
Mok et al., PhenoMIP unpublished manuscript pp1 
 

Concise Title: 1 

PhenoMIP: High Throughput Phenotyping of Diverse C. elegans Populations via 2 

Molecular Inversion Probes     3 

 4 

Calvin Mok*, Gabriella Belmarez*, Mark L. Edgley†, Donald G. Moerman†, Robert H. 5 

Waterston* 6 

* Department of Genome Sciences, University of Washington, Seattle, Washington, USA, 98195 7 

† Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada, 8 

V6T 1Z4  9 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/857854doi: bioRxiv preprint 

https://doi.org/10.1101/857854
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mok et al., PhenoMIP unpublished manuscript pp2 
 

Running Title: 10 

Quantitative fitness analysis in C. elegans via PhenoMIP 11 

 12 

Keywords: 13 

Caenorhabditis elegans 14 

Molecular Inversion Probes 15 

Quantitative Fitness 16 

Million Mutation Project 17 

Multiplex Population 18 

Competitive Fitness Assay 19 

 20 

Corresponding Author: 21 

Calvin Mok 22 

661 University Ave 23 

MaRS Research Centre, West Tower, 16th Floor 24 

Toronto, ON, Canada 25 

M5G 1M1  26 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/857854doi: bioRxiv preprint 

https://doi.org/10.1101/857854
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mok et al., PhenoMIP unpublished manuscript pp3 
 

Abstract 27 

Whether generated within a lab setting or isolated from the wild, variant alleles continue to be an 28 

important resource for decoding gene function in model organisms such as Caenorhabditis 29 

elegans. With advances in massively parallel sequencing, multiple whole-genome sequenced 30 

(WGS) strain collections are now available to the research community. The Million Mutation 31 

Project (MMP) for instance, analysed 2007 N2-derived, mutagenized strains. Individually, each 32 

strain averages ~400 single nucleotide variants amounting to ~80 protein coding variants. The 33 

effects of these variants, however, remain largely uncharacterized and querying the breadth of 34 

these strains for phenotypic changes requires a method amenable to rapid and sensitive high-35 

throughput analysis. Here we present a pooled competitive fitness approach to quantitatively 36 

phenotype subpopulations of sequenced collections via molecular inversion probes 37 

(PhenoMIP). We phenotyped the relative fitness of 217 mutant strains on multiple food sources 38 

and classified these into five categories. We also demonstrate on a subset of these strains, that 39 

their fitness defects can be genetically mapped. Overall, our results suggest that approximately 40 

80% of MMP mutant strains may have a decreased fitness relative to the lab reference, N2. The 41 

costs of generating this form of analysis through WGS methods would be prohibitive while 42 

PhenoMIP analysis in this manner is accomplished at less than 1% of projected WGS costs. We 43 

propose methods for applying PhenoMIP to a broad range of population selection experiments 44 

in a cost-efficient manner that would be useful to the community at large.   45 
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Introduction 46 

The C. elegans haploid genome is compact, containing just over 100 Mb, and yet is capable of 47 

generating a complex organism with a defined cell lineage (Sulston et al., 1983). Despite our 48 

detailed knowledge of this organism, much of its biology remains unclear. At current, only 9,645 49 

Wormbase genes (Wormbase web site, 2019) have phenotype descriptions reported from either 50 

variant alleles or RNAi knockdown experiments, suggesting that the function of nearly half of C. 51 

elegans protein coding genes remain experimentally uncharacterized. Knowledge of where and 52 

when a gene is expressed can provide clues to function and many large data sets have 53 

elucidated gene expression patterns across embryonic, larval and adult timepoints. 54 

Furthermore, multiple techniques have begun to resolve tissue-specific and even cell-specific 55 

expression profiles (Boeck et al., 2016; Cao et al., 2017; Gracida and Calarco, 2017; Kaletsky et 56 

al., 2018; Warner et al., 2019).  However, this information does not directly reveal gene function 57 

per se.  58 

Forward genetics screens by methods such as chemical mutagenesis, provide a means 59 

of recovering alleles that result in a detectable phenotype of interest such as sterility, lethality, or 60 

altered reporter expression. These alleles can then be genetically mapped, sequenced, and 61 

functionally analysed. In this manner, a specific phenotype can be screened across hundreds of 62 

thousands of mutated genomes, thereby querying a very large search space (Brenner, 1974; De 63 

Stasio and Dorman, 2001; Kevin et al., 2006). The identification of causal variants across this 64 

space can be a laborious process although a variety of methods now exist to aid in the 65 

sequencing and mapping of mutant genomes (Doitsidou et al., 2010; Jaramillo-Lambert et al., 66 

2015; Minevich et al., 2012; Mok et al., 2017). In contrast, a reverse genetics screen by RNAi, 67 

generates a smaller potential search space by querying a collection of specific gene knock-68 

down targets for a detectable phenotype in a limited number of genetic backgrounds (Fraser et 69 

al., 2000; Kamath et al., 2003; Lehner et al., 2006). Consequently, the solution space is 70 

relatively well-defined since validated hits require no genetic mapping, although such screens 71 
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are generally confined to knocking down gene expression rather than necessarily exploring 72 

states of altered protein function. Depending upon assay format, an RNAi screen’s throughput 73 

can be comparatively less than a mutagenesis screen. Furthermore its effects may be 74 

problematic, producing false negatives or weak hits due to incomplete knockdown or false 75 

positives from the knockdown of gene families (De-Souza et al., 2019; Fraser, 2000; Parrish et 76 

al., 2000). In both screening methods, the ability to score a detectable phenotype can be 77 

affected by the presence of redundant paralogs or entire parallel systems that can compensate 78 

for a reduced function (for review see (Jorgensen and Mango, 2002)).  79 

Whether because of paralogs or other reasons, phenotypically weak alleles in both 80 

screens are potentially missed or simply disregarded. These weak alleles might be mistaken for 81 

stochastic variation in a cursory analysis but could provide important insights into function. For 82 

example, such weak alleles could produce small changes in developmental timing or fecundity 83 

that would affect population fitness (Diaz and Viney, 2014; Perez et al., 2017; Richards et al., 84 

