previously
reported to be more often included in muscle cells??; however, we found that it is also often included in
other mesenchymal cell types, including fibroblasts and stem cells, but not in adipocytes (Fig. 3d, Fig.
S19a, Fig. S19b). Interestingly, the exon is translated as part of the MYL6 N-terminal EF-hand domain,
calcium-binding domain which mediates the interactions between actin and myosin (Fig. S19c).

The basic human transcriptional programs seem to have been established early in vertebrate evolution:
genes orthologous of cell type specific genes are underrepresented compared to orthologues of all genes
in invertebrate genomes (Fig. 4a, Fig. S20a), but they are overrepresented in vertebrates, as early as in
tetrapoda. One exception are epithelial genes, which are overrepresented only in mammals (Fig. 4b, Fig.
S20b). Within the set of orthologous genes across tetrapodaz?, the expression of cell type specific genes
is less conserved than that of protein coding genes overall, especially at larger evolutionary distances (Fig.
4c, Fig. S20c, Fig. S21). This suggests an important role for the evolution of gene expression regulation
in shaping the basic transcriptional programs in the human genome. Epithelial specific genes also show
the lowest conservation of expression levels. The transcriptional program characteristic of the epithelium
appears to be therefore the most dynamic evolutionarily — possibly reflecting a greater need for adaptation

of the epithelial layer in constant interaction with the environment.

Estimation of the cellular composition of complex organs from the expression of cell type
specific genes

We used the patterns of expression of cell type specific genes to estimate the cellular composition of human

tissues and organs from GTEx bulk tissue transcriptome data? (version 6, 8,555 samples, 31 tissues,
6
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544 individuals). We employed xCell*®, using the sets of genes specific to epithelial, endothelial, and
mesenchymal major cell types derived from ENCODE, and specific to brain (neural) and blood derived from
GTEx?4 as signatures, and computed the enrichments of these cell types in each GTEx tissue sample. We
cannot obtain proper estimates of the cell type proportions, because in general we ignore the expression
levels of the marker genes for the cell types specific to a given tissue. Taking as a proxy the expression of
GTEXx derived tissue specific (TS) genes, however, we obtained lower bound estimates using two different
methods. Across all tissues, excluding blood and brain, we found the average tissue composition explained
by the major cell types to be at least 58% using Isglin®> and 40% using CIBERSORT4® (Fig. S22-S28,
Tables S12, S13, Supplementary Information).

The xCell enrichments (Fig. 5a) and the estimated proportions by Isqglin and CIBERSORT (Fig. S24 and
S25) are largely consistent with the histology of the tissues. For instance, esophagus mucosa is enriched
for epithelial cells, while Esophagus muscularis is enriched for mesenchymal cells. Skin (both exposed and
unexposed) is enriched in epithelial cells; fibroblasts, in mesenchymal cells, etc. Blood and brain are only
enriched in blood and neural cells, respectively. Most other tissues are not enriched in these two major cell
types, with the expected exceptions of spleen enriched in blood cells, and pituitary enriched in neural cells.
Testis, which is widespread transcription®Z, is also enriched in neural cells, a reflection of the similarity of
the expression programs of these two organs<®. Maybe unexpectedly, there is some enrichment of cells
of endothelial type in adipose tissue. The analysis of the pathology reports of the subcutaneous adipose
tissue shows that often is contaminated with other tissues, in particular blood vessels, which would explain
the enrichment in cells of the endothelial type. We have further processed and analyzed the histopathol-
ogy images available from the GTEXx adipose samples (Supplementary Information), and estimated that on
average about 84% of the adipose tissue does actually correspond to adipocytes (Fig. S29), which would
explain the endothelial enrichment. In skeletal muscle we do not observe a particularly large enrichment
in cells of the mesenchymal type, in apparent contradiction with our initial classification (Fig. 1b,f). The
samples in GTEx, however, are all from differentiated skeletal muscle, while the ENCODE primary cells
that we used to identify the mesenchymal specific genes are undifferentiated satellite cells (SkMC), and
smooth muscle cells (Table S1). To address the issue whether skeletal muscle cells can indeed be included
within the mesenchymal type, we analyzed single cell RNA-seq data produced during skeletal myoblast dif-
ferentiation??, and found that differentiating skeletal muscle cells retain the mesenchymal signature through
most of the differentiation pathway, acquiring only the GTEx muscle specific signature when fully differen-
tiated (Fig. S30a-c). Further supporting that muscle is indeed of mesenchymal type, potentially forming
a well defined subtype, gene expression profiles cluster together myoblast differentiating single cells with
ENCODE mesenchymal cells, rather than with epithelial or endothelial cells, or forming a separate cluster
(Fig. S30d). All together these results reveal that cells belonging to epithelial, endothelial, and mesenchy-
mal types are broadly anatomically distributed, being presented in almost all tissues and organs, and that
together with neural and blood cells, they are likely to constitute the major cell types in the human body.

