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Abstract

Microbiology  is  founded  on  well-known  model  organisms.  For  example,  the  majority  of  our

fundamental  knowledge regarding the  quantitative  levels  of  DNA, RNA, and protein  backdates  to

keystone pure culture-based studies. Nowadays, meta-omic approaches allow us to directly access the

molecules  that  constitute  microbes  and microbial  communities,  however  due to  a  lack of  absolute

measurements,  many  original  culture-derived  “microbiology  statutes”  have  not  been  updated  or

adapted  to  more  complex  microbiome  settings.  Within  a  cellulose-degrading  and  methanogenic

consortium, we temporally measured genome-centric absolute RNA and protein levels per gene, and

obtained a  protein-to-RNA ratio of 102-104 for bacterial populations, whereas Archaeal RNA/protein

dynamics (103-105:  Methanothermobacter thermoautotrophicus) were more comparable to Eukaryotic

representatives humans and yeast. The linearity between transcriptome and proteome had a population-

specific change over time, highlighting a minimal subset of four functional carriers (cellulose degrader,

fermenter, syntrophic acetate-oxidizer and methanogen) that coordinated their respective metabolisms,

cumulating in the overarching community phenotype of converting polysaccharides to methane. Our

findings show that upgrading multi-omic toolkits with traditional absolute measurements unlocks the
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scaling of core biological questions to dynamic and complex microbiomes, creating a deeper insight

into inter-organismal relationships that drive the greater community function.
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Introduction

The foundations of microbiology have been built within the constrained framework of pure culture

studies of model organisms that are grown under controlled steady state conditions. However, we are

constantly told that microorganisms grown in artificial isolate conditions behave in a different manner

than what they do in a more natural community setting. For example, when Escherichia coli is grown

axenically  in  steady  state, we  can  expect  that  each  RNA  molecule  results  in  102 to  10⁴  of  the

corresponding protein (protein-to-RNA ratio) and the variation in the level of cellular RNA explains

~29% of the variation in the amount of detectable protein1. Yet does this notion hold true when a given

bacterial  population  is  part  of  a  larger  community  and  subject  to  transitions  from  one  state  of

equilibrium to another due to limiting and/or confronting environmental factors? In this context, the

exploration  of  temporal  interplay  between  populations  with  different  lifestyles  (comprising

metabolism,  motility,  sporulation,  etc.)  becomes  of  primary  importance  to  interpret  the changes  in

fundamental  quantities  in a microbial  community,  such as the protein-to-RNA ratio that  ultimately

impacts the overarching community phenotype(s). In order to perform studies of such design and test if

previously defined  quantitative data about the functioning of microbes (i.e. protein-to-RNA ratio) is

applicable to real world consortia, we must first sample microbial communities across transition events

and employ quantification techniques that are absolute.

Meta-omics  techniques,  such  as  metagenomics  (MG)2,3,  metatranscriptomics  (MT)4 and

metaproteomics (MP)5 are routinely used to access  prokaryotes  in the natural world, where they are

part of communities that are frequently dominated by as-yet uncultivated populations6. The quantities

retrieved  from  the  meta-omics  are  usually  expressed  in  relative  terms,  which  makes  comparison

between samples and between omic layers inaccurate7,8. Moreover, within dynamic data measurements,

such  as  the  MT or  MP,  the  notion  of  steady  state  becomes  relevant  as  it  is  extremely  rare  that

parameters (e.g. bacterial growth rate and nutrient availability) are stable over time8.

Here,  we  present  an  absolute  temporal  multi-omic  analysis  of  a  minimalistic  biogas-producing

consortium (SEM1b), which was resolved at the strain level and augmented with two strain isolates 9.

We combined both a RNA-spike-in for MT10,11 and the total protein approach for MP12 for the absolute

quantification of high-throughput data. We not only demonstrate that temporal SEM1b samples were

comparable within the same omic layer, but also between the MT and MP. Indeed, the protein-to-RNA

ratio per sample of the bacterial populations matched previous calculations for the existing example
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from axenically cultured E.coli1. For the first time, we present protein-to-RNA ratios for the Archaeal

kingdom (Methanothermobacter  thermoautotrophicus),  which  are  similar  to  those  reported  for  the

Eukarya,  and support  crystallography  and homology studies  that  suggest  the translation  system of

archaea more closely resembles eukaryotes13. Our approach enabled us to explore the linearity of the

protein-to-RNA ratio and if it is influenced by changes in community state and/or specific population

lifestyle.  Finally,  we  estimated  the  translation  and  protein  degradation  rates,  showing  that  a

downregulation of the former marks main lifestyle changes (e.g. motility/chemotaxis and metabolism)

during the community development.

Results and Discussion

Taxonomic and functional resolution of the omics

In order to characterize RNA/protein dynamics in a microbiome setting, we first needed to molecularly

reconstruct  our  test  community  over  time.  Previous  analysis  of  the  simplistic  SEM1b community

genomically reconstructed and resolved 11 metagenome assembled genomes (MAGs) as well as two

isolate genomes9, covering the taxonomic and functional niches that are required to convert cellulosic

material  to  methane/CO2 in  an  anaerobic  biogas  reactor14.  Taxonomic  analysis  of  SEM1b inferred

population-level affiliations to Rumini(Clostridium) thermocellum (RCLO1), Clostridium sp. (CLOS1),

Coprothermobacter  proteolyticus (COPR1,  BWF2A,  SW3C),  Tepidanaerobacter (TEPI1-2),

Synergistales (SYNG1-2),  Tissierellales (TISS1),  and  Methanothermobacter (METH1)9.  Herein  we

estimated that the total genomic potential of SEM1b includes 39144 Open Reading Frames (ORFs)

(Supplementary Table 1).  Since ORFs with very high sequence similarity  may produce RNAs and

proteins that are indistinguishable in MT and MP data, we instead gathered all ORFs into ORF-groups

(ORFGs), where a singleton ORFG is defined as a group with a single ORF, and thus a single gene.

