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Summary  43 

The smooth conduction of movements requires simultaneous motor planning and execution according 44 

to internal goals. So far it is not known how such movement plans can be modified without being 45 

distorted by ongoing movements. Previous studies have isolated planning and execution related 46 

neuronal activity by separating behavioral planning and movement periods in time by sensory cues1–7.  47 

Here, we introduced two novel tasks in which motor planning developed intrinsically. We separated 48 

this continuous self-paced motor planning statistically from motor execution by experimentally 49 

minimizing the repetitiveness of the movements. Thereby, we found that in the rat sensorimotor 50 

cortex, neuronal motor planning processes evolved with slower dynamics than movement related 51 

responses both on a sorted unit and population level. The fast evolving neuronal activity preceded 52 

skilled forelimb movements while it coincided with movements in a locomotor task. We captured this 53 

fast evolving movement related activity via a high-pass filter approach. As biological mechanism 54 

underlying such a high pass filtering we suggest neuronal adaption. The differences in dynamics 55 

combined with a high pass filtering mechanism represents a simple principle for concurrent motor 56 

planning and execution in which planning will result in relatively slow dynamics that will not produce 57 

movements. 58 

 59 

Main Text 60 

In smooth movement sequences, a continuum from motor planning over motor execution to sensory 61 

integration can be defined, according to the temporal lag between neuronal activity and behavior. 62 

Here, we consider neuronal activity with a temporal lag to the behavior in the order of a previously 63 

suggested range of less than 100 ms8,9 as being related to motor execution.  We refer to neuronal 64 

activity with larger temporal lags to the behavior as motor planning or sensory integration, depending 65 

on whether the neuronal activity occurred before or after the movement. This lag based interpretation 66 

of neuronal processes is hampered by behavioral correlations. If two behavioral processes are 67 
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correlated (e.g. because they always occur in the same sequence), neuronal activities appear to be 68 

correlated to both even if a causal relationship only exists for one of the behavioral processes.  To 69 

reduce this temporal bleeding, we aimed to minimize correlations by encouraging animals to conduct 70 

movements with minimal reoccurrence of individual movement sequences. In the locomotor task, rats 71 

moved unconstrained in a box while searching for pseudo-randomly placed water drops on a floor 72 

mesh (Fig. 1A). In the joystick task, rats were trained to move a joystick with their right front paw while 73 

minimizing revisiting previously visited positions (Fig. 1B). Thus, rats had to internally develop 74 

movement plans to optimize the number of rewards. In both tasks, movements were not repetitive as 75 

indicated by the narrow temporal behavioral autocorrelations of the movement velocities (see data 76 

boxes in Fig. 1C and D). A repetitive movement or prolonged behavioral state would cause an 77 

autocorrelation with multiple peaks (see illustration in Fig. 1C) or one broader peak due to 78 

experimentally induced delay periods which can lead to an extended neuronal activity often 79 

interpreted as motor planning (see illustration in  Fig. 1D), respectively.  80 

To study the neuronal underpinnings of decorrelated movements, we trained six Long-Evans rats in 81 

the locomotor task. Five of these animals were also trained in the joystick task. To record neuronal 82 

activity, electrodes were placed bilaterally in the sensorimotor cortex (42 electrodes per animal, 83 

Fig. 1E). We targeted the output layer V by implanting the electrodes at a depth of 1.2 mm10,11. In total 84 

we recorded 5400 single units (SU) and 6876 multi units (MU) over 100 sessions for the locomotor task 85 

(Supplementary Table 1) and 1217 SU and 1659 MU over 25 sessions for the joystick task 86 

(Supplementary Table 2). We refer to SU and MU collectively as sorted units. For repetitive behavior, 87 

neurons may fire at a specific lag relative to each other, rendering some lags less represented than 88 

others. This causes the firing rate for some lags to be fundamentally lower than the average firing rate 89 

(see dashed lines in Fig. 1C and D). Here, the neuronal activity was characterized by a decorrelated 90 

pair-wise spiking, i.e. pairs of neurons fired independently of each other such that all lags were 91 

represented equally, and the firing rate at a certain lag was close to the average firing rate. The firing 92 

rate of one neuron relative to another neuron at the least represented lag was 94 ± 13% and 88 ± 12% 93 
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of the average firing rate in the locomotor and joystick task, respectively (Fig. 1C and D, see methods) 94 

indicating a decorrelated neuronal activity. Because both the behavioral and the neuronal activity were 95 

decorrelated with respect to time, the temporal bleeding was minimized and the temporal precision 96 

of the estimated functional relation between movement and neuronal activity was optimized. To 97 

quantify the temporal precision, we calculated the range of temporal lags for which a given sorted unit 98 

was modulated by the paw velocity (Fig. 1F and G). We refer to this modulation across lags as velocity 99 

modulation and the duration for which the velocity modulation exceeded 80% of the peak modulation 100 

we refer to as the modulation duration.  We observed units with both long modulation durations 101 

(locomotor task: 1.6 ± 0.37s, joystick task: 1.2 ± 0.37s) and short modulation durations (locomotor task: 102 