2013; Schnabel et al., 1997). Subtle population-wide shifts in phenotypic fitness require 85 

quantitative methods of analysis that go beyond low-resolution phenotype qualifiers such as 86 

slow-growth, sterile, or lethal. In recent years, strides have been made in the quantitative 87 

analysis of fitness (Crombie et al., 2018; Elvin et al., 2011; Ramani et al., 2012). Advances in 88 

next generation sequencing technologies have led to a number of quantitative approaches to 89 

population analysis of singular genetic backgrounds by comparing deeply-sequenced samples 90 

for changes to transcription, small RNA populations, and heterochromatin (Araya et al., 2014; 91 

Boeck et al., 2016; Daugherty et al., 2017; Warf et al., 2012). Leveraging current sequencing 92 

paradigms to analyse population fitness would contribute to the process of assigning function to 93 

poorly characterized genes or alleles. 94 

To further expand our knowledge of C. elegans gene function, we sought to develop an 95 

assay that could 1) mimic the allelic diversity of a forward genetics screen but with a smaller 96 

solution space much like a reverse genetics screen and 2) generate quantitative data regarding 97 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/857854doi: bioRxiv preprint 

https://doi.org/10.1101/857854
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mok et al., PhenoMIP unpublished manuscript pp6 
 

population fitness to assess potential gene function. We exploited the self-fertilizing 98 

hermaphroditic nature of C. elegans to grow multiple strains in pools without genetic mixing. We 99 

also realized that the distinct mutations in each strain could be treated as a barcode to identify 100 

and quantify the representation of the strain in the pool. To assay the mutations and thus the 101 

representation of each strain in these pools, rather than use whole genome sequencing, which 102 

would have been prohibitively expensive, we adapted molecular inversion probes (MIPs) to 103 

identify strain-specific variants (Hiatt et al., 2013). We previously used MIPs for the genetic 104 

mapping of temperature-sensitive alleles in a collection of C. elegans mutant strains (Mok et al., 105 

2017); here we analyse population growth in a multi-generational competitive fitness assay to 106 

phenotype by MIPs (PhenoMIP) by quantifying the proportion of each strain in a pool. As a proof 107 

of principle, we utilized the Million Mutation Project (MMP) as a source for our strains. The MMP 108 

library of 2007 N2-derived mutant strains harbours a variety of coding alleles including potential 109 

null alleles across 8150 protein-coding genes, and coding or splice site-altering SNVs across 110 

19,666 genes (Thompson et al., 2013). The phenotypic consequences for many of these 111 

variants remain unexplored; we hypothesized that some may play a role in overall fitness. 112 

Therefore, we identified unique genetic markers suitable for detection by MIPs for each strain; 113 

using these strain-specific MIPs, we effectively generated barcodes for composition analysis of 114 

genotypes within a genetically heterogenous population – analogous to methods used in yeast 115 

(Hardenbol et al., 2003). We analysed population composition at multiple timepoints, thus 116 

determining the relative fitness for each individual strain within a pool, and thereby cataloging 117 

the potentially subtle phenotypes of this collection. Our observations suggest that PhenoMIP 118 

can identify strains with a range of population fitness phenotypes, including those that may 119 

ordinarily be overlooked. Overall, we show that PhenoMIP is a quantitative approach that 120 

combines mutagenized genomes that have been previously sequenced and assays them 121 

across multiple substrate conditions in a cost-efficient and high-throughput fashion. 122 

Results 123 
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Molecular inversion probes reliably track multiple strains within a mixed sample 124 

Previously, we demonstrated the usefulness of MIPs as a method to genetically map mutant 125 

alleles (Mok et al., 2017). In that study, our empirical analysis of MIP behaviour suggested that 126 

their accuracy and precision were highest when identifying smaller subpopulations of variants. 127 

Based on this observation, we recognized that the MIP assay could be applied in a large-scale 128 

analysis of diverse compositions of strains with complex mixtures of genomic DNA. The 129 

mutagenized strains of the MMP collection presented an excellent test set. The MMP strains 130 

have, on average, nearly 400 single nucleotide variants (SNVs) per strain, of which, 131 

approximately 80 are protein coding changes (Thompson et al., 2013). These strains represent 132 

a unique resource for analysing gene function on a large scale.  133 

As a first step we designed a specific set of MIPs to track strain-specific variants (Figure 134 

1a). In order to avoid targeting closely spaced variants that might influence the effectiveness of 135 

individual MIP assays and because we wanted to preserve the ability to make pools from any 136 

combination of MMP and wild isolate strains, we first combined variants from the 2007 mutant 137 

and 40 wild isolates strains of the entire MMP project. We eliminated shared alleles, and then 138 

chose SNVs separated by a minimum distance of 300 bp. From this list of unique candidate 139 

sites, we generated candidate MIP sequences (Mok et al., 2017) and for each strain we 140 

identified the highest scoring MIP sequence on each linkage group. From these top six MIPs, 141 

we assigned four representative MIPs specific to each strain (Figure 1b, and Supplemental 142 

Data SD1) with the purposes of tracking chromosomal representation in the event of cross-143 

progeny contamination while maintaining minimal reagent costs.  144 

To ascertain the representation of each strain in a pool, the four MIPs representing each 145 

target strain within a desired composition of strains were combined into a single pool (Figure 146 