Using this approach, our MT and MP data identified 12552 (96% singleton) and 3235 (78% singletons)

highly  transcribed  and  translated  ORFGs,  respectively.  The  discrepancy  between  the  singleton

percentages was as expected, due to the fact that variations in the DNA/RNA sequences are expected to

be  greater  than  in  the  protein  since  different  codons  can  code  for  the  same  amino  acid  (codon

degeneracy). Degeneracy implies that the chance to distinguish between homologous genes using MT

is greater than using MP. Previous MG analyses using assembly algorithms has shown that problematic

genomic regions in a given environmental contig can harbor variants from multiple,  closely-related

strains,  which  can  be  further  linked  to  normal  strain-level  variability  within  a  population  and

speciation15–17. Within SEM1b, the ORFGs that contained multiple homologous ORFs predominantly
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originated from several strains of a single species. For example, in the MT, 444 non-singleton ORFGs

(88% of the total) contained ORFs from different strains of the same species, whilst this was the case

for 294 ORFGs (32%) in the MP.

All ORFs were annotated using Kegg Ontology (KO), and at least one term was found for 19070 (49%)

representatives from our complete dataset (Supplementary Table 2). The predominant ORF annotations

included  Membrane transport,  Carbohydrate metabolism,  Translation,  Amino acid metabolism and

Replication  and repair (Supplementary  Fig.  1). As expected,  these functional  categories  were also

among the top five most abundant for the MT, and top six in MP (plus Energy metabolism), although in

a different order. The Membrane transport category is extremely poorly represented in the MP (2% of

the  terms),  which  is  likely  explained  by  well-known  technical  issues  that  limit  the  extraction  of

transmembrane proteins18. The most abundant annotation categories mentioned above are all in line

with the community function of cellulose degradation. The abundance ranking of the KO categories

changes slightly from MG to MT (Kendall tau: 0.77, p<10-8) and from MT to MP (tau 0.74, p<10-6)

whilst  moderately  from MG to  MP (tau  0.68,  p<10-5),  which  means  that  the  functional  potential

observed in the genomes is more preserved in the diversity of produced transcripts than the one of

proteins  and  thus  hints  to  post-transcriptional  regulation  playing  an  important  role  in  addition  to

transcriptional regulation in prokaryotes.

Absolute quantification extends expectation from E.coli RNA/protein dynamics and positions 

Archaea alongside the Eukarya

To determine whether or not microbial RNA/protein dynamics vary between ecological status (isolate

vs community), metabolic states and/or taxonomic phylogeny, we quantified and resolved the numbers

of transcript and protein molecules per sample in our SEM1b community, which averaged 3.8×1012(sd

3.0×1012) and 2.2×1015(sd 9.5×1014), respectively (Supplementary Tables 3-4). Microbial cell volume

and its transcriptome size has been shown to change in yeast according to cell status (proliferation vs.

quiescence), whilst the proteome is merely reshaped in its composition19. In our case, the number of

total  transcripts  per SEM1b sample increased more than three-fold during the first  15 hours (from

~1.2×1012 in t1 to ~4.0×1013 in t4) in the SEM1b consortium’s life cycle and then decreased sharply,

whereas  the  number  of  proteins  per  sample  reached  a  plateau  after  18  hours  post-inoculation  at

~2.7×1015 molecules. SEM1b approximated the exponential growth phase in t3 (18 hours), therefore we

used the protein-to-RNA ratio from this time point for comparison against previously reported axenic

estimates1,20–23.  The replicate-averaged protein-to-RNA ratio for the bacteria  in SEM1b ranges from
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~102 to 104 (median = 949, Fig. 1a), which fits the estimated range reported for E.coli1. This means that

for every RNA molecule one can expect from 100 to 10000 protein molecules with a value of 949

being the most likely. Our results showed a taxon-specific variation in the protein-to-RNA ratio within

bacteria  (Fig.  1a). Indeed the median ratios for the bacteria  in SEM1b at 18h ranged from 658 in

CLOS1 to 1137 in RCLO1. Moreover, we report, for the first time, the median protein-to-RNA ratio

for an Archaeal organism: METH1 (M. thermoautotrophicus) as being 12035 protein molecules per

detected RNA (Fig. 1a). The reported values for Eukaryotes are 4200-5600 for yeast20,21 and 2800-9800

for Homo sapiens22,23; therefore, we find that Archaeal translation dynamics are closer to that observed

within the Eukaryotic kingdom than that of bacteria.

Figure  1.  Protein-to-RNA  ratio  distributions  of  as-yet  uncultured  bacterial  and  archaeal  populations  within  a  microbial
community a. Comparison of protein-to-RNA ratio distributions of selected MAGs reconstructed from the SEM1b community as well as
those previously reported in the literature. The dots represent the median values and the bars span from the first to the third quartiles. The
protein-to-RNA ratios for  E.coli was retrieved from Taniguchi  et al.1, Yeast1 from Ghaemmaghami  et al.20, Yeast2 from Lu  et al.21,
Human1 from Schwanhausser  et al.22 and Human2 from Li  et al.23.  b.  The distribution of the Pearson Correlation Coefficients (PCC)
between transcripts and their corresponding proteins computed across the time points. With a median PCC of 0.41, the change in the
amount of a given transcript over time seemingly does not translate into a change in the amount of the corresponding protein. c. Per-time-
point scatterplots of the absolute protein and transcript levels for ORFs that produced both detectable transcript and protein in SEM1b
datasets. For simplicity, only four representative MAGs are shown, with all MAGs depicted in Supplementary Fig. 2. d. The plot shows
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how the linearity parameter k between RNA and protein changes over time for the different MAGs. The linearity represents how a change
in RNA level is reflected in a change in the corresponding protein level. The parameter ranges from 0 to 1, and increasingly smaller
values  translate  in  fewer  proteins  being  expected  for  the  same  level  of  RNAs.  The  populations  CLOS1,  METH1 and  TEPI1  are
converging towards the same values, while RCLO1 has a parallel trend. Hinting to the existence, and the reaching of an equilibrium
among them.