To independently assess the xCell enrichments, we analyzed the histological images of the few tissues

7
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in which samples were obtained from different subregions. This is most notable in the case of transverse
colon and stomach. The GTEx stomach samples are all from the gastric body, whose walls consist of
two broad layers: the mucosa, which is mostly epithelial, and the muscularis, which is smooth muscle
(Fig. 5b). We processed the histological images, and identified a subset of samples that presented mostly
the muscularis or the mucosa layer (Supplementary Information). This partition of the samples has been
also observed by the GTEx consortium (K Ardlie, personal communication). The enrichment of epithelial
cells in the samples from the muscularis layer is much lower than in the samples from the mucosa layer;
conversely, the enrichment of mesenchymal cells is much higher in the muscularis than in the mucosa
layer. The two sets of samples are almost perfectly separated by our cellular decomposition (Fig. 5c),
explaining the bimodality in the distribution of cell type enrichments observed specifically in the stomach
samples (Fig. 5a). Consistently, we found that epithelial specific genes were exclusively expressed in the
mucosa layer and mesenchymal specific genes were exclusively expressed in the muscularis layer (Fig.
5d). Next, we used the classification of stomach images to train an SVM model (Fig. S31a,b), and used
this model to predict the presence of the two layers in 196 transverse colon samples—with histology similar
to that of stomach (Supplementary Information). The SVM-predicted classification closely matches the
differences observed at the transcriptional level, and confirms that the bimodality of cellular composition
(Fig. 5a) is again related to the unbalanced presence of the two tissue layers across samples (Fig. S31c).
Considering that stomach and colon were not represented in our primary cell collection, this constitutes a
strong validation of our estimates of the cellular composition of tissues.

Finally, we analyzed a large compendium of single cell RNASeq datasets comprising 300 human sam-
ples from 20 different organs, totaling about one million cells in PanglaoDB=". These have been clustered
in 178 primary cell types, for 68 of which accurate sets of maker genes (sensitivity > 0, Methods) have
been derived. We have intersected the marker genes for these primary cell types with the signature genes
for our major cell types. About two thirds of the single cell types neatly cluster within the five major cell
types (Fig. S32). Moreover, about one third of the remaining cells (including pulmonary alveolar cells,
Goblet cells, enterocytes, hepatocytes and others) cluster together, sharing part of the epithelial signature.
We also observed a cluster of unclassified cells that includes, in addition to enteric glial cells, different
types of pancreatic endocrine cells, and that share part of the neural signature, consistent with the strong
morphological, and physiological similarities between these two types of cells®!. This likely reflects that our
signatures for the major cell types are still incomplete, and that they could be refined, as the transcriptomes

of additional primary cells are characterized.