0.36 ± 0.09s, joystick task: 0.27 ± 0.06s) within the same session (Fig. 1H and I). This demonstrates that 103 

our approach minimized behavioral bleeding to the extent which allowed separating long processes, 104 

like motor planning and sensory integration, from shorter processes like motor execution. Finally, this 105 

behavioral approach enabled us to quantify the relative strength of motor planning and sensory 106 

integration by taking the normalized difference of the velocity modulation for negative and positive 107 

temporal lags. In line with previous lesion and inactivation approaches12–15, the relative contribution 108 

of the motor planning related activity was larger for the joystick task (9.3 ± 2.8%, mean ± SEM, 109 

p=0.0007, two-tailed t-tests) whereas the sensory integration related activity was larger in the 110 

locomotor task (-4.3 ± 1%, mean ± SEM, p<0.0001, two-tailed t-tests, Fig. 1J).  Thus, our approach 111 

based on minimal repetitive movements complements previous studies with a temporally refined 112 

neuronal activity based assay of the gradient from motor planning and execution to sensory integration 113 

for skilled and locomotor behavior. 114 

 115 

Varying neuronal modulation durations 116 

Motor execution can be generated by sequentially activated sets of neurons, or similarly, a sensory 117 

event may traverse through the network. A temporal recruitment of neurons has been described for 118 
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attractor networks16,17. Those studies focused on a special case in which each neuron was activated for 119 

a constant duration (Fig. 2A, upper panel). Alternatively, the modulation duration may increase with 120 

larger temporal lags relative to the movement (Fig. 2A, lower panel). Here we defined the temporal 121 

lag based on the peak of the velocity modulation (see methods). In accordance with the second 122 

hypothesis, the modulation duration increased significantly with increasing temporal lags for both 123 

locomotor and joystick tasks (ANOVA, locomotor task, p<0.0001, ANOVA joystick task, p<0.0001, 124 

Fig. 2B and C). This suggests that putative motor execution represented by units with shorter temporal 125 

lags occurred with faster neural dynamics than motor planning and sensory integration.  126 

 127 

Integration timing of cortical areas  128 

If motor planning and sensory integration is associated with longer modulation durations, it is 129 

conceivable that a higher brain area, such as secondary motor cortex (M2, putatively functionally 130 

similar to premotor cortex in primates18,19) contains neurons with longer modulation durations than 131 

primary motor cortex (M1). To test this, we mapped the electrode locations on to the non-linear 132 

gradient spanning M2, M1, and primary somatosensory cortex (S1) (Fig. 1E). Indeed, neurons in higher 133 

areas (i.e., M2) had a significantly longer modulation duration than neurons in lower areas (i.e., M1 134 

and S1, Fig. 2D). This was true for both the locomotor and the joystick task (ANOVA, locomotor task: 135 

p<0.0001, joystick task: p<0.0001). On average, neurons in S1, M1, and M2 had a modulation duration 136 

of 507±14, 555±13 and 676±22 ms during locomotor and 369 ± 29, 423 ± 27, and 469 ± 38 ms 137 

(mean ± SEM) during the joystick task.  138 

 139 

Population activity destabilizes during movement 140 

Next, we examined whether the differences between the two tasks regarding the modulation duration 141 

of individual units also generalized to the neuronal population. To this end, we correlated the 142 

population activity, including all sorted units at any two time points. We refer to this correlation as 143 
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population correlation. The population correlation will typically decay with increasing temporal 144 

distance between the two time points. This population correlation decay is a measure for the stability 145 

of the population activity, i.e. how slow (stable over time) or fast (instable over time) the population 146 

activity changes. To compare the stability of the population activity during movement and behavioral 147 

quiescence, we defined trials between the time point of lowest paw velocity (peri-trial time of -148 

1 second) which we refer to as premovement and the time point of highest paw velocity (peri-trial 149 

time +1 second) which we refer to as movement (see methods, Fig. 3A and B). While the population 150 

correlation followed a similar motive with a less confined diagonal during premovement and a more 151 

confined diagonal during movement, robust bands of low correlation during movement execution only 152 

occurred in the joystick task, but not in the locomotor task, thus revealing a qualitatively different 153 

correlation structure (Fig. 3C and D). These bands of low correlation are a sign of a quick decay of the 154 

population correlation, indicating that the population activity changed rapidly during motor execution. 155 

To quantify how fast the population correlation decayed, we fit an exponential function to the decay 156 

of the population correlation. During periods of movements, population correlations decayed 157 

significantly faster than the median time constant in the joystick task (-176±59 ms, mean ± SEM, n=5, 158 

p=0.043, two-tailed t-tests) but not in the locomotor task (-18±27 ms, mean ± SEM, n=6, p=0.54, two-159 

tailed t-tests, Fig. 3E and F). In line with the strong decrease in time constant in the joystick task during 160 

movements (Fig. 3G), the time constant during joystick movements was lowest (203±88 ms, 161 

mean ± SEM, n=5, Fig. 3H) indicating an unstable population activity. In contrast, the time constant 162 

was largest (i.e. the population activity was stable) during joystick premovement periods which 163 

putatively involves motor planning (761±375 ms, mean ± SEM, n=5, Fig. 3H). The difference in stability 164 

of the population activity cannot be explained by behavioral differences across the two tasks 165 

(summarized in Supplementary Note 1). To summarize, this suggests that premovement periods 166 

(putatively involving motor planning) were associated with stable population activity with slow 167 

changes in the neuronal activity whereas movements (referring to motor execution) were associated 168 

with unstable population activity with fast changes in the neuronal activity.  169 
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Fast neuronal activity precedes movement  170 

Unstable population activities associated with motor execution could be captured in the high 171 

frequency range. Thus, a high-pass filtered neuronal activity should be tightly correlated to movement 172 

execution (Fig. 4A). Paw velocities provide a general measure of movement magnitude independent 173 

of specific types of movements. To allow a comparison of the discretized and typically low frequency 174 

spike trains of sensorimotor cortex with the continuous paw movements, we reconstructed the 175 

continuous subthreshold activity with a resolution of 10 ms from the spiking activity20 (Fig. 4B). This 176 

allows the detection of neuronal activity changes which are faster than those signaled by low 177 

frequency spiking events. Fast changing activities typically preceded large paw velocities (Fig. 4C). To 178 

quantify this relation, we calculated the Pearson correlation coefficient between paw velocity and the 179 

absolute high pass filtered neuronal activity (averaged across neurons, cut off frequency 1.1 Hz) 180 