A bacterial  cell  is  considered  to  be  in  steady  state  during  the  log  phase  of  its  growth cycle 8,24,25,

specifically when the changes in proteome size are believed to be mainly dictated by a change in the

transcriptome26.  In contrary to these assumptions,  comparisons of RNA and protein levels between

individual cells of E. coli grown at steady state have not been shown to correlate, however patterns do

emerge when all cells are collectively considered at the population level1. In SEM1b, we wanted to see

if correlations between RNA and protein levels exist in a larger microbial community, and if they are

affected by changes in time and life stages. We calculated gene-wise Pearson Correlation Coefficients

(PCCs) of protein and transcripts over time for all SEM1b populations and showed that the PCC value

varied greatly (Fig. 1b) with a median of 0.41, suggesting that no direct correlations between RNA and

proteins levels exist at any stage in a microbiome and that it is nearly impossible to predict the level of

the given protein based on the level of the corresponding transcript. 

Looking at relationships between proteome and transcriptome for individual populations within SEM1b

(examples form four populations in Fig. 1c) was observed to follow a more predicable relationship,

which can be described by the monomial function:

 (eq.1)

The formula for log10-transformed RNA and protein levels  takes the form of a linear  model  (see

methods) that was fitted to protein and RNA distributions per time point from MAGs with the highest

quality  (RCLO1,  CLOS1,  COPR1,  TISS1,  TEPI1,  TEPI2  and  METH1)  (Fig.  1d).  The  linearity

parameter k can be interpreted as the rate of which a change in RNA level is reflected in a change in

the corresponding protein level. For example, if k=1, a doubling in RNA level means a doubling in

protein level,  whereas if  k=0.5 a  doubling in  RNA level  means a ~40% increase in  protein level.

Ranging from 0 to 1, it implies that, in the “perfect” condition where k=1, the number of proteins is

linked to the number of RNAs by the scalar constant  a, whilst if k approaches 0, there will be much

lower expected protein levels for the same number of RNAs. With the exception of TEPI2, the linearity

(k) between protein and RNA levels was observed to start at values between 0.6 and 0.8 at 13 hours (t2)

(Fig. 1d). The evolution of the MAGs’ k values over time is then divided in three groups: one which is

losing linearity  rapidly (TISS1 and COPR1); one which is  slowly declining  (RCLO1, CLOS1 and

METH1) and one which is staying constant if not increasing (TEPI1 and TEPI2) (Fig. 1d). Notably
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CLOS1, METH1 and TEPI1 are converging towards the same linearity values, while RCLO1 has a

parallel  trend to  them.  If  these  trends  can  be  used  to  retro-fit  the  steady state  definition,  we can

hypothesize that these four populations possess a metabolic equilibrium and that this equilibrium is

approximately reached within the 10 hour window between 33h and 43h (t6 and t7 respectively, Fig.

1d).

Interpretation of functional specialization in the light of RNA-protein dynamics

Using multi-omic data and the above described RNA-protein dynamics, we were able to visualize that

at least four populations within SEM1b converge upon a dominant metabolic state that we speculate to

strongly  shape  the  overall  SEM1b community  phenotype  and suggest  a  functional  co-dependence

between the individual populations. To determine if this was the case, we annotated the genes and

metabolic pathways for SEM1b MAGs (Fig. 2) and reconstructed their temporal expression patterns

(Fig. 3). The SEM1b consortium is able to convert cellulose (and hemicellulose) to methane via the

combined metabolism of its seven major constituent populations (Fig. 3a). Based on previous analysis

that showed that RCLO1 is closely related to  R. thermocellum9, we predict that it senses27 its growth

substrate (cellulose) and moves towards it (Fig. 3d). RCLOS1 then transcribes, translates and secretes

the components of the cellulosome, such as scaffoldins, dockerins and carbohydrate-active enzymes

(CAZymes)28, which assemble into a dynamic multi-proteins complex that degrades the substrate to

smaller carbohydrates. Via the MG, we predicted that non-cellulosomal CAZymes were also employed

by the  Clostridium-affiliated  CLOS1,  which  acted  upon the  hemicellulose  fraction  (mainly  xylan)

trapped in the spruce cellulose, which was supported by observed release of its main monomer xylose

(Fig.  3a).  Sugars generated  via  the actions  of  RCLO1 and CLOS1 are subsequently  consumed by

RCLO1, CLOS1 and Coprothermobacter-affiliated populations (COPR1, BWF2A and SW3C), which

were all  observed to express  sugar  transporters  (Fig.  2).  Notably CLOS1 has  the most  diversified

transporters,  making  it  a  flexible  consumer,  and for  the  most  part  demonstrated  highest  levels  of

hydrolytic and fermentative gene expression after RCLO1, which again is likely tied to xylose release

at later stages of the SEM1b lifecycle (Fig. 3a). However, some of the transporters, such as the one for

oligogalacturonide, raffinose/stachyose/melibiose and rhamnose, were not expressed, likely due to the

absence of their substrates in the largely cellulose and xylan dominated spruce wood used in this study.

CLOS1 was also the only population to possess the aldouronate transporter with  20 copies of gene

lplA,  20 of  lplB and 16 of  lplC (20/20/16)  and expressing 0.4/0.7/3.8×1010 and 92.8/3.5/7.0/×1011

combined median transcripts and proteins per sample; making it one of the few transporters detectable

at the protein level. Similarly, the  C. proteolyticus strains (BWF2A and SW3C) possess and express
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unique  sugar  transporters,  likely  gaining  access  to  an  undisputed  pool  of  arabinogalactan  or

maltooligosaccharide.  The  transporter  for  pentamers  ribose/xylose  were  the  most  common  and

possessed by RCLO1,  C. proteolyticus populations and  Tepidanaerobacter populations (TEPI1 and

TEPI2). Notably from Fig. 2, it is clear that the proteins from the transporters are almost never found in

the  samples,  even  if  the  respective  RNAs  are  abundant.  This  is  likely  due  to  the  difficulties  in

extracting transmembrane proteins18.