Alterations of cellular composition in pathological states

We projected the GTEXx tissue samples on a 3-dimensional space according to the enrichments of epithe-
lial, endothelial and mesenchymal cell types in each sample (Fig. 6a, S33). The spatial arrangement of the
samples recapitulates tissue type as strongly as the clustering based on gene expression (Fig. S34). This

suggests that the basic cell type composition is a characteristic signature of tissues, and that departures
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from this composition may reflect pathological or diseased states. To assess this hypothesis, we analyzed
the histological reports associated to the GTEx images (7,911 reports). We employed fuzzy string search
and parse trees to convert the natural language annotations produced by the pathologists to annotations
in a controlled vocabulary that can be analyzed automatically (Supplementary Information, Table S14). In
this way, we identified 19 histological phenotypes affecting one or more tissues for which there were at
least 30 affected samples. From these, we further identified six conditions with significant (FDR < 0.01)
altered proportions of cell types when comparing affected and normal tissue (Fig. 6b-e)). Atherosclerosis
in the tibial artery, which is more prevalent in older donors (Fig. S35a) is associated to an increase in
endothelial cells (Fig. 6b); this might be attributed to endothelial proliferation stimulated in peripheral artery
occlusion®2. Atrophic skeletal muscle, a phenotype which is also correlated with age (Fig. S35b), is asso-
ciated to an increase in mesenchymal cells, which is consistent with the reported increase of connective
tissue®3 and intermuscular fat®#3% in atrophy (Fig. 6¢). Indeed, analysis of the pathology reports of GTEx
muscle histological images reveals that the proportion of fat is almost twice as high in atrophic than in non
atrophic muscle (24% vs 13%, Supplementary Information). Elevated proportions of mesenchymal cells
are also observed in liver congestion (Fig. S36a), a condition that often precedes fibrosis, which is char-
acterized by an activation of matrix-producing cells, including fibroblasts, fibrocytes and myofibroblasts=®.
In spite of the low presence of cells of the major cell types in the testis, we found a further reduction of
cells of all these types, mostly endothelial, in testis undergoing spermatogenesis (Fig. S36c¢). In lung
pneumonia, we also observe alteration of all cell types (Fig. S36b). The sixth condition is gynecomastia,
a pathology which is characterized by ductal epithelial hyperplasia®”. We investigated differences in cel-
lular composition between males and females, and found them significant only in mammary tissue, where
female breasts exhibit much higher enrichment in epithelial cells than male breasts, possibly due to the
presence of epithelial ducts and lobules (Fig. 6d). Remarkably, males diagnosed with gynecomastia show
a cellular composition similar to that of females, mirroring tissue morphology.

We also observed specific age-related changes in cellular composition in lung and ovarian tissues. In
lung samples we observe changes of all cell types, in particular, a significant reduction of epithelial cells in
older donors (Fig. 6e), which is consistent with the impaired re-cellularization of lung epithelium that has
been observed in decellularized lungs of aged mice®. Consistently, a similar pattern can be observed in
the lungs of the individuals that died of respiratory related causes (Fig. S36e-f). In ovarian samples of
women older than 48, a lower bound for menopause occurrence, we observe a decrease in endothelial
cells (Fig. S36d), potentially related to an age-dependent decline in ovarian follicle vascularity®?.

Altered cellular composition is likely to be particularly relevant in cancer. We analyzed, therefore, tran-
scriptome data from the Cancer Genome Atlas Pan-Cancer analysis project*¥ (PCAWG) for 19 cancers
affecting tissues also profiled in the GTEx collection, and estimated the cellular enrichments of the major
cell types (Fig. S37). For same cases there is also transcriptome data for normal samples from the same
cancer project, which serve as a control for the highly different methodologies employed in GTEx and in

the cancer projects. Thus, in lung cancer, there is an increase in epithelial cells (Fig. 7a,b), likely reflecting
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the epithelial origin of most lung cancers. In kidney primary tumors, in contrast, there is an overall increase
of endothelial cells across most cancer subtypes, consistent with the increased vascularity associated to
the cancer (Fig. 7c-d). The exception are renal papillary cell carcinomas, which present, instead, reduced
vascularity*!. In both cases, the cellular composition of GTEx samples and normal samples from the can-
cer projects are similar, supporting the robustness of our cellular characterization. Alterations in cellular
composition can also reflect cancer progression. For ovary, even though we lack a comparable set of nor-
mal samples from the cancer projects, there is data on different stages of the disease, which serve as an
internal control (Fig. 7e-f). Compared to GTEx normal data, there is markedly increase in epithelial cells in
cancer, which is more evident as the severity of the cancer progresses, from primary to recurrent.