1c) and used in the generation of MIP sequencing libraries. The libraries were sequenced, 147 

demultiplexed and individual annealing events tracked by the unique molecular identifier (UMI) 148 

present on each oligo (Figure 1d, e). Probe sets were then combined to determine mean 149 
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relative abundance for each target strain within a pooled set of genomes (Figure 1f). To 150 

successfully analyse mixed populations in an efficient high-throughput manner the PhenoMIP 151 

approach would require 1) a relatively balanced distribution of reads for each probe; 2) a low 152 

false positive rate to determine a reasonable lower bound on probe accuracy; and 3) precision 153 

between strain-specific targets to ensure that subpopulation analysis was consistent.  154 

To test the above parameters, we generated a pool of 192 MIPs designed to target SNV 155 

sites for 48 MMP strains (Supplemental Data SD2). We generated five different sets of 156 

genomic DNA mixtures composed of subsets of 46 of the 48 MMP target strains in different 157 

proportions (two strains failed to yield adequate amounts of DNA) and used these as template 158 

samples for the generation of MIP sequencing libraries (Supplemental Data SD2). From these 159 

libraries we observed the expected composition and proportion of genotypes for the original 160 

genomic templates, suggesting that overall cross-MIP interference from multiplexing was 161 

negligible (Supplemental Figure S1a) and that the variant information from sequencing was 162 

correct. We analysed the total number of UMIs for each MIP to gauge the efficiency of each 163 

probe. We observed eleven MIP targets that, across all libraries, consistently produced UMI 164 

counts below 20% of the mean number of UMIs per MIP in an individual library; these were 165 

removed from further analyses (Supplemental Figure S1b). To investigate the read distribution 166 

of this adjusted dataset, we normalized the UMI counts for each MIP against the minimum read 167 

number within its sequencing set. The normalized distribution of reads spanned across a ~9-fold 168 

range with an inter-quartile range of 2-fold to 6-fold suggesting that our distribution was 169 

relatively unimodal and ranged within a single order of magnitude (Supplemental Figure S2a 170 

and S2b).  171 

Next, for each sequenced library, we analysed the MIP reads from target strains that 172 

were excluded from the genomic template, calculating a total false positive rate of 1.6x10-4 173 

across five MiSeq-generated data sets for which the mean UMI count per MIP was 1630 with 174 

1.2x106 unique capture events across the total set. We also compared two sequencing runs of 175 
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the same PhenoMIP library with false positive rates of 1.49x10-4 at 3.9x105 total capture events 176 

versus 1.18x10-4 at 5.14x106 total capture events. Combining all data sets we confirmed a total 177 

false positive rate of 1.25x10-4 across all MIPs. We estimated the mean false positive rate per 178 

individual MIP to be 1.29x10-4 ± 1.38x10-4, which compares well with our prior observations 179 

(Mok et al., 2017).  180 

When initially planning experimental design, we chose to work with pools of 181 

approximately 50 strains per set, resulting in an expected average initial population abundance 182 

of 2x10-2. With such a low starting abundance it was important to assess the precision between 183 

each set of strain-specific MIPs to ensure that the variation between these probes was low 184 

enough to consider their mean value a consistent assessment of strain abundance. We 185 

observed the mean standard deviation across all strain-specific MIP sets was 2.33x10-3 ± 186 

6.88x10-3. Confirming prior observations, the absolute variance between strain-specific MIPs 187 

was dependent upon relative abundance within the sample. Subsetting the data, target strains 188 

above 5x10-2 abundance had a combined standard deviation between strain-specific MIPs of 189 

1.62x10-2. Samples with abundance below 2x10-2, however, had a combined standard deviation 190 

between MIPs of 2.12x10-4, which is similar in magnitude to our false positive rate. These 191 

findings were in line with our expectations from prior modeling of MIP behaviour (Mok et al., 192 

2017) (Supplemental Figure S2c).  193 

From our analyses, we concluded that relatively consistent and balanced pools of MIPs 194 

could be generated for future analysis on complex populations; that our false positive rates 195 

remained in line with previous observations; and that overall variance among MIPs for a specific 196 

target strain was low, especially in the lower ranges of abundance. In combination with our MIP-197 

MAP data (Mok et al., 2017), our analysis conservatively suggests that MIPs can accurately 198 

detect variant abundances as low as five standard deviations above the estimated false positive 199 

rate. We determined that relative abundances as low as 8.2x10-4 would have a high probability 200 

of being true signal as our largest false-positive value from the dataset was 7.4x10-4. For 201 
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simplicity, we designated 1x10-3 as the minimum abundance required to be considered as 202 

biologically present within a given pooled population. Practically speaking, based on an average 203 

pooled experiment of 50 strains, this translates to detecting a 20-fold decrease from the 204 

expected initial abundance for a target strain. The cut-off value of 1x10-3 was the foundation for 205 

later analysis of our data sets with these and other MIP pools (Methods).  206 

MIPs identify strain fitness defects over multiple generations 207 

Confident of the estimation capabilities of the MIPs, we selected sets of MMP strains to pool for 208 

growth analysis. Each pool was made up of 45-60 different MMP strains and 8-10 independent 209 

replicates were grown for multiple generations to look for differences in fitness between the 210 

strains (Table 1). In addition, to investigate the effects of different propagation methods, three 211 

food sources (E. coli strains HT115, NA22 or OP50) were used in different experiments and in 212 

one experiment two different methods of transfer were used (see below). The proportion of each 213 

strain in the pool was assayed at the start, terminal and various intermediate points. To ensure 214 

that a similar number of animals was present at the start and in each of the replicates (and 215 

different conditions in experiments where more than one condition was assayed), we hand-216 

picked 20 animals from each strain at either the L1 (pool M1, M3, M5) or L4 (pool M7, M8, M10, 217 