Figure 2. Overview of the genetic potential and expressed modules in the seven populations of SEM1b.  Module completeness
denotes the level of detected RNA and proteins mapped to major genes/metabolic pathways that are critical to the SEM1b lifecycle. Only
MAGs with the highest quality reconstruction (RCLO1, CLOS1, COPR1, TISS1, TEPI1, TEPI2 and METH1) are included as well as two
isolated and genome-sequenced Coprothermobacter strains, for which the transcriptome and the proteome were considered as the species
level.
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The process of degrading cellulose and simple saccharides via hydrolysis and fermentation ultimately

results in the production of short chain fatty acids (SCFAs) such as proprionate, butyrate and acetate,

which are subsequently metabolized by the SCFA-oxidizing populations in SEM1b (TISS1, TEPI1,

TEPI2) (Fig. 3a). The only metabolically-active SCFA-oxidizing population in SEM1b was predicted

to be TEPI1, as it demonstrated good linearity between protein and RNA levels that increased over

time (Fig. 1d) and harbored a complete Wood-Ljungdahl Pathway (WLP) that was detectable in both

MT and MP (Fig. 2). It has been shown that oxidizers can improve oxidization of SCFAs (up to double

speed) when superior NADPH and ATP generators (e.g. glucose) are consumed in small amounts to

complement the stoichiometry through the Pentose Phosphate Pathway (PPP) without triggering the

shift of the entire cells metabolism toward another substrate29. In this context, it is interesting to note

that  TEPI1 was the only  MAG that  encoded and expressed  a  hexose (allose)  transporter  (Fig.  2).

Aldohexoses  (such  as  D-allose,  D-glucose,  D-mannose,  etc.)  are  imported  and  transformed  into

fructose-6P in two reactions (both expressed in TEPI1), which can then be fed into both the PPP or the

Glycolysis pathways. Xylose, is a product of the degradation of hemicellulose present in our system

(Fig. 3a) and can be converted to ribulose-5P and fed to the PPP in three reactions.  This data,  in

combination  with  a  highly  expressed  and  detectable  WLP  over  time  (Fig.  3a),  points  to  the

establishment of TEPI1 as the only syntrophic acetate-oxidizer (SAO) in the SEM1b consortium. We

speculate  that  TEPI1’s  SAO-metabolism is  helped  by the  other  SEM1b populations  that  generate

acetate as a fermentation end-product and the supplement of the sugars released by the cellulosomal

complex such as glucose and xylose. Interestingly the closely related MAG TEPI2 was observed to

lack the WLP and to express ~10 times more transcripts for the ribose/xylose transporter than TEPI1;

relegating it to the role of mere sugar degrader, and probably scavenger in the community.

While TISS1 seems mostly to phase out of the community and lose linearity in its protein to transcript

relationship (Fig. 1d), TEPI2 implements an exit strategy in the form of sporulation. All the gram-

positive populations from the SEM1b consortium (RCLO1, CLOS1, TISS1, TEPI1 and TEPI2) were

able to produce spores and express the spore marker spoIV, an ATPase associated to the surface of the

neospore  that  promotes  the  assembly  of  the  coating  and  is  common  to  all  the  spore  forming

bacteria30 (Fig. 3b). TEPI2 however increased the level of transcripts for spoIV by 1000 times within

the 13h and the 18h time points, reaching the maximum at 23h, and having a production 10 times

higher than the phylogenetically related TEPI1. All SEM1b populations, except the  C. proteolyticus

isolates and TEPI1, have the genetic potential for flagellar synthesis but the respective transcripts were
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only observed for RCLO1, CLOS1, TISS1 and TEPI2. The filament protein of RCLO1 is by far the

most  abundant  protein  in  the  samples  with  an  average  of  2.8×1013 molecules  per  sample,  which

matches the idea of RCLO1 investing in motility to reach the cellulose fibers and starting with the

highest level of marker flgD in the community (Fig. 3d). 
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Figure  3.  Schematic  representation  of  the  temporal  and  co-dependent  metabolism of  SEM1b that  converts  spruce-derived
cellulose to methane.  a. Within SEM1b, four major metabolic stages are required: Spruce → Hexoses/Pentoses, Hexoses/Pentoses →
SCFAs, SCFAs  → CO2+H2 and CO2+H2  → methane). Metabolites (spruce, sugars, SCFAs, CO2+H2 and methane) involved in these
processes were measured and the temporal analysis of the metabolic pathways involved in their interconversion is depicted for the major
SEM1b populations. Other metabolites (for which abbreviations are: Nt=Nucleotides, PRPP=Phosphoribosyl pyrophosphate, AA=Amino
acids, PYR=Pyruvate, OXA=Oxalacetate and OXO=Oxo-glutarate) are shown to highlight the essential metabolism of the microbes. In
the central metabolic network the metabolites are linked by solid arrows if the interconversion requires one step or the link between them
is addressed more in detail (blue dot if in Fig. 2, red dot if in a pathway plot herein). Metabolic pathways are quantified via marker genes
(selection in methods section)  in  the scale of log10-transformed transcript molecules  per  sample whilst  the solid  lines in the plots
represent the qubic fitting of the data points. More metabolites’ abbreviations are CELL=Cellulose, CLB=Cellbiose,  GLU=Glucose,
XYL=Xylan, XLB=Xylobiose and pathways’ abbreviations are WLP=”Wood-Ljungdahl Patway”, PPP=”Penthose Phosphate Pathway”.
b. Sporulation is common to all Gram positive bacteria of the community and it is quantified with the marker spoIVA. Notably TEPI2 is
investing greatly in spore formation until  28h after the inoculum (t4).  c. The genes for the Ribose and xylose transporter (rbs)  are
expressed in four populations. Notably TEPI2 produces more rbs transcripts than the closely related MAG TEPI1; indeed, the first has
been predicted to be a mere fermenter whilst the latter bases its metabolism on the WLP pathway (Fig. 3a).  d.  Microbial motility is
represented by the marker gene flgD. RCLO1 is the most active bacterium, producing less and less flagella over time after t4. It starts
ahead of the others at t2, presumably finishing the colonization of the substrate (Spruce-derived cellulose).

In microbial ecosystems, acetate oxidization is a syntrophic process, whereby end-products of the WLP

CO2 and  H2  /formate  are  co-metabolized  by hydrogenotrophs  such as  Archaeal  methanogens.  The

methanogenesis pathway encoded in METH1 is the largest pathway according to the number of genes

involved (n=112) in SEM1b, while we also observed transporters for nickel, the metallic ion used by

the  nickel-containing  methyl-coenzyme  M  reductase  (the  central  enzyme  in  methanogenesis31).