(Fig. 4D, upper panels). This was contrasted against corresponding calculations for the low pass filtered 181 

neuronal activity (Fig 4D, lower panels). The correlation was generally higher for the high pass filtered 182 

neuronal activity than for the low pass filtered neuronal activity both for the locomotor task (low pass: 183 

0.059±0.029 vs. high pass: 0.17±0.025, mean ± SEM, n=6, p=0.0163, two-tailed t-tests, Fig 4D and E), 184 

and for the joystick task (low pass: 0.1±0.025 vs. high pass: 0.20±0.013, mean ± SEM, n=5, p=0.0091, 185 

two-tailed t-tests). For the joystick task, the correlation reached its maximum at a small negative lag 186 

between high pass filtered neuronal activity and movement, which falls in the range of movement 187 

execution (-94 ± 20 ms, mean ± SEM, p = 0.01, n = 5, two-tailed t-tests, Fig 4D and F), whereas the peak 188 

for the locomotor task did not significantly precede the movement for any frequency band (120 ± 110 189 

ms, mean ± SEM, p = 0.33, n = 6, two-tailed t-tests). The lag of the peak of the correlation was 190 

significantly shifted to positive values corresponding to sensory integration for the low-pass filtered 191 

neuronal activity in the locomotor task (770±117 ms, mean ± SEM, p = 0.0013, n = 6, two-tailed t-tests), 192 

and to negative values corresponding to motor planning components in the joystick task (-234±36 ms, 193 

mean ± SEM, p = 0.0029, n = 5, two-tailed t-tests). Thus the frequency of the neuronal activity 194 

separated planning and sensory integration from motor execution. 195 
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Discussion 196 

Based on two tasks that encouraged animals to conduct minimally repetitive movements, we found 197 

that fast changes in neuronal activity were related to motor execution. These fast changes in neuronal 198 

activity were more pronounced during the joystick task than during the locomotor task. Furthermore, 199 

higher frequencies in the neuronal activity preceded the movement by 100 ms in the joystick task, 200 

whereas it coincided with the movement for the locomotor task. This is in line with the fact that the 201 

locomotor task required no training (Fig S1A) and that locomotion may be dominated by an efference 202 

copy signal in the neuronal activity15,21.  In contrast, the joystick task required training (Fig S1B) and 203 

lesioning and inactivation studies have shown that skilled movements are more dependent on the 204 

motor cortex12–14. Here we showed that lower frequencies were decoupled from movement suggesting 205 

that they were more related to motor planning and sensory integration. Movement decoupled activity 206 

avoided the high frequencies underlining the general role of the fast changing neuronal activities in 207 

motor cortex for movement execution. Such a fast changing population activity can be extracted by a 208 

classic high pass filter. Fast changes refer to e.g. changes from a high firing rate to a low firing rate, or 209 

vice versa. Adaptation mechanisms22–26 at any stage between the cortex and the muscles could serve 210 

as the biological equivalent of such a high pass filter (see Supplementary Note 2).  211 

The here proposed frequency based separation of motor planning and execution can be integrated 212 

into conceptual frame works of motor control. According to the concept of dynamical systems, e.g. the 213 

null-space theory3, the frequency based separation of motor planning and execution would allow both 214 

processes to work in parallel. So far the null-space theory was tested with trial structures with 215 

temporally separated planning and execution periods6 or with sensory driven motor execution27. For 216 

intrinsically planned continuous movements, our results suggest that two independent population 217 

state spaces can be generated in the frequency domain, one based on high and one on low frequencies. 218 

The concept of separate neuronal populations for motor execution and motor planning (e.g. by 219 

genetically or projection defined neurons1,2) assumes a complete separation of the signals. However, 220 

genetically defined spinal cord projecting neurons have been shown to not only encode motor 221 
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execution but also motor planning2,7. Our proposed high-pass filtering mechanism could be a way to 222 

expose the motor execution component by decreasing the planning component. Therefore, the 223 

separation of the processes by means of slow and fast dynamics could facilitate simultaneous parallel 224 

motor planning and execution within the same neuron, be it in the conceptual frame work of dynamical 225 

systems or based on identified neuronal subtypes.  226 

The separation of motor planning and execution by means of different frequencies of neuronal activity 227 

requires that motor planning evolves relatively slowly. This prerequisite is reasonable, as planning and 228 

decision making rely on accumulating internal or external evidence28–30. Thus, motor planning-related 229 

neuronal activity changes slowly and hence can be stopped from percolating to the muscles by a high 230 

pass filtering mechanism based on neuronal adaptation. Thus, our proposed mechanisms is able to 231 

explain in a very simple manner the simultaneous implementation of intrinsic motor planning and 232 

execution.  233 
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Figures 234 

 235 
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Figure 1. Studying neuronal dynamics with minimally repetitive behavior. A: Setup of locomotor task. 236 

B: Setup of joystick task. C: Illustration of the difference between decorrelated and repetitive behavior 237 

in terms of the behavioral autocorrelation and neuronal cross correlation for the locomotor task. The 238 

behavioral autocorrelation is broader for a repetitive locomotion (bottom panels) than for a 239 

decorrelated behavior (top panels). The minimal value (dashed line) of the neuronal cross correlation 240 

is low if there are lags for which the two neurons do not spike (indicating correlated firing) and it is 241 

high if the two neurons fire at different lags (indicating de-correlated firing) (illustration in left panel). 242 

Autocorrelation for the velocity of the right front paw during the locomotor task (gray data panel). 243 