Overall, the data collected here on the transcriptomics of human primary cells constitute a unique re-
source, serving as an intermediate resolution of complexity between single cell and whole organ transcrip-
tomics. This resource will contribute to the understanding of how the interplay between cellular transcription
and cellular composition shapes tissue histology, and ultimately impacts, human phenotypes. Our analyses
suggest that a large fraction of human cells in tissues belong to a few major cell types, providing a high
level transcriptionally-based hierarchical classification of human cells. Extending the variety of profiled cell
types, achieving single cell resolution and integrating expression data with epigenetics data, as proposed
in the Human Cell Atlas project?, will enrich our understanding of the constitutive cell types in the human

body and of their functional relationship.

Methods

All experimental protocols for the samples described here are available on the ENCODE portal www.
encodeproject.org. Detailed information about data processing and analyses are available as Sup-
plementary Information. All the data generated for this study are also publicly available on the ENCODE
portal www.encodeproject.org. Additional data tables derived from the analyses are included in this

published article (and its supplementary information files).
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Figure legends

Figure 1

Basic transcriptional programs of human primary cells. (a) Overview of primary cells analyzed in this study
and the body location they are extracted from (b) Hierarchical clustering of human primary cells based on
the correlation of gene expression. tSNE of human primary cells based on gene expression measured here
(e), on gene expression measured by CAGE by the FANTOM consortium (d) and on Candidate Regulatory
Elements (cREs) by the ENCODE encyclopedia scored DNAse hypersensitivity signal (e). (f) Correspon-

dence between transcriptionally derived major cell types and classical histological types.

Figure 2

Cell-cluster-specific genes. (a) Expression of 2,871 genes specific to major cell types. (b) Expression
of the endothelial-specific IncRNA RP11-536018.1. Separate strand-specific signal tracks are shown for
endothelial cells, while the other tracks contain overlaid signal for each cell type.The IncRNA has highly
correlated (correlation coefficient > 0.9) expression with 72 protein coding genes across our set of primary
cells. Nearly all these genes are endothelial specific, and they are functionally enriched for vessel devel-
opment and angiogenesis (see Figure). The gene appears to be under relatively strong regulation, since it

has almost 1,500 eQTLs across multiple tissues in GTEx (v7) well above the average eQTLs for IncRNAs
14
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(about 450). (c) Network of the most strongly co-expressed (Pearson’s correlation coefficient > 0.85) cell
type specific transcription factors (TFs). Nodes are colored according to the cell-type-specificity of the TF,
and shaped based on the availability of sequence motif (square: available, circle: not available). (d) Pro-
portion of cell type specific genes with predicted TF binding over cell type specific genes that harbour a
DHS around their TSS (-10kb/+5kb), individually for each cell type specific TF (with binding motif available)
and cell line for which DNAse-seq data was available. In general we found that genes specific to a given
type are enriched for binding motifs for TFs specific to that type. For instance, the proportion of endothe-
lial specific genes with DHS sites that harbour motifs for the endothelial specific TF ERG in dermal blood
endothelial cells (HDBEC) is larger than the proportion of genes with DHS sites specific of other major cell
types. Primary cells highlighted in red, although included within the epithelial major cell type, they have
been labelled as neural/epithelial in Fig. 1d, and they are therefore not proper epithelial; consistently, they
do not show the enrichment in binding motifs for epithelial specific transcription factors. Refer to Table S5
for a complete description of the acronyms. Enrichment adjusted p-values: ™" < 0.05, ™*” < 0.01, "™ <
0.001.