Methanogenesis  also  use  electrochemical  gradients  generated  by  Na+ and  H+ ions  to  drive  energy

production  and  recharge  the  electron  donor  groups  (ferrodoxin,  F420),  similar  to  SAO  bacteria.

Peculiarly, the populations TEPI1, TEPI2 and TISS1 were the only ones found to encode and express

the Na+/H+ antiporter  nha (Fig. 2) pointing to an important role of these ions in the greater SEM1b

consortium. The WLP is associated with the transition between NADH/NAD+, and translocates Na+ to

create a gradient, which is used by the type-V ATPase to synthesize ATP32. Indeed the NAD+-FdRed-

dependent  Na+ translocation  system  rnf is  expressed  in  both  the  fermenting  and SAO bacteria  of

SEM1b, while type-V ATPase, which produce energy by exploiting the Na+/H+ gradient, were detected

by all the populations aside from METH1 and C. proteolyticus (Fig. 2). Moreover, the TEPI1 MAG

expresses the HND NADP-reducing hydrogenases complex, which turns hydrogen ions into H2 using

NADPH. The molecular hydrogen can then permeate the membrane and be used by the syntrophic

partner METH1 to generate methane (Fig. 3a).

Translation control drives changes in cell status and source utilization

In addition to RNA/proteins ratio assessments, our collection of absolute multi-omic data allowed us to

explore the crucial aspect of protein-level regulation, which is poorly understood in microbiomes. The

control  of  protein  levels  in  bacteria  is  believed  to  occur  predominately  via  transcription  control,

“control  by  dilution”33 (dispersal  of  proteins  via  subsequent  cell  divisions)  and  rarely  by  protein
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degradation34. Similar to transcription control, translation can also be controlled by a dynamic pool of

translational factors, such as initiation, elongation and ribosome components35. The processes targeted

by these systems require a rapid change in the number of proteins in the cell that cannot wait for a

change in RNA levels or a dilution effect. The absolute quantification of transcripts in SEM1b and

proteins  was  used  to  estimate  the  translation  and  protein  degradation  rates  using  PECA-

R36 (Supplementary Table 5). The analysis found 305 significant changes in translation rate, accounting

for 302 ORFs. Of the rate changes’, 94% were downregulated and 71% of the ORF were functionally

annotated. RCLO1 has 28 downregulated ORFs between 13h and 18h (t2-t3), mostly from complexes

involved  in  chemotaxis  (cheY,  cheW,  mcp),  flagellum  assembly  (flgG,  flgK,  fliD)  and  shape

determination  (mreB).  In  the following five  hours,  several  systems concerning carbon fixation  are

affected,  such  as  phosphoglicerate  kinase (PGK),  triosephosphate  isomerase (TPI),  phosphate

acetyltransferase (EC 2.3.1.8), isocitrate dehydrogenase (IDH1) and pyruvate orthophosphate dikinase

(PPDK). In the next five hours it downregulates the translation of the cell division protein zapA as

well. The reduction protein production for chemotaxis, mobility and then cell division matches the idea

that  within  13h  of  the  inoculation,  RCLO1  sensed,  reached  and  colonized  the  cellulose  fibers.

Contextually  the  release  of  medium length  carbohydrates  enables  RCLO1 to  engage  in  the  more

energetically favorable fermentation metabolism. TISS1 has a decrease in translation rates of ORFs

related to metabolic processes between 13h and 18h, mostly involving cofactors (fhs, folC, folD, lplA,

metH,  pdu0 and  nadE)  and  amino  acids  (aorQ,  hutI,  LDH,  metH,  mtaD and  pip).  TEPI1  down-

regulated 60 ORFs, accounting for part of its carbohydrate metabolism (e.g. PGK, TPI), the amino acid

transporters  and  the  NADH  dehydrogenase  complex  (HND).  TEPI2  has  19  ORFs  subject  to

downregulation  in  the  13h-18h interval,  such as  Pyruvate  ferrodoxin odidoreductase  (PFOR),  GK,

fructose-bisphosphate  aldolase (FBA),  tansaldolase EC  2.2.1.2  and  the  ribose/xylose  transporter

subunit  rbsB. In the last interval (33h-38h), RCLO1 upregulated the translation of 10 ORFs, among

which the flagellar flbD and shape determination mreB; seemingly starting to restore the functions

downregulated in the 13h-18h interval.

Conclusions

We present the reconstruction of a microbiome from a model environment and quantified the number

of RNAs and proteins over time in absolute terms. This approach enabled us to assess and report, for

the  first  time,  the  protein-to-RNA  ratio  of  multiple  microbial  populations  simultaneously,  which

individually engage in distinct, yet integrative metabolic pathways that ultimately cumulate into the

13

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/857599doi: bioRxiv preprint 

https://doi.org/10.1101/857599
http://creativecommons.org/licenses/by/4.0/


community’s principal phenotype of converting cellulose to methane. We extended the results from

Taniguchi et al.1, showing that our populations had a varying protein-to-RNA ratio in the predicted

interval of 102-104 while presenting for the first time the same quantity for an Archaeal population

(METH1): 103-105, which resembled the previously measured values for Eukaryotes20–23. The greater

ecological significance of the seeming Archaeal capacity to generate higher protein levels at a lower

“RNA-cost” is of interest, as many Archaeal populations in mixed-kingdom microbiomes are known to

exert strong functional influence, despite their cell concentrations being orders of magnitude lower than

their bacterial counterparts (i.e. the rumen microbiome37). 

Moreover, we assessed the linearity between transcriptome and proteome for each population over time

(Eq.1), finding that three major populations of the community, a fermenter (CLOS1), a SAO (TEPI1)

and a methanogen (METH1), were converging on the same values in parallel with the primary cellulose

degrader  (RCLO1)  (Fig.  1d).  The highlight  of  their  seemingly  intertwined  protein/RNA dynamics

matches with their metabolic complementarity, starting from RCLO1 degrading cellulose to sugars and

SCFAs, CLOS1 fermenting sugars to SCFA, TEPI1 oxidizing SCFAs to H2 and METH1 converting

CO2 and H2 to methane. Closer examination revealed even more intricate relationships involving Na+

and  H+  ions  as  well  as  secondary  sugars  (i.e.  xylose)  reiterating  that  each  population  needs  the

metabolic  activity  and subsequent  byproducts  of  the previous  one to  provide a  supply of growing

metabolites (Fig. 3a). Moreover, the estimation of translation and protein degradation rates pointed at a

translational  negative  control  for  several  ORFs  involved  in  chemotaxis/motility  and  central

metabolism, marking important changes in the community status. In conclusion, our data highlights

that simple modifications to multi-omics toolkits can reveal much deeper functional-related trends and

integrative co-dependent metabolisms that drive the overall phenotype of microbial communities, with

potential to be expanded to more-complex and less-characterized microbial ecosystems.