M11) stages to duplicate E. coli seeded plates. We grew these “starter” pools to starvation and 218 

combined uncontaminated plates for an estimated 300-700K animals. This population was 219 

collected and aliquots containing 5-10K animals were used to inoculate replicate cultures under 220 

their specific conditions. Cultures were grown to starvation (72-96 hours at 20-22°C; about a 221 

generation) and aliquots transferred to fresh plates. For all pools except M11, animals were 222 

transferred by chunking, while M11 replicates were split into two groups with transfer either by 223 

chunking or by washing (Table 1, Methods). This inoculation-to-starvation cycle was repeated 224 

4-9 times, depending on the experiment. At each cycle a fraction of the population was saved 225 

for later DNA analysis. (Figure 2). 226 
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In toto, we used 217 MMP strains across seven experimental pools (Table 1, 227 

Supplemental Data SD3) to assay their relative fitness. To check the reproducibility of the data 228 

and observe overall trends we applied principal component analysis to the datasets. For 229 

example, with the M11 dataset, replicate samples with the same food source and transfer 230 

method tended to cluster tightly, but with clusters from different generations separating well after 231 

the first generation, particularly along the axis of the first principal component (Figure 3a, b and 232 

Supplemental Figure S3). Samples also separated by the methods of transfer. PCA analysis 233 

on all the M11 samples at a single timepoint shows the effect of food source as well as method 234 

of transfer (Figure 3c and Supplemental Figure S4). The OP50 replicates were not as well-235 

correlated, and it was observed that these populations starved more quickly than other food 236 

sources. Our observations suggest that under a given experimental condition, population 237 

composition was changing with each generation in a consistent manner that was detectable by 238 

PhenoMIP analysis.  239 

Confident that the assay was behaving well overall, we next assessed each strain 240 

separately for relative changes in its abundance over multiple generations across multiple 241 

replicates. For each replicate condition within a pooling experiment, this effectively created a 242 

growth profile for each strain consisting of the total fold-change and the mean fold-change rate 243 

(FCR) per generation. For example, Figure 4a plots the relative abundance of strain VC20019 244 

in the M11 pools under various conditions. The log-fold change is modest, with the mean across 245 

all conditions almost zero, indicating that this strain is of average fitness. Closer inspection 246 

suggests that some of the variation is due to the different growth conditions used in M11, with 247 

replicates grown on NA22 and transferred by washing showing better than average growth, 248 

whereas growth on HT115 and chunk transfer grew less well.  In agreement with the overall 249 

PCA analysis, growth on OP50 resulted in the most variable log-fold change.  We combined 250 

results across replicates for all strains to analyse FCR as a distribution across conditions 251 

(Figure 4b and Supplemental Figure S5). We identified 15 strains that failed to thrive (class 0) 252 
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in the initial pool expansion steps (initial abundance < 2.5x10-3) suggesting they harboured 253 

potentially strong deficits to population fitness (Supplemental Table S1). We classified the 254 

remaining 202 strains using 393 sequencing libraries across seven competitive fitness pooling 255 

experiments on 95 replicate conditions to generate profiles for 170 strains grown on the bacteria 256 

HT115, 149 strains grown on NA22, and 105 strains grown on OP50 (Supplemental Figure 257 

S6a). While we observed more subtle differences within some strains for growth on different 258 

bacteria and even for methods of transfer (Supplemental Figure S6b,c), we observed 259 

pronounced differences in growth profiles between strains and focused further analysis on this 260 

feature. We observed strains that exhibited poor growth with steep population decline 261 

suggesting fitness defects as well as strains with enhanced growth when compared to our 262 

reference strain VC20019. Based on these observations, we classified each strain into one of 263 

four classes as determined by its mean FCR across all experimental replicates (Table 2, 264 

Supplemental Data SD3). Classes were designated using a simple 10-generation growth 265 

model to calculate a final abundance (A10) based on the log2-transformed mean fold-change rate 266 

(𝐹𝐶𝑅̅̅ ̅̅ ̅̅ ) such that  267 

𝐴𝑖+1 =  𝐴𝑖 ∗ 2𝐹𝐶𝑅̅̅ ̅̅ ̅̅
 268 

From our initial modeling of MIP behaviour, we determined a lower limit of 1x10-3 on abundance 269 

within a pooled sample; we, therefore, used A10 cut-offs of 1x10-3, 1x10-2, 1x10-1 as boundaries 270 

for determining classes 1 through 4 (Supplemental Figure S5). In particular, we observed that 271 

the MMP strain VC20019, which we had previously observed as having a rate of growth similar 272 

to the lab reference strain N2, fell into class 3 with a 𝐹𝐶𝑅̅̅ ̅̅ ̅̅  of 0.135 or growth multiplier (2𝐹𝐶𝑅̅̅ ̅̅ ̅̅
) of 273 

1.10 per generation (Figure 4b). Subdividing VC20019 data by experimental pool, however, 274 

suggested there was potential for pool-specific variation on a larger scale (Supplement Figure 275 

S7). The higher 𝐹𝐶𝑅̅̅ ̅̅ ̅̅  for pool M8 is likely a result of over-representation in the seeding 276 

population by double as VC20019 was also conspicuously absent from the M7 seeding 277 
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population, which was pooled in parallel to M8. Our analysis of the 𝐹𝐶𝑅̅̅ ̅̅ ̅̅  across all strains 278 

suggests a wide range of fitness phenotypes across the MMP collection (Figure 4c). 279 

The reduced fitness phenotypes of MMP strains were mapped to candidate mutations 280 