D: Same outline as in C but for the joystick task. A repeating trial structure causes correlations between 244 

different trial periods. This in turn may increase the width of the behavioral autocorrelation as well as 245 

the correlation between neurons.  E: Electrode locations on the sensorimotor cortex for respective 246 

animal. F: Velocity modulation of the instantaneous firing rate for 2 example units with action potential 247 

waveforms (left inset) and interspike interval histogram (right insets) in the locomotor task. Neuronal 248 

firing rates modulated by future or past paw movement velocities are assigned to negative temporal 249 

lags (referring to planning) or to positive temporal lags (referring to sensory integration), respectively. 250 

Lags between 0 and 100ms are considered to be related to motor execution. The dark-blue unit has a 251 

broad velocity modulation, whereas the light-blue unit is temporally very precise. Both units originate 252 

from the same recording session. G: Same outline as in F but for two different units in the joystick task. 253 

The dark-red unit has a broad velocity modulation, while the light-red unit is temporally precise. H: The 254 

unit with the minimal (bright-blue) and maximal (dark-blue) duration of the velocity modulation for 255 

each locomotor session. The error bars denote the standard deviation of bootstrapped durations. 256 

I: Same outline as in H but for the joystick task. Light-red and dark-red corresponds to units with 257 

minimal and maximal modulation duration respectively. J: The summed velocity modulation for motor 258 

planning-related activity (negative lags from -1.1 to -0.1 s) minus the summed velocity modulation for 259 

sensory integration related activity (positive lags from 0 to 1 s). Significances are indicated according 260 

to: *** p < 0.001. 261 
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 262 

Figure 2. The duration of velocity modulation of individual units depends on the temporal lag to 263 

behavior and on the cortical area.  A: Two hypotheses of sequential neuronal activity relative to 264 

movement. The duration of the neuronal activity can be constant across lags (upper panel) or different 265 

across lags (lower panel). B: Units sorted according to the lag of their maximum velocity modulation in 266 

the locomotor task (top), and for the joystick task (bottom). C: Relation between average modulation 267 

duration and temporal lag (black line), across the different animals (colored lines) for the locomotor 268 

(left) and joystick task (right). D: Duration of the velocity modulation for each cortical area for the 269 

locomotor task (left) and the joystick task (right). Significances are indicated according to: * p < 0.05, 270 

** p < 0.01, and *** p < 0.001. 271 
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 272 

Figure 3. The population activity changes faster during motor execution in the joystick task as 273 

compared to the locomotor task. A: Average paw velocity across behavioral trials for the locomotor 274 

task (see methods for the trial definition). Blue lines denote data from individual animals and the black 275 

line denotes the average across all animals. B: Same outline as in A but for the joystick task. C: Average 276 

pairwise correlations of population vectors across all animals for the locomotor task. D: Same outline 277 

as in C but for the joystick task. E: The time constant of the decay in the population correlation across 278 

the trial in the locomotor task (blue) and the joystick task (red). The median relative time constants 279 

are included as dotted lines. F: The decrease in time constant during movement in relation to the 280 

median time constant across the trial for locomotor and joystick task. G: Decay in population 281 

correlation at the premovement time point (at -1 second during lowest paw velocities) and at the 282 

movement time point (at 1 second during highest paw velocities). H: Time constants for the locomotor 283 

and joystick task for the premovement and movement time points based on the curves in G. 284 

Significances are indicated according to: * p < 0.05, ** p < 0.01. 285 
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 286 

Figure 4. High-pass filtered neural activity is correlated to paw velocities. A: Schematic illustration of 287 

how a high-frequency neuronal activity can be superimposed on a low-frequency neuronal activity and 288 

yet be separable. B: To be able to study how fast neuronal activities change, we reconstructed the 289 

subthreshold activity of the sorted units. C: Reconstruction of neuronal activities from 14 randomly 290 

selected units during the joystick task (top). An increase in the average absolute high pass filtered 291 

neuronal activity (black trace, middle row) typically precedes higher paw velocity (red trace). D: The 292 

Pearson correlation coefficient for different lags between high-pass filtered neuronal activity and the 293 

paw velocity during the locomotor task (upper-left), and the joystick task (upper right), and for the 294 
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low-pass filtered neuronal activity and the behavior during the locomotor task (lower left), and the 295 

joystick task (lower right). The comparison between cross-correlation values at time point zero and the 296 

time point of maximal cross-correlation reveals significant changes with different temporal lags. E: 297 

Peak Pearson correlation coefficients for panel D. F: Temporal lags of the peak Pearson correlation 298 

coefficient (across temporal lags) for band-pass filtered neuronal activity. Significances are indicated 299 

according to: * p < 0.05, ** p < 0.01. 300 

Methods 301 

Animals 302 

All animal procedures were approved by the Regierungspräsidium Freiburg, Germany. In this study we 303 

used six male Long Evans rats (400 g, Janvier) which were implanted at the age of eight weeks and 304 

recorded up to four months after the implantation. Three to four animals were pair-housed in type 4 305 

cages (1500U, IVC typ4, Tecniplast, Hohenpeißenberg, Germany) before implantation and the animals 306 

were single housed after the implantation in type 3 cages (1291H, IVC typ4, Tecniplast, 307 

Hohenpeißenberg, Germany)  under a 12 h light dark cycle (dark period from 8 a.m. to 8 p.m., time 308 

span of training and experiments). Prior to the first behavioral training, no behavioral tests were 309 

conducted, no drugs were applied and food (standard lab chow) and water were provided ad libitum. 310 

During the course of the experiment, the animals were maintained with free access to food but water 311 

supply was restricted. Rats were kept at > 80 % body weight as measured prior to water restriction. 312 