Data availability

All sequencing reads have been deposited in the sequence read archive (SRP134228), with specific numbers

listed in  Supplementary  Table 6 in Kunath et al.9. All microbial genomes are publicly available on JGI

under  the  analysis  project  numbers  listed  in  Supplementary  Table  6  in  Kunath  et  al.9.  The  mass

spectrometry  proteomics  data  have  been  deposited  to  the  ProteomeXchange  Consortium  via  the

PRIDE38 partner  repository  with  the  dataset  identifier  PXD016242.  The  code  used  to  perform  the

computational analysis is available at: https://github.com/fdelogu/SEM1b-Multiomics.
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Materials and Methods

Multiomics data acquisition

Background  The  full  experimental  setup  and  the  methods  concerning  the  retrieval  of  biological

samples and data preprocessing were performed during a previous study9 and can be summarized as

follows: a microbial consortium called SEM1b was obtained from a biogas reactor using serial dilution

and enrichment methods on spruce cellulose. A metagenomic analysis was initially performed on the

SEM1b community using two different generations that had consistent population structure, and was

used as a supporting database for a subsequent SEM1b time series experiment. The time series analyses

consisted of metabolomics, metaproteomics and metatranscriptomics over nine time points (at t0, 8, 13,

18, 23, 28, 33, 38 and 43 hours) in triplicate (A, B and C), spanning the consortium life-cycle.

Metagenomics For generation of metagenomic data, 6ml samples of SEM1b culture were taken and

cells  were pelleted  prior to storage at  -20°C. Non-invasive DNA extraction  methods were used to
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extract high molecular weight DNA as previously described in Kunath et al.39. DNA samples were

prepared with the TrueSeq DNA PCR-free preparation, and sequenced with paired-ends (2x125bp) on

one lane of an Illumina HiSeq3000 platform (Illumina Inc) at the Norwegian Sequencing Center (NSC,

Oslo,  Norway).  Metagenomic  analyses  comprising  quality  trimming  and  filtering,  reads  assembly,

binning and annotations were performed as previously described9. Resulting annotated open reading

frames  (ORFs)  were  retrieved  and  used  as  a  reference  database  for  the  metatranscriptomic  and

metaproteomic analysis.

Metatranscriptomics mRNA extraction was performed in triplicate  on time points t2 to t8,  using

previously described methods11.  The  extraction  of  the  mRNA included  the  addition  of  an  in  vitro

transcribed RNA as an internal standard to estimate the number of transcripts in the natural sample

compared  with  the  number  of  transcripts  sequenced.  For  further  normalization,  total  RNA  was

extracted using enzymatic lysis and mechanical disruption of the cells and purified with the RNeasy

mini kit  (Protocol  2,  Qiagen, USA). The RNA standard (25ng) was added at  the beginning of the

extraction in every sample. After purification, residual DNA, free nucleotides and small RNAs were

removed. Samples  were  treated  to  enrich  for  mRNAs  and  then  amplified  before  being  sent  for

sequencing at the Norwegian Sequencing Center (NSC,  Oslo,  Norway).  Samples were subjected to

the TruSeq stranded RNA sample preparation, which included the production of a cDNA library, and

sequenced with paired-end technology (2x125bp) on one lane of a HiSeq 3000 system.

The resulting  sequences  were  filtered  and  rRNA and tRNA reads  were  removed  as  performed  in

Kunath  et  al.9.  The  reads  mapping  on  the  internal  standard  pGEM-3Z  were  extracted  using

SortMeRNA40 v2.1b and their  counts  used  as  IR in  the  “Functional  omics  absolute  quantification”

section of the material and Methods, whilst the not mapping reads (the transcriptome in the sample)

were used as ∑TR. The retained reads were mapped against the predicted genes dataset using Kallisto

pseudo -pseudobam41 and the mapping files were produced with bam2hits. Transcripts were quantified

with mmseq42 and collapsed using mmcollapse43.

Metaproteomics Proteins were extracted from t1 to t8 in triplicate following a previously described

method44 with  a  few modifications.  Briefly,  30ml  of  cultures  containing  cells  and  substrate  were

centrifuged at 500x g for 5 minutes to pellet the substrate. The supernatant was centrifuged at 9000 x g

for 15 minutes to collect the cells. Cell lysis was performed by resuspending the cells in 1ml lysis

buffer (50 mM Tris-HCl, 0.1% (v/v) Triton X-100, 200 mM NaCl, 1 mM DTT, 2mM EDTA) and
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keeping them on ice for 30 minutes. Cells were disrupted in 3 x 60 seconds cycles using a FastPrep24

(MP Biomedicals, USA). Debris were removed by centrifugation at 16000 x g for 15 minutes. The

supernatants containing the proteins were kept at -20°C until further processing. Extracted proteins

were quantified using the Bradford’s method. 50μg of each sample were denatured using SDS sample

buffer and loaded on an Any-kD Mini-PROTEAN gel (Bio-Rad Laboratories, USA) and separated by

SDS-PAGE for 20 minutes at 270V. Each gel lane was cut into 16 slices and the reduction, alkylation

and tryptic digestion of the proteins into peptides were performed in-gel. The tryptic peptides were

extracted from the gel and desalted prior to mass spectrometry analysis. Peptides were analyzed using a

nanoLC-MS/MS system connected  to  a  Q-Exactive  hybrid  quadrupole-orbitrap  mass  spectrometer

(Thermo Scientific,  Germany) equipped with a nano-electrospray ion source.  The Q-Exactive mass

spectrometer was operated in data-dependent mode and the 10 most intense peptide precursors ions

were  selected  for  fragmentation  and  MS/MS  acquisition.  The  selected  precursor  ions  were  then

excluded for repeated fragmentation for 20 seconds. The resolution was set to R=70,000 and R=35,000

for MS and MS/MS, respectively.