Based on the results of our growth analysis, we hypothesized that underlying mutations within 281 

some strains could account for the observed growth rates. We proceeded to genetically map a 282 

subset of class 0 and class 1 strains as they exhibited the greatest reduced fitness in 283 

comparison to our control strain VC20019. We used our MIP-MAP protocol (Mok et al., 2017) to 284 

competitively select against the reduced fitness phenotype and identify a small genomic region 285 

containing the associated causal variant. Briefly, mutant strains were crossed with males of the 286 

mapping strain VC20019 and the population was grown until starvation. A small portion of the 287 

population was then transferred to OP50-seeded 10cm NGM plates. This transfer was 288 

completed approximately once per generation for up to 6 generations. Samples were taken at 289 

each transfer step and used to prepare genomic DNA for MIP-MAP libraries and sequencing. 290 

We chose five class 0 and two class 1 strains to map, and successfully identified a 291 

single locus linked to a reduced population fitness for six strains (Table 3 and Supplemental 292 

Figure S8); a seventh strain appeared to have two loci. After phenotyping individual strains for 293 

possible causes of fitness defects, we were able to assign candidate alleles based on genes 294 

with shared phenotypes. In particular, we verified the mapping results of strain VC40788 by 295 

following a partially penetrant maternal-effect embryonic lethal phenotype (Figure 4d). From 296 

VC40788 and VC20019 cross progeny, we individually cultured 100 F2 animals and observed 297 

F3 and F4 progeny to specifically identify recombinant populations that failed to produce dead 298 

embryos or those that starved at the same rate as VC20019 controls. Positively identified 299 

populations were combined for MIP-MAP analysis (Methods). The primary candidate mutation 300 

for VC40788 is a G405R mutation in the mitochondrial protein B0303.3, which is predicted to 301 

have multiple functions including an acetyl-CoA C-acyltransferase activity. B0303.3 has no  302 

reported hypomorphic or null mutant alleles but is reported to have an embryonic lethal 303 
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phenotype by RNAi (Gönczy et al., 2000; Sönnichsen et al., 2005) and its human ortholog 304 

HADHB is implicated in trifunctional protein deficiency phenotype (Purevsuren et al., 2009; 305 

Spiekerkoetter et al., 2003). The identification of a maternal hypomorphic allele of B0303.3 306 

provides a means with which to study this disease and its phenotypes in a nematode model.  307 

Discussion 308 

With advances in sequencing, genome-editing, and imaging, one remaining bottleneck in 309 

the characterization of the C. elegans genome is our ability to identify the phenotypes 310 

associated with gene function (Granier and Vile, 2014; Houle et al., 2010). The ability to quantify 311 

population fitness along a spectrum provides a window into gene functions that may otherwise 312 

be overlooked under current experimental paradigms. Dissecting the contribution of weaker 313 

alleles will help to generate new gene networks and build upon our understanding of worm 314 

development, reproduction, and overall fitness. With PhenoMIP, we analysed strains from the 315 

Million Mutation Project, which offers a unique library of mutagenized genomes with coding and 316 

non-coding elements that remain largely unexplored. We efficiently identified phenotypic traits 317 

related to population fitness in a high-throughput manner by pooling multiple MMP strains in a 318 

multi-generational experiment and sequencing these populations with molecular inversion 319 

probes.  320 

To use MIPs as a means of barcoding strains for population analysis, we designed a 321 

series of probes for the 2007 MMP strains and tested a subset on the MMP collection. We 322 

observed that we could accurately gauge a strain’s relative abundance within a sample. By 323 

sequencing multiple genomic mixtures, we confirmed a low false positive rate, suggesting we 324 

could use MIPs to accurately identify subpopulations with abundance as low as 8x10-4 which 325 

translates to better than 1 in 1000 genomes per sample. 326 

As a demonstration of this method, we pooled MMP strains into groups and dissected 327 

population composition over multiple generations. Our observations suggest that this form of 328 

population barcoding is indeed capable of identifying specific Million Mutation Project strains 329 
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with differing levels of relative fitness. Our analysis shows that PhenoMIP identifies reproducible 330 

condition-dependent population stratification among populations that have been separated for 331 

multiple generations. Based on the strains tested thus far, we estimate upwards of 82% of MMP 332 

strains may harbour alleles contributing to fitness phenotypes in the range of class 0 to class 2. 333 

Given the mutagenized and inbred nature of the MMP strains (Thompson et al., 2013), it is not 334 

surprising to find such an array of fitness phenotypes. These strains, however, represent a 335 

valuable resource to study fitness as the causative alleles of these effects may be in putative 336 

essential genes, poorly characterized genes with only small effects on fitness, or even 337 

regulatory regions of the genome.  338 

The observed population-level phenotypes presented in this work are a readout of 339 

relative fitness in a multi-strain competitive environment. Depending on selection and pooling 340 

method, weaker changes to relative fitness may be attributed to the population mixture rather 341 

than the selection variable itself. For instance, in our series of experiments, pools were initially 342 

generated by combining small numbers of larval animals as a seeding parental population that 343 

was expanded before aliquoting out to replicate experiments. During the initial expansion of the 344 

seed population, the stochastic loss of even a single parental animal could impact the 345 

abundance of a strain in the initial stages of the experiment. Conversely, we saw in our analysis 346 

of pool M8, that the doubling of VC20019 animals in the initial pooling also affected the 347 

population structure and mean fold-change rate of VC20019 itself. A potential solution to 348 

mitigate “seeding” variation would be to bleach synchronize (Stiernagle, 2006) all of the target 349 

strains to the L1 larval stage and then combine them in equal portions into a single population 350 

before aliquoting to replicate experiments. Another influence on population structure is the 351 