Figure 3

Transcriptional complexity of human primary cells. (a) Distribution of the relative contribution of gene ex-
pression to the variation in isoform abundance between major cell types (blue) and between all primary
cells. Large values of the contribution of gene expression indicate that changes in isoform abundance from
one condition (primary cell, cell type) to another can be simply explained by changes in gene expression.
Small values, by contrast, indicate that changes of isoform abundance are mostly independent of changes
in gene expression, and can obey to changes in the relative abundance of the isoform (b) Number of dif-
ferentially expressed genes (DE, y axis) vs number of genes with differentially spliced exons (DS, x axis),
between pairs of samples of the same cell type (within, blue) or different cell types (between, red). DS
genes have been obtained using IPSA (https://github.com/pervouchine/ipsa-full). See also
Fig. S13. (c) Expression signal for the S100A16 gene, which shows the preferential usage of the proximal
TSS in endothelial cells, compared to preferential use of the distal TSS in cells from the other types. The
individual signal tracks are shown for endothelial cells, whereas overlaid tracks are shown for the other
major cell types. The signal is scaled to the maximum of the track height to show the relative difference in
TSS usage. (d) Sashimi plot depicting differential inclusion of exon 6 of the MYL6 gene. The exon is more
included in mesenchymal cells, that comprise muscle cells, compared to the other major cell types. The
signal is the average read count for each major cell type (y axis). The average number of reads supporting
each splice junctions is reported for each splice junction within each major cell type. The bottom panel
show the exonic structure of annotated transcripts in GENCODE#2. The Sashimi plot was generated using

ggsashimi3.
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Figure 4

Evolutionary conservation of cell type specific genes. (A) Percentage of cell type specific genes and pro-
tein coding genes with detected 1 to 1 orthologs in worm (Caenorhabditis Elegans) and fly (Drosophila
Melanogaster). See also Fig. S15. (b) Fraction of 1 to 1 orthologs between each species and human
for major cell type specific genes and for protein coding genes overall. Species are sorted by increasing
evolutionary distance from human#. The black line is given as a reference and it indicates the proportion of
6-way orthologs (chimpanzee, rhesus, mouse, opossum, platypus and chicken) from*® that are present in
each species. The proportion is not 100% in these species because different versions of the GENCODE#2
gene set reference were used. The genes in this set of 6-way orthologs are used for the comparison of
gene expression in ¢. See also Fig. S15b. (¢) Pearson’s correlation coefficient between gene expression in
each human organ and the corresponding one in every other species. The correlation is computed across

all the genes in each major cell type separately. See also Figs. S16 and S17.

Figure 5

Expression of cell type cluster-specific genes in GTEx organs. (a) Enrichment of each major cell type in
GTEX tissues, estimated from bulk tissue RNA-seq using the xCell method. As a control, we also include
the enrichments in the primary cells monitored here. As expected, the highest enrichment for cells of
a particular cell type occurs in cells of that cell type. (b) Example of stomach histological slides which
represent the two main tissue layers and the procedure for the manual annotation of the images based
on the presence of those layers. Each GTEx histological image displays up to six tissue slices. For
the stomach samples, we scored each slice for the presence (1) or absence (0) of the muscularis and
mucosa layers, summed up the values for each layer separately and divided by the number of slices. If
the proportion of slices with mucosa layer, or muscularis layer, is more than 50% we classify the entire
slide as mc1, or ms1, respectively. If the proportion is lower, we classify the slide as mcO or ms0. A
combined class, for example mcOms1, is assigned to the slides. Thus, samples labeled mcOms1 are mostly
muscularis, while samples labelled mc1ms0 are mostly mucosa. (¢) Enrichment of cells of epithelial and
mesenchymal types in stomach samples containing mostly the mucosa (green) or mostly the muscularis
(purple) layer. (d) Expression of the cell type-specific genes that drive the separation of stomach samples
in mostly muscularis or mostly mucosa samples. Among discriminant cell type specific genes, mucosa
only samples express almost exclusively epithelial specific genes, while muscularis only samples express

exclusively mesenchymal specific genes.