A total of 384 raw MS files (8 samples x 3 biological replicates x 16 fractions) were analyzed using

MaxQuant45 version 1.4.1.2 and proteins were identified and quantified using the MaxLFQ algorithm46.

The  data  was  searched  against  the  generated  MG dataset  from Kunath  et  al.9 supplemented  with

common  contaminants  such  as  human  keratin  and  bovine  serum  albumin.  In  addition,  reversed

sequences of all protein entries were concatenated to the database for estimation of false discovery

rates. The tolerance levels for matching to the database was 6 ppm for MS and 20 ppm for MS/MS.

Trypsin was used as digestion enzyme, and two missed cleavages were allowed. Carbamidomethylation

of cysteine residues was set as a fixed modification and protein N-terminal acetylation, oxidation of

methionines, deamidation of asparagines and glutamines and formation of pyro-glutamic acid at N-

terminal  glutamines  were  allowed as  variable  modifications.  The ‘match  between runs’  feature  of

MaxQuant46 was applied. All identifications were filtered in order to achieve a protein false discovery

rate (FDR) of 1%. Quantitative information was retrieved using the LFQ intensities of each proteins.

Metabolomics For  monosaccharide  detection,  2  ml  samples  were  taken  in  triplicates,  filtered  and

sterilized  with  0.2µm  sterile  filters  and  15  minutes  boiling.  Soluble  sugars  were  identified  and

quantified by high-performance anion exchange chromatography (HPAEC) with pulsed amperiometric

detection (PAD). For quantification,  peaks were compared to linear standard curves generated with
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known  concentrations  of  selected  monosaccharides  (glucose,  xylose,  mannose,  arabinose  and

galactose) in the range of 0.001-0.1 g/L.

For the short chain fatty acids (SCFAs), 1ml was taken in triplicate from each time point, they were

centrifuged at 16000 x g for 5 minutes and the supernatants were filtered with 0.2μm sterile filters. 5µL

of Sulfuric Acid 72% were added to the filtrates and let at rest for 2 minutes before being centrifuged

again at 16000 x g for 5 minutes, transferred in a new tube and stored at -20°C until processing. SCFAs

were then analyzed using a Dionex 3000 HPLC as described in Estevez et al.47.

Functional omics absolute quantification

Metatranscriptomics The  absolute  quantification  of  transcripts  was  taken  from  Mortazavi  et

al.10 using the internal standard from Gifford et al.11 as reference to estimate the length of the initial

transcriptome. The number of reads produced in a given sample is proportional to the total amount (in

Nt) of starting material.  With the addition of an internal standard we have the following proportion

between the starting material  for transcripts (TNt) and the internal standard (INt) and the reads they

produce (TR and IR respectively):

∑ T Nt

∑T R

=
∑ INt

I R

,

in which the sums are taken over a single sample. The formula can be rearranged as:

∑T Nt=∑ INt ×
∑T R

IR

.

Since we know the number of molecules of internal standard added (IM) and its length (INt), we can 

substitute them in the equation as:

∑T Nt=I M × INt ×
∑T R

IR

.

We can now use the estimation of the starting length of the transcriptome and the TPMK transcript 

measurements in the formula from Mortazavi et al.10:

T M=
T RPMK

109
×∑ T Nt,

which becomes:

T M=
T RPMK

109
× IM × INt ×

∑ T R

IR

.
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Metaproteomics The “Total protein approach” method from Wiśniewski et al.12 relies on the use of the

protein mass per sample, the computed Molecular Weight (MW) of the detected proteins to transform

the LFQ values  into absolute  ones.  Here we omitted  the per-cell  quantification  since SEM1b is  a

heterogeneous community and MG measurements were not taken for the time series.

We computed the Total proteini as:

Total proteini=
LFQ intensity i

∑ LFQintensity

Then the Protein concentrationi was obtained from the previous with:

Proteinconcentrationi=
Total proteini

MW i

The method was developed on the assumption that the reference proteome is complete and that the total

mass of the peptides detected is equal to the total mass of peptides processed by the machine. This is

not necessarily valid in a microbiome for which the reference cannot be completely reliable. Thus we

computed the fraction of identified mass using the raw MP files with the following formula:

Detectedproteinmass=
Totalproteinmass ×∑

i=1

Pepid .

Base peak intensity i× Massi

∑
j=1

Peptot

Base peak intensity j× Mass j

Finally the copy number of proteins per sample was computed using the Avogadro’s Number (NA) as:

Copy number i=Proteinconcentrationi ×Detectedproteinmass×N A

Multiomics dataset integration

Data preprocessing The MT and MP datasets estimate absolute abundance of ORFGs over time. An

expression group is defined in this study as a set of ORFs which cannot be further resolved using the

available  data.  When  the  analysis  required  the  direct  comparison  of  ORFs  (e.g.  transcript-protein

correlation) only the singleton subset of the ORFGs was considered. The reliability of the expression

estimation  is  linked  to  the  number  of  unique  hits  (reads  or  peptides)  available  for  a  given ORF,

therefore all the entries with 0 unique hits were filtered out. The datasets were then log10-transformed

with a pseudocount equal to one. After expression density plotting, the minimum expression thresholds

of 5 and 9 were selected for MT and MP, respectively, and the data was filtered accordingly. Principal

component analysis was used to screen the samples and t7C (time point 7, replicate C) was identified as

an outlier and removed before downstream analysis.
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MP/MT linear fit We took the intersection of ORFs present in the MT and MP layers of the dataset for

each of the selected MAGs (COPR1, CLOS1, COPR1, METH1, RCLO1, TEPI1, TEPI2, TISS1), and,

for  each  sample,  we  performed  a  regression  analysis  in  R.  The  values  span  several  orders  of

magnitudes, thus we decided to fit the monomial functional:

which can be rewritten as:

log (protein )=a+k⋅ log ( RNA )

to be more easily fitted as a linear model. The previously log10 transformed protein levels were used as

y while the log10-transformed RNA was used as x in a linear model using the lm function. The slopes

of the models were then used to fit a third grade polynomial function to obtain the linearity change

profile in Fig. 1d.