group of Class 4 strains identified in our study. Their rapid growth and expansion can lead to 352 

drastic population stratification and the premature loss of subpopulations. In these cases, the 353 

quantitative phenotyping of less fit strains may be hindered, less informative, or potentially less 354 

accurate when analysing a multi-generational experiment. Therefore, depending on the nature 355 
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of the experiment, it may be more advantageous to consider pooling strains of a similar fitness 356 

based on prior phenotype data. Our observations also suggest that food source can alter 357 

population growth with food scarcity contributing to greater variation between replicates. For 358 

example, our OP50 replicates may have experienced premature starvation or uneven food 359 

distribution amongst populations, leading to lower population sizes and possibly affecting the 360 

consistency of the OP50-grown replicates. For an auxotrophic food source such as OP50, it 361 

would be best to highly concentrate cultures in order to generate a thicker lawn for nematode 362 

populations to consume. Lastly, the method and timing of population transfer is a potential 363 

source of selective influence. Our data suggested that chunking versus washing populations to 364 

propagate them did introduce technical variation with some strains. A method of population 365 

transfer that was not addressed in this work is the bleach synchronization method (Stiernagle, 366 

2006), which would add the benefit of removing sporadic contamination while indirectly assaying 367 

developmental timing and fecundity. Some strains may also be differentially sensitive to 368 

bleaching, starvation or recovery from starvation (Baugh, 2013; Webster et al., 2019). Over 369 

many generations, the above technical variation can amplify within the population, potentially 370 

skewing the changes observed. Therefore, when applying specific selective pressures to a 371 

population (temperature, food source, RNAi, etc.), the proper use of control conditions and 372 

replicates can help to reduce the effects of technical variation with minimal impact to the 373 

sequencing burden of the experiment.  374 

Looking to the future, given the wide range of sequenced strains available from the 375 

Million Mutation Project and Caenorhabditis elegans Natural Diversity Resource (Cook et al., 376 

2017), a more extensive competitive fitness assessment by PhenoMIP would set the stage for 377 

generating balanced pools of strains based on similar growth rates. From similarly profiled 378 

strains, balanced pools could be generated randomly or based on parameters such as 379 

geographic distribution or specific genotypes or haplotypes of interest. These pools could be 380 

used to screen for phenotypic differences among any number of conditions from temperature or 381 
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food source (Dirksen et al., 2016; Zhang et al., 2017) to resource limitation, small molecule 382 

exposure, or pathogen infection. Recently, Webster et al., utilized RAD-seq techniques to 383 

assess starvation resistance on a multiplexed pool of 96 wild isolate strains (Webster et al., 384 

2019). This form of competitive fitness selection is an ideal experimental context for PhenoMIP 385 

to increase potential throughput by addressing additional parameters or variables related to 386 

starvation response. Furthermore, the process of pooled competition facilitates screening on 387 

multiple strains in scenarios where the substrates or reagents to test have limited availability. In 388 

combination with GWAS and genetic mapping, PhenoMIP could prove useful in assembling a 389 

greater understanding of the many unexplored gene and regulatory sequence functions within 390 

the C. elegans genome.  391 

To our knowledge these experiments are the first to use molecular inversion probes to 392 

analyse C. elegans populations for relative fitness. With PhenoMIP, we analysed 217 MMP 393 

strains across 95 replicate conditions and 29 timepoints for a total of 393 genomic samples. A 394 

similar analysis of our experimental data via whole genome sequencing across 393 genomic 395 

samples would be prohibitively expensive. In contrast, our data can be generated on the 396 

equivalent of a single Illumina NextSeq run. Targeted sequencing by PhenoMIP permits 397 

experimentation at a scale well beyond what is reasonably accomplished by standard WGS. 398 

PhenoMIP, however, is not without its caveats as the data generated is limited to assessing 399 

relative abundance and the variants assessed are limited to the population of strains in the 400 

experiment. We believe, however, that the initial processing steps and costs as well as the 401 

“limited” variant diversity of the data are outweighed by the increase in experimental throughput.    402 

PhenoMIP has the potential to be applied beyond the MMP and wild isolate strains to the 403 

quantitative analyse of genomic variants in many contexts. Coupled with genome-level editing 404 

techniques, PhenoMIP could be useful in studying allelic series or mutants of entire pathways 405 

for subtle phenotypic effects. The assay format could be converted to look at selection of 406 

phenotypes occurring within a single event or generation, as in a bulk taxis assay or as a 407 
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method for targeted genome monitoring under selective conditions. The fundamental leverage 408 

of this method is the use of MIPs to reduce the sequencing burden while maintaining informative 409 

parity with WGS formats in identifying subpopulation frequency. In doing so, the throughput of 410 

experimentation can be increased without raising experimental sequencing costs.   411 
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Methods 412 

MIP site selection and design 413 

MIP sites were selected in two rounds. Initially the entire MMP SNV data set was used to select 414 

for sites that were spaced a minimum of 300 bp apart to avoid potential collisions with 415 

neighbouring probes. Site selection and rejection was completed in a linear manner based on 416 

the first available SNV on each linkage group within the data set. Locations were not filtered or 417 

optimized to reduce the occurrence of neighbouring SNVs within the 300 bp window. The initial 418 

set of MMP mutant strain MIP sites was then used to remove candidate sites from the MMP wild 419 

isolate data set. Any wild isolate sites within a 350 bp window of mutant candidate sites was 420 

removed from selection. Of the remaining wild isolate SNV sites, a 350 bp selection window was 421 

used to identify potential MIP sites. The list of candidate MIP sites were used to design and 422 

score MIPs based on previously published criteria (Mok et al., 2017). The list of designed MIPS 423 

was subdivided into each individual strain where the highest-scoring MIP for each linkage group 424 

was identified. Of the six MIPs designed for each strain, four were randomly selected for use in 425 

population analysis (Supplemental Data SD1) 426 

MIP library pooling, preparation and sequencing 427 

MIPs were pooled based on worm pools being tested and generated as previously published 428 