Figure 6

Alterations of the contributions of the major cell types to tissues in histological phenotypes. a) GTEx
samples represented in a 3D space where the axes are the enrichments of endothelial, epithelial and
mesenchymal cells. b and ¢ Differences in xCell enrichments of major cell types (Wilcoxon test, adjusted
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p-values as FDR) between affected and normal states. Histological images of affected and normal tissues
are displayed (see text for details). Nrml: normal, Athr: atherosclerosis and Atrp: atrophy. d) Major cell
type xCell enrichments in female (Fml) breast samples, and male breast samples with (MIGy) or without
gynecomastia (Male). Only significant FDR (< 0.05) are shown, all of them being between female and
male without gynecomastia (left FDR) and between male without gynecomastia and male with gyneco-
mastia (right FDR). e) Changes in major cell type xCell enrichments in lung samples with age (Pearson’s

correlation coefficient, adjusted p-values as FDR).

Figure 7

Alterations of the contributions of the major cell types to tissues in cancer. xCell enrichments in epithelial
cells in lung cancers and matched normal controls from the PCAWG project separated by cancer project
(a). LUAD-US: Lung Adenocarcinoma, TCGA, USA; LUSC-US: Lung Squamous Cell Carcinoma, TCGA,
USA. Enrichment in matched normal and cancer lung samples by donor, pooled across the cancer projects
(b). The p-value for the Wilcoxon test for the differences in epithelial contribution between normal and can-
cer samples in the LUAD-US project is: 8.1e-06. xCell enrichment in endothelial cells in kidney cancers and
matched normal controls from the PCAWG project separated by cancer project (¢). RECA-EU: Renal Cell
Cancer, France, EU; KIRP-US: Kidney Renal Papillary Cell Carcinoma, TCGA, USA; KIRC-US: Kidney
Renal Clear Cell Carcinoma, TCGA, USA; KICH-US: Kidney Chromophobe, TCGA, USA. xCell Enrich-
ments in matched normal and cancer kidney samples by donor (d). The adjusted p-values for the Wilcoxon
tests for the differences in endothelial contribution between normal and cancer samples in the RECA-EU,
KIRC-US, KICH-US projects are respectively: 3.8e-12, 0.0024, 0.65. xCell enrichments in epithelial cells in
ovarian cancers from the PCAWG project separated by cancer project (e) or by donor for matched primary
and recurrent samples (f). OV-AU: Ovarian Cancer, Austria; OV-US: Ovarian Serous Cystadenocarcinoma,
TCGA, USA. The p-value for the Wilcoxon test for the differences in endothelial contribution between pri-
mary and recurrent samples in the OV-AU project is: 3.6e-27. The donors in displays b, d, f are sorted
based on the difference between the enrichments. The dashed lines in d, f separate the matched samples
in which the enrichment of endothelial (epithelial) cells is larger in the cancer sample from those in which it

is larger in the normal sample.
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Cell Type: threshold induces a taxonomic hierarchy of cell types, by means of which similar

cell types are recursively aggregated into higher order types.

cell types at the bottom of the taxonomic hierarchy. They denote specialized cells
phenotypically identical (to some resolution); they cannot further be segregated
Primary Cell Type: into biologically meaningful subtypes; for example, pancreatic beta cells. In our
work, we do not include here, cell lines, which are primary cells that have been
transformed to proliferate indefinitely.

cell types at the root of the taxonomic hierarchy. They cannot be further aggre-
gated in biologically meaningful higher order types; for example, epithelial cells.

cell type topologically restricted to a specific anatomical region (tissue, organ,
body location); for instance, hepatocytes.

Transcriptional Program: The pattern of gene expression characteristic of a given cell type.

Major Cell Type:

Tissue-Specific Cell Type:
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