Functional  annotation  and  module  completeness The  KEGG  Orthology  (KO)  numbers  were

assigned to the ORFs as a part of the annotation pipeline from IMG48. The ORF-wise annotation was

then translated into the MT/MP-ORFGs assigning to each ORFG a non-redundant set of all the terms

assigned to  all  the ORFs in  the  group.  We used the  KO numbers  to  estimate  the  KEGG module

completeness  using  the  R  package  MetaQy49 v.1.1.0.  The  Glycosyl  Hydrolases  annotation  was

retrieved from Kunath et al.9.

Metabolic marker genes selection The metabolic  marker  genes for Fig.  2 were selected with the

following  criterion.  Glycolysis/Gluconeogenesis:  enzyme  with  irreversible  reactions.  PPP:  genes

involved in  the main  interconversion loop between Ribose-5 Phosphate and Fructose-6 Phosphate.

WLP: marker genes from Can 2014. Methanogenesis: markers genes from Scheller 2010. The Glycosyl

Hydrolases were manually curated to assemble a set able to perform the substrate conversion.

PECA analysis We ran  PECA-R36 to  estimate  translation  and protein  degradation  rates  using  the

absolute  quantification  tables  for  transcripts  and  proteins  with  default  parameters.  The  rates  are

estimated between two consecutive time points, therefore the sample from 8h was not included because

it is missing the corresponding MT data. We filtered the results to identify the changing point using a

score threshold of 0.9 and a FDR equal to 0.05. 

Figures
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Figure  1. Protein-to-RNA  ratio  distributions  of  as-yet  uncultured  bacterial  and  archaeal

populations within a microbial community. a. Comparison of protein-to-RNA ratio distributions of

selected MAGs reconstructed from the SEM1b community as well as those previously reported in the

literature. The dots represent the median values and the bars span from the first to the third quartiles.

The  protein-to-RNA  ratios  for  E.coli was  retrieved  from  Taniguchi et  al.1,  Yeast1  from

Ghaemmaghami  et al.20, Yeast2 from Lu  et al.21, Human1 from Schwanhausser et al.22 and Human2

from Li et al.23. b. The distribution of the Pearson Correlation Coefficients (PCC) between transcripts

and their corresponding proteins computed across the time points. With a median PCC of 0.41, the

change in the amount of a given transcript over time seemingly does not translate into a change in the

amount  of  the  corresponding  protein.  c. Per-time-point  scatterplots  of  the  absolute  protein  and

transcript levels for ORFs that produced both detectable transcript and protein in SEM1b datasets. For

simplicity, only four representative MAGs are shown, with all MAGs depicted in Supplementary Fig.

2. d. The plot shows how the linearity parameter k between RNA and protein changes over time for the

different MAGs. The linearity represents how a change in RNA level is reflected in a change in the

corresponding  protein  level.  The  parameter  ranges  from  0  to  1,  and  increasingly  smaller  values

translate  in  fewer  proteins  being  expected  for  the  same level  of  RNAs.  The  populations  CLOS1,

METH1 and  TEPI1  are  converging  towards  the  same values,  while  RCLO1 has  a  parallel  trend.

Hinting to the existence, and the reaching of an equilibrium among them.

Figure 2. Overview of the genetic potential and expressed modules in the seven populations of

SEM1b. Module  completeness  denotes  the  level  of  detected  RNA and proteins  mapped  to  major

genes/metabolic pathways that are critical to the SEM1b lifecycle. Only MAGs with the highest quality

reconstruction (RCLO1, CLOS1, COPR1, TISS1, TEPI1, TEPI2 and METH1) are included as well as

two isolated and genome-sequenced  Coprothermobacter  strains, for which the transcriptome and the

proteome were considered as the species level.

Figure 3. Schematic representation of the temporal and co-dependent metabolism of SEM1b that

converts spruce-derived cellulose to methane.  a. Within SEM1b, four major metabolic stages are

required: Spruce → Hexoses/Pentoses, Hexoses/Pentoses → SCFAs, SCFAs → CO2+H2 and CO2+H2

→ methane). Metabolites (spruce, sugars, SCFAs, CO2+H2 and methane) involved in these processes

were measured and the temporal analysis of the metabolic pathways involved in their interconversion is
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depicted  for  the  major  SEM1b  populations.  Other  metabolites  (for  which  abbreviations  are:

Nt=Nucleotides,  PRPP=Phosphoribosyl  pyrophosphate,  AA=Amino  acids,  PYR=Pyruvate,

OXA=Oxalacetate and OXO=Oxo-glutarate) are shown to highlight the essential metabolism of the

microbes.  In  the  central  metabolic  network  the  metabolites  are  linked  by  solid  arrows  if  the

interconversion requires one step or the link between them is addressed more in detail (blue dot if in

Fig.  2,  red  dot  if  in  a  pathway plot  herein).  Metabolic  pathways are  quantified  via  marker  genes

(selection in methods section) in the scale of log10-transformed transcript molecules per sample whilst

the solid lines in the plots represent the qubic fitting of the data points. More metabolites’ abbreviations

are CELL=Cellulose,  CLB=Cellbiose,  GLU=Glucose,  XYL=Xylan, XLB=Xylobiose and pathways’

abbreviations  are  WLP=”Wood-Ljungdahl  Patway”,  PPP=”Penthose  Phosphate  Pathway”.  b.

Sporulation is common to all Gram positive bacteria of the community and it is quantified with the

marker spoIVA. Notably TEPI2 is investing greatly in spore formation until 28h after the inoculum (t4).

c. The genes for the Ribose and xylose transporter (rbs) are expressed in four populations. Notably

TEPI2 produces more rbs transcripts than the closely related MAG TEPI1; indeed, the first has been

predicted to be a mere fermenter whilst the latter bases its metabolism on the WLP pathway (Fig. 3a).

d.  Microbial motility is represented by the marker gene flgD. RCLO1 is the most active bacterium,

producing less  and less  flagella  over  time  after  t4.  It  starts  ahead of  the  others  at  t2,  presumably

finishing the colonization of the substrate (Spruce-derived cellulose).
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