For 2 days per week, free access to water was ensured. 313 

 314 

Animal surgery 315 

Animals were initially anesthetized with isoflurane inhalation followed by intra-peritoneal injection of 316 

75 mg/kg Ketamine (Medistar, Holzwickede, Germany) and 50 g/kg Medetomidin (Orion Pharma, 317 

Espoo, Finland). The animals were then put into a transportation container covered with an opaque 318 

cloth to facilitate the anesthesia. Once the animals were anesthetized, they were positioned in a 319 
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stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA) and their body temperature was kept at 320 

36 °C using a rectal thermometer and a heated blanket (FHC, Bowdoin, USA). The anesthesia of the 321 

animals was maintained with approximately 2% isoflurane and 0.5 l/min O2. For pre-surgery analgesia, 322 

we subcutaneously (s.c.) administered 0.05 mg/kg Buprenorphine (Selectavet Dr. Otto Fischer GmbH, 323 

Weyarn/Holzolling, Germany). Every other hour, the animals received a s.c. injection of 5 mL isotonic 324 

saline. Moisturizing ointment was applied to the eyes to prevent them from drying out (Bepanthen, 325 

Bayer HealthCare, Leverkusen, Germany). The skin was disinfected with Braunol (B. Braun Melsungen 326 

AG, Melsungen, Germany) and Kodan (Schülke, Norderstedt, Germany). To perform the craniotomy, 327 

the skin on the head was opened along a 2 cm long incision using a scalpel. The exposed bone was 328 

cleaned using a 3% peroxide solution. Self-tapping skull screws (J.I. Morris Company, Southbridge, MA, 329 

USA) for reference for extracellular recordings were placed over cerebellum. Craniotomies were drilled 330 

bilaterally extending from -2 to +5 mm in the anterior posterior direction and from +1 to +4 mm in the 331 

lateral medial direction relative to Bregma. 22 tungsten electrodes (200 to 600 kOhm impedance, 332 

polyimide insulation, WHS Sondermetalle, Grünsfeld, Germany) were implanted at a depth of 1.2 mm 333 

in each hemisphere. Electrodes were implanted according to the area borders given by the online brain 334 

atlas from Matt Gaidica31 (Fig. 1E). Three rows of 6 electrodes each, oriented in the medial-lateral 335 

direction, were implanted in the anterior-posterior direction. The fourth and last row consisted of 4 336 

electrodes, oriented in the medial-lateral direction (see Fig. 1E). Occasionally, we had to cut some 337 

electrode wires, in order to not destroy blood vessels at the implantation site (e.g., rat 221, left 338 

hemisphere, last electrode row). Kwik-Cast (WPI, Sarasota, FL, USA) was used to protect the brain from 339 

the dental cement applied in the final step. Before, Mill-Max connectors (Mill-Max, Oyster Bay, USA) 340 

from each hemisphere were glued together to form a 4 x 13 pin connection matrix. The last and first 341 

four pins were connected to the two skull screws over cerebellum to serve as reference and ground. 342 

Finally, the assembly was fixed using dental cement (Paladur, Kulzer GmbH, Hanau, Germany). 343 

 344 

Behavioral tasks 345 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2019. ; https://doi.org/10.1101/857300doi: bioRxiv preprint 

https://doi.org/10.1101/857300
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

Animals were encouraged to move with as little repetition as possible. In the locomotor task, two servo 346 

motors positioned a waterspout at different locations within an arena of 30×40 cm. Every 10 to 30 s a 347 

valve ejected a drop of water, which remained in the mesh until the rats consumed it. To prevent the 348 

rats from following the movements of the waterspout, we introduced dummy moves: First the 349 

waterspout was doing a dummy move without giving water. One second later it did move to a new 350 

position where it let out a water drop. The third and last move was again a dummy move. Even for an 351 

experienced animal, this procedure resulted in multiple water drops distributed across the mesh at 352 

any given time point. The fact that the rats did not collect all water drops indicates that the animals 353 

could not predict where the water was let out and had to actively search for it. This task required 354 

minimal training as indicated by the stable paw velocities over all sessions. Thus, we used all sessions 355 

for data analysis (Supplementary Fig. 1A). 356 

In the joystick task, the animals had to learn to grab a joystick-like manipulator as a first step. The 357 

manipulator was based on a manipulandum for rodents32. Instead of having to reach out for the 358 

joystick, the joystick was placed right below the right front paw. The naïve rats typically explored the 359 

arena in which the joystick was placed. As the animals placed the paw by chance on the joystick, the 360 

joystick vibrated and a liquid reward was given as long as three requirements were met: (1) The rats 361 

had to keep holding the joystick with the right front paw which we controlled for via force sensors on 362 

the joystick. (2) The left front paw had to be placed on a force sensor plate, which was placed to the 363 

left of the joystick. (3) The rats’ head had to cross an infrared sensor. This ensured that the animals 364 

had to learn to use their right front paw to manipulate the joystick rather than the left paw or the 365 

mouth. The vibration of the joystick was implemented by clamping the current of the two motors 366 

according to two independent Gaussian processes and served two purposes: (1) it made the animals 367 

aware of the joystick. (2) The vibration of the joystick increased in amplitude during the course of 10 s 368 