(Mok et al, 2017). Individual MIPs were normalized to a concentration of 100 uM and pooled to 429 

a maximum volume of 85 ul. 10 ul of 10X Polynucleotide Kinase (PNK) Buffer and 5 ul of PNK 430 

were added to a volume of 85 ul pooled MIPs before incubating for 45 minutes at 37°C and 20 431 

minutes at 80°C. This pool was then diluted to a working concentration of 330 nM. MIP libraries 432 

were generated with 500 ng genomic DNA and appropriate MIP pools as previously described 433 

in Mok et al., 2017. Libraries were sequenced on Illumina MiSeq or NextSeq systems. Libraries 434 

across pools ranged between 8.3x106 and 32.7x106 total reads with an average 1507 reads per 435 

probe. 436 

Worm maintenance and pooling 437 
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Worms were maintained on standard nematode growth media (NGM) seeded with OP50. Worm 438 

pools were generated from well-fed source plates using exclusively twenty L1 or L4 animals for 439 

each strain. Starting pools were grown on 15cm NGM made with 8X peptone and seeded with 440 

NA22 or HT115. Pools were grown at 20°C to starvation as mostly L1 animals (96-120 hours) 441 

before washing off with 10-15 mL M9. Worms were pelleted and aspirated to 5-6 mL before 442 

population density was assessed. 50-100 ul of pellet was frozen as a representative sample of 443 

the initial pooled population. Pools were then redistributed in equal-sized populations between 444 

5000 and 10000 animals on 15 cm NGM plates that were prepared based on experimental 445 

conditions and grown for 4 days before being transferred to replicate condition plates either by 446 

chunking or washing again. Any remaining animals were washed from plates with double-447 

distilled water, pelleted, and frozen as samples for later analysis. Each cycle of transfer 448 

approximately followed a single generation and pooling experiments were propagated for 6-10 449 

generations. Heavily contaminated plates/conditions were terminated from propagation and 450 

removed from analysis.   451 

Mapping of mutant strains 452 

Mutant strains were mapped using either the VC20019 mapping strain or DM7448 (VC20019; 453 

Ex[pmyo-3::YFP]). Briefly, mapping strain males were crossed with mutant hermaphrodites. 15-454 

20 cross progeny L4 hermaphrodites were selected to a single 10 cm OP50-seeded NGM plate 455 

and grown to starvation before propagating a subpopulation to a replicate 10 cm plate. Slow 456 

growth mutants were mapped on 10 cm NGM plates seeded with OP50 and grown at 20°C. 457 

Mapping populations were propagated under selection for four to seven generations. 458 

Representative samples were chosen to extract genomic DNA as template for MIP-MAP 459 

libraries and then sequenced on Illumina MiSeq or NextSeq instruments. MIP-MAP analysis 460 

was completed as previously described (Mok et al., 2017). 461 

Competitive Fitness MIP library data analysis 462 
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For each specific MIP pool, reads were initially analysed as previously described (Mok et al., 463 

2017) with the exclusion of the normalization step for each MIP. After abundance of each MIP 464 

was calculated, an average abundance was calculated for each strain as well as a standard 465 

deviation across this average. These values were used in downstream analysis of population 466 

structure across multiple timepoints.  467 

Population structure and fold-change analysis was calculated across each experiment 468 

using the amalgamated data from above. Strains with a starting abundance value below 2.5x10-469 

3 were eliminated from downstream population analysis. Remaining data were further 470 

transformed with any values below 1.0x10-3 being converted to this value to accommodate log 471 

growth analysis. Total fold-change and mean fold change are calculated based on starting and 472 

end-point changes in abundance versus total generations (one generation per expansion). In 473 

samples with negative trajectories, however, the final generation of growth was calculated as 474 

the first instance of abundance at or below the lower limit of 1.0x10-3. Mean fold-change rate 475 

was calculated based on the total fold-change abundance in the final generation of growth 476 

divided by the expected number of generations passed.  477 

Data Availability 478 

File SD1 contains molecular inversion probe sequences and data for all 2007 MMP strains and 479 

40 wild isolates of the Million Mutation Project. Four candidate probes for each strain were 480 

designed and listed in this file. File SD2 contains all information used in the false positive and 481 

precision analysis of PhenoMIP. File SD3 contains all mean FCR data for each strain on each 482 

replicate in each experimental pool. Custom scripts used to analyse sequencing data are 483 

available upon request. Raw sequence files for each pool are available upon request. 484 
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 632 

Figure 1. Molecular inversion probes as a system of barcoding C. elegans strains. MIP 633 

sequences include two annealing arms complementary to target sites (red), a unique molecular 634 

identifier (UMI, blue) and a common backbone used for library amplification and barcoding 635 

(grey). MIP sites were selected for each of 2047 MMP strains across each chromosome by 636 

excluding shared variants from all strains and then choosing sites (regardless of strain) across 637 

the genome that were separated by a minimum of 300-350bp. (a) For each strain, MIP 638 

candidate sequences were scored (solid and hatched variants). (b) The highest-scoring MIP on 639 

each chromosome (solid green) was identified. (c) Four of the six MIPs were then selected to 640 

identify a target strain amongst a pool of strain-specific MIPs. The MIPs would therefore have 641 

two identifiable states from the gap-fill segment of a sequencing read (d); either the strain-642 

specific single nucleotide variant (SNV, green), or a sequence identical to the reference genome 643 