(the maximum vibration amplitude resulted in an average acceleration of 1.5m/s2) such that, unless 369 

the animals held the joystick firmly, it would lose the grip and thus not receive rewards. Together, 370 

these measures resulted in an automatic training by which the rats learned to hold the joystick during 371 
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the maximum vibration amplitude within 10 sessions. Once the rats had developed a firm grip of the 372 

joystick, the motors were turned off and the rats received a reward when they actively moved the 373 

joystick. Moreover, the rats only received rewards when they moved in a direction or to a position 374 

which had not been visited recently (see below). The joystick could be moved within an arena of 40x40 375 

mm. This arena was divided into 5×5 bins and the direction of movement was divided into 8 bins. For 376 

each bin we stored the amount of remaining reward. Whenever the rats visited one bin, the amount 377 

of remaining reward, r, in that bin was decreased to r- r. The amount of reward that was decreased, 378 

r, was distributed among all other bins. Thus, if the rats preferred one bin, the reward within that bin 379 

disappeared completely after 20 seconds. It took up to 15 sessions for the animals to start to move the 380 

joystick non-repetitively (Supplementary Fig. 1B). Before the rats started to move randomly, they 381 

typically tried to pull the joystick only in one direction (typically towards the rat). This resulted in 382 

minimal overall movements since the joystick was stopped by the edges of the arena (the 40x40 mm 383 

arena). Only when they realized that they could move in all different directions, the amount of total 384 

movement increased. For data analyses, we used data from sessions 15 to 35. 385 

 386 

Quantifying behavior 387 

Since the rats had to take a defined pose in the joystick task, we could relate the joystick position and 388 

movement to the egocentric coordinates of the rat. To enable a comparison of the locomotor task and 389 

the joystick task, it was necessary to quantify the behavioral variables in a similar way. To achieve an 390 

egocentric tracking in the locomotor task, we tracked the paws, head, chest, and belly of the animals. 391 

By using the head, chest, and belly coordinates, we aligned the movements of the right front paw to 392 

egocentric coordinates. Those body parts were tracked by painting them in different colors. The head 393 

of the rat did not have to be painted because of the black hood of Long Evans rats. To ensure that all 394 

body parts could be tracked, the cameras were placed below the arena. Two to four cameras (Stingray, 395 

F033C IRF CSM, Allied Vision Technologies) were used in the locomotor task. The noise of tracking was 396 
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estimated to 0.79 cm/s (estimated when the paw was standing still on the mesh) and was subtracted 397 

from the paw velocity estimates. 398 

 399 

Data acquisition and preprocessing of extracellular recordings 400 

Extracellular signals were bandpass filtered, amplified and digitized using the INTAN (Intan 401 

Technologies, Los Angeles, California) head stage attached to the Mill-Max matrix connector at the 402 

head of the animals. To maximize comfort for the animals, we stripped the ultrathin INTAN cable and 403 

suspended it with a 1.5 m long ultralight spring with a 1.5 mm diameter. The long recording cable 404 

allowed the rats to move between the locomotor task and the joystick task without having to be 405 

disconnected and re-connected. The rats could either begin with the locomotor task and after 30 min 406 

a door was opened allowing the rats to walk into the joystick arena for 40 to 90 minutes, or the rats 407 

were in the joystick arena for the entire session. In case of a dual task session, we always began with 408 

the locomotor task, because the color markers used for the locomotor tracking faded over time. 409 

The extracellular recordings were sampled at 30 kHz and were de-noised offline. First, 50 Hz and the 410 

corresponding harmonics were removed using a 20 ms template estimation. The activity across all 411 

channels was demeaned using a median filter. Spike sorting was conducted on high-pass filtered data 412 

with a cut off frequency of 300 Hz. Spike snippets were extracted from peak aligned events that 413 

crossed a threshold of four times the standard deviation. Only spikes with a negative peak were taken 414 

into account. The spike window was -0.5 to 2 ms around the peak amplitude (resulting in 76 values for 415 

each spike). To minimize the risk that a sorted unit was a combination of multiple neurons, we applied 416 

a conservative threshold for the cluster size. To this end we used a cluster size that was dictated by the 417 

noise level half a millisecond before the minimum of the spike. Given the typical refractory period of 418 

neurons, this noise estimate excluded variability caused by this unit and was therefore a direct 419 

measure of the cluster size of this particular unit. Since our electrodes typically had a spacing between 420 

300 and 1000 µm, we sorted each electrode separately. The spikes were sorted in the raw 76 421 
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dimensional space without dimensional reduction. For each sorted unit, the spike sorting algorithm 422 

had two phases. First, the algorithm estimated a suitable seed spike. Second, the corresponding 423 

waveform was optimized iteratively until the spike assignments of that unit remained constant. The 424 

clustering algorithm selected a seed spike by calculating the average noise level across all units. 425 

Afterwards, it randomly chose one spike and counted the number of neighboring spikes within this 426 

average noise level. Those spikes were called the spike-neighborhood. This procedure was repeated 427 

for 500 randomly chosen spikes in order to maximize the chance of finding a globally optimal seed 428 

spike. The spike that had most neighbors was selected as the seed for a unit. In order to optimize this 429 

spike seed, the noise level for the neighboring spikes was recalculated, the new neighborhood was 430 

calculated given this new noise level, and the new average waveform was calculated. This procedure 431 

was repeated until the neighborhood remained constant. The spikes within the noise-defined 432 

neighborhood were considered to belong to one sorted unit. For this unit, the spike sorting was 433 

finished at this point and it was not considered for further spike sorting. For the remaining spikes, the 434 

algorithm re-started phase one and two in order to search the next sorted unit. This procedure was 435 

stopped when it resulted in sorted units with spike rates lower than 0.1 Hz. 436 

We regarded a unit as a single unit when the number of spikes within an inter-spike interval of less 437 

than 2 ms corresponded to a smaller firing rate than the average firing rate of the unit. To define the 438 

degree of decorrelation across neurons, we used the -rate20. The -rate denotes the minimum spike 439 

rate in the spike-triggered spike average between two neurons (cross correlogram). The cross 440 

correlogram was calculated over a period of -10 to 10 s with a 10 ms binning. We did not calculate the 441 

-rate from a neuron to itself since that would reflect intra-neuronal processing (adaptation and 442 

refractory period) rather than the decorrelation of the population. The -rate corresponds to the 443 

average spike rate if the spikes of the two neurons occur independently of each other, and the -rate 444 

would be 0 for the case of a lag with no corresponding spike pairs. The -rate percentage was 445 

calculated by dividing the -rate with the average firing rate.  446 

Single and multiunit velocity modulation 447 
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As a general way to relate behavior to neural activity on a single unit or multiunit level, we used a 448 

generalized form of spike triggered average of the paw velocity, which we denote as activity weighted 449 

distribution (AWD). First, instead of taking discrete spikes, we weighted the behavioral variable (paw 450 

velocity or position) with a continuous neuronal activity. Here this continuous activity was the 451 

instantaneous firing rate smoothed with a Gaussian kernel with a standard deviation of 50 ms. Second, 452 

instead of averaging the behavioral variable, we calculated the distribution for the behavioral variable. 453 

A distribution was formed by binning the complete velocity range into 10 equally sized bins. Each bin 454 

quantified the average activity across the velocity range of the corresponding bin. In contrast to the 455 

linear average in the classical spike triggered average, the distribution of the behavioral variable 456 

allowed us to take nonlinearities into account, e.g. exponentially increasing firing rates with linearly 457 

increasing velocity. According to a traditional spike-triggered average, the relation between neuronal 458 

activity and behavior was calculated at different temporal lags between neural activity and behavior. 459 

Here we used lags between -4 and 4 s with a temporal resolution of 10 ms. For large delays beyond 460 

3 s, the neuron was typically no longer modulated by behavior. Here we used the average activity 461 

between 3 and 4 s to calculate a baseline activity. This baseline activity was subtracted from the AWD. 462 

The average velocity modulation at each lag was calculated by taking the mean of the absolute value 463 

of the subtracted AWD (Fig. 1F and G). The duration and the lag of the modulation was calculated by 464 

first extracting the peak modulation. Then we traced this modulation backward and forward in time 465 

until the modulation was less than 80% of the peak modulation. The temporal difference between 466 

those two time points was defined as the duration of the modulation (Fig. 1H, 1I, 2B, 2C, and 2D). The 467 

average between those time points was denoted as the temporal lag of the modulation. We took the 468 

average time of the 80% start and stop time since this resulted in a more accurate estimation than the 469 

peak time. This was due to the frequent occurrence of plateaus in the velocity modulation. During 470 

these plateaus, small fluctuation of the neuronal signal within the noise level can make the peak appear 471 

at any time point along the plateau. To determine if a unit was modulated by velocity, we calculated 472 

the mean and standard deviation of the velocity modulation at the two extreme lags of the normalized 473 
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velocity modulation (-4 to -3 s and 3 to 4 s). The normalized velocity modulation was calculated by 474 

subtracting and dividing the velocity modulation with the mean and standard deviation, respectively. 475 

A unit was regarded as modulated if this velocity modulation was larger than 10 (a.u.). 476 

 477 

Bootstrapping velocity modulation 478 

To estimate the variability of the modulation duration we used a bootstrap analysis (Fig. 1H and I). 479 

Since it would be computationally inefficient to sample from all 10 ms bins with replacement and since 480 

2 neighboring 10 ms bins were not independent, we chose to divide each session into 100 segments 481 

of equal size and to calculate the AWD for each such segment. This resulted in segments that were at 482 

least 10 seconds long, allowing computationally effective bootstrap sampling. We sampled the 483 

corresponding 100 AWDs with replacement and calculated the resulting velocity modulation. This 484 

procedure was repeated 100 times. For each repetition, we calculated the modulation duration. 485 

Afterwards, we calculated the standard deviation across those repetitions. 486 

 487 

Population correlation analysis and trial definition 488 

The population correlation analysis was performed on normalized neural activity. For each unit, we 489 

divided the spike trains into 10 ms bins, subtracted the average firing rate and divided each bin by the 490 

standard deviation of the binned activity. This normalized data was organized into a matrix with as 491 

many rows as there were units and as many columns as there were time bins. To prepare the data for 492 

the correlation, we normalized each column to have an average of 0 and a Cartesian norm of 1 (unit 493 

length). Finally, we removed a global population activity that could otherwise bias the correlation 494 

analysis. During short periods of time (between 500 ms to 10 s) sometimes the animals suddenly froze 495 

(both in the joystick and the locomotor task) which resulted in a correlated population activity across 496 

the joystick and the locomotor task (average R=0.5). Since this activity was correlated across two 497 

fundamentally different tasks, it was more likely to reflect a global state change rather than a planning 498 
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process, which in turn could bias the population correlation. Therefore, we minimized the contribution 499 

of this freezing related population activity, p, by correlating the population activity at each time bin, 500 

at, with the population activity, and subtracting the population activity according to this correlation: at 501 

– p(at*p), where * is the scalar product. 502 

With this normalized activity, we calculated the scalar product (Pearson correlation coefficient) 503 

between two population vectors at 2 different time points (Fig. 3C and D). We only correlated 504 

population vectors within a trial. Since our behavioral data was not separated into defined trials, we 505 

constructed trials using the paw velocity. First, we filtered the paw velocity with a Gaussian kernel of 506 

2 s full width half maximum (FWHM). To find trials for which a period of low behavioral activity was 507 

followed by a period of high behavioral activity, we divided each time point in the filtered velocity by 508 

each time point in the filtered velocity 2 s earlier. If this ratio was larger than 2 and if this ratio was a 509 

local maximum across time, this was regarded as the central time point of a trial. A trial was then 510 

defined as 8 s before and 8 s after this maximum. This resulted in 1601 bins of 10 ms in one trial. The 511 

correlation was calculated between all 1601×1601 pairs of time points within a trial. Finally, as the 512 

population vector at one reference time point was correlated with the population vector at all other 513 

time points, the correlation would decay with increasing distances from the reference time point. This 514 

decay was fitted by an exponential function using nonlinear optimization with a Gaussian cost function 515 

(Fig. 3E, F, G and H). 516 

 517 

Behavioral impact on population correlation 518 

To test how well the neurons encoded for position (Fig. S2B), we divided the egocentric x and y 519 

movement coordinates of the right paw into five equally sized bins between the minimum and 520 

maximum position value. This resulted in a 5 x 5 element matrix. For each element in this matrix we 521 

calculated the average firing rate of the neuron when the paw was in the corresponding position within 522 

±50 ms. We used this matrix as a lookup table to estimate the instantaneous firing rate at each 100 ms 523 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2019. ; https://doi.org/10.1101/857300doi: bioRxiv preprint 

https://doi.org/10.1101/857300
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

time bin, given the position at the corresponding time bin. The resulting time course of the firing rate 524 

was correlated to the time course of the true instantaneous firing rate binned in 100 ms bins. The same 525 

analysis sequence was conducted for x and y velocity. 526 

  527 
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Subthreshold reconstruction 528 

The subthreshold reconstruction algorithm, SubLab, has been described in detail elsewhere20. In short, 529 

the algorithm uses the spikes of one unit (target unit) to reconstruct its subthreshold activity by means 530 

of the spiking activity of the remaining units (input units). The algorithm differs from recent auto-531 

encoders and dimension reduction techniques in three aspects: (1) it does not assume an even 532 

distribution of spikes in time (Poissonian or Gaussian models); (2) (subthreshold) activity is not 533 

modified, as long as it does not cross the threshold; (3) the algorithm reconstructs the subthreshold 534 

activity individually per neuron and, therefore, does not impose any relation between units. Here we 535 

used 10 training epochs and we ran the reconstruction on complete sessions.  536 

We also tested the LFADS auto-encoder algorithm, since it does not require a trial structure and since 537 

it can fit complex dynamics to spiking data. For our data, LFADS smoothed the spike trains in a 538 

piecewise continuous way. We observed gaps in the smoothed spike trains. We suspect that these 539 

gaps were due to the spontaneous and complex behaviors, which in turn caused the internal states to 540 

be reset frequently. 541 

The reconstructed activity was filtered in the following way (Fig. 4C, D, E and F). High pass filtering: 542 

First, the reconstructed signal was smoothed with a Gaussian kernel with a standard deviation (σ) of 543 

0.14 s. Using the cut-off frequency formula for Gaussian filtering (2πσ)-1, this corresponds to a cut off 544 

frequency of 1.1 Hz. Second, we subtracted this smoothed signal from the original reconstructed 545 

signal. Band-pass filtering: First, the reconstructed signal was smoothed with a Gaussian kernel with a 546 

standard deviation of 0.057, 0.14, 0.28, 0.57, 1.4, 2.8, and 5.7 s (2.8, 1.1, 0.57, 0.28, 0.057, and 0.028 547 

Hz), respectively. Second, we subtracted this smoothed signal from the original reconstructed signal. 548 

Third, the resulting signal was smoothed with a Gaussian kernel with a standard deviation of 0.014, 549 

0.035, 0.071, 0.14, 0.35, 0.71, and 1.4 s (11, 4.5, 2.2, 1.1, 0.45, 0.22, and 0.11 Hz), respectively. Low 550 

pass filtering: The band-pass filtered signal that was filtered with a low-pass kernel of 0.71 seconds 551 

(0.22 Hz) and high-pass kernel of 2.8 seconds (0.057 Hz) was referred to as the low-pass filtered signal. 552 
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The additional high pass filtering minimizes the influence from strong low frequency components. 553 

Finally, to get the energy of the filtered signal, we calculated the absolute value of the high-pass filtered 554 

signal. 555 

 556 

Statistical procedures 557 

All statistics and graphical illustrations of spiking unit data have been corrected for the possibility that 558 

the same unit has been recorded during multiple consecutive days (Supplementary Table 3). In motor 559 

cortex, evidence has been provided that tungsten electrodes are able to record the same unit for an 560 

average of three days33. Since a considerable amount (11%) of neurons could be recorded for up to a 561 

week, we regarded every 7th unit to be an independent data sample. To this end, the degrees of 562 

freedom were calculated on the basis of the unit count divided by 7. We made this correction for the 563 

t-test, the Pearson correlation coefficient, and the ANOVA. For box plots (using Matlab’s boxplot 564 

function), we plotted the bootstrapped data (using Matlab’s bootstrap function with 1000 iterations) 565 

and adjusted the standard deviation of the bootstrapped data such that it was √7 times that of the 566 

original data. 567 

For statistical testing, we assumed that the data was normally distributed. The test statistics for the 568 

Pearson correlation coefficient, the ANOVA and unpaired statistics approached a normal distribution 569 

for large data samples. For the paired t-test, we assumed a normal distribution as the test distribution 570 

was symmetric around 0. Unless otherwise stated, samples were described as mean and standard 571 

deviation of the mean. 572 

Since we had one less animal in the joystick task (animal 220 lost the implant before it learned the 573 

joystick task), all paired tests were done without animal 220 in both the joystick and locomotor task. 574 

The non-paired tests were done using all 6 animals in the locomotor task and all 5 animals in the 575 

joystick task.  576 

  577 
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