(purple). (e) After sequencing, each sample was demultiplexed by MIP target and further by the 644 

UMI to count the total number of unique annealing events specific to the SNV or reference 645 

sequences. (f) Values were compared to estimate the percentage of SNV events versus the 646 

total annealing events. 647 
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Figure 2. Workflow of PhenoMIP multigeneration competitive fitness assay. (a) MMP 648 

strains were selected and grown as separate populations in relative synchronization before 20 649 

animals of each strain at the L1 (pools M1, M3, M5) or L4 stage (M7, M8, M10, M11) are 650 

transferred (b) to a communal NGM plate seeded with a bacterial lawn. The communal plates 651 

are grown in duplicate until the population has starved. (c) Uncontaminated plates are then 652 

washed and combined into a single starting population and counted for population density 653 

before being redistributed (d) onto multiple 150 mm NGM plates of varying conditions. Every 72-654 

96 hours, the plates reach starvation and a subpopulation of animals is transferred to a new 655 

plate of the same experimental condition. (e) The remaining animals are collected for extraction 656 

of genomic DNA to generate MIP libraries for sequencing (f) and data analysis (g) of strain 657 

abundance and relative fitness. 658 
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 659 

Figure 3. Principal component analysis of PhenoMIP data suggests consistent 660 

population stratification related to growth conditions. (a) PCA of M11 HT115 population 661 

replicates propagated by chunking and (b) M11 HT115 population replicates propagated by 662 

washing are projected along principal component 1 and 2 with samples coloured by generation. 663 

PCA of all M11 replicates from generation 5 projected along principal component 1 and 2 with 664 

samples coloured by combined food source and transfer method. 665 

 666 
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 667 

Figure 4. Relative fitness can be quantified by PhenoMIP and classified into subgroups. 668 

(a) Line graph of VC20019 growth rate from pool M11 with y-axis showing fold-change (log2) in 669 

abundance relative to initial abundance at generation 0 (starting population) across multiple 670 

generations (x-axis). Replicates are coloured by experimental food source and transfer method: 671 

HT115 chunk (black squares), HT115 wash (orange circles), NA22 chunk (blue triangles), NA22 672 

wash (green cross), OP50 chunk (pink x) and mean (mean fold change abundance across all 673 

replicates, red square). (b) Violin plots of mean fold-change per generation for a representative 674 

panel of strains. Each point represents the mean fold-change rate calculated from multiple 675 

timepoints for an experimental replicate across one or more pooling experiments. Dots are 676 

colour-coded by experimental condition for growth on either HT115 (black squares), NA22 (red 677 

circles), OP50 (blue triangles) E. coli as a food source with overall mean fold change rate (FCR, 678 

purple cross). Coloured dotted lines represent category boundaries using an FCR of -0.4315 679 

(red), -0.0.985 (yellow), and 0.2327 (green). VC20019 (bold) is provided as a reference for 680 

comparison to growth rates shown in (a). (c) 202 strains were assigned a mean FCR and 681 

subdivided into one of four growth classes with kernel density plots for each class. (d) Mapping 682 

data for VC40788, a strain observed to have poor growth rate, identified an interval of interest at 683 

III:7.6-10.8 Mb. Mapping was accomplished using two replicates by competitive fitness for wild 684 

type growth (orange circle and blue diamond) as well as by identifying F2 homozygous wild-type 685 

F2 recombinants in a bulk segregant assay (purple triangle). X-axis units are in megabases 686 

across each chromosome.  687 

 688 
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Supplemental Figure Legends 689 

 690 

Supplemental Figure S1. MIPs provide sufficient read depth to specific subpopulations of strain abundance in complex compositions of genomic DNA. (a) Strains from non-overlapping sets of mixed genomic samples are identified using a multiplexed 691 

pool of MIPs. Strain abundance for each set is indicated by the heatmap legend. (b) A heatmap of total reads per MIP per set broken down by specific strain with black arrows indicating probes with total reads below 20% of the mean read depth across the set. 692 
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 693 

 694 

Supplemental Figure S2. MIP pooling across multiple targets remains balanced and 695 
precise. (a) Boxplot of sequencing libraries for the same set of probes across 5 separate 696 
genomic templates overlaid with the fold-change for each probe based on the probe with the 697 
fewest reads in each set. (b) a kernel density plot of each dataset based on the fold-change in 698 
read depth of each probe (MS = MiSeq-generated data; NS = NextSeq-generated data). (c) A 699 
scatterplot of abundance for all strains within each sequenced set versus the standard deviation 700 
of the 3 to 4 probes used to calculate that abundance.   701 
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 702 

Supplemental Figure S3. Principal component analysis of M11 samples suggest 703 
consistent changes to population structure at each generation. PCA of M11 datasets 704 
separated by combined food source and transfer method into (a) NA22 replicates propagated by 705 
chunking, (b) NA22 replicates propagated by washing and (c) OP50 replicates propagated by 706 
chunking. PCA of M11 HT115 replicate (d) and NA22 replicate (e) data projected along principal 707 
components 1 and 2 with samples identified by combination of transfer method (chunking or 708 
washing) and sample generation (1, 3, 5, or 7).   709 
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 710 

Supplemental Figure S4. Principal component analysis of M11 samples suggest 711 

condition-dependent population structure. PCA of M11 replicate datasets separated into (a) 712 

generation 1, (b) generation 3, and (c) generation 7. Samples are projected along principal 713 

components 1 and 2 for each individual data set and identified by combination of food source 714 

and transfer method.   715 
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a 716 

 717 

b 718 

 719 

c 720 

 721 

 722 

Supplemental Figure S5. PhenoMIP can generate a gradient of fitness phenotypes from severe to subtle. Violin plots of mean fold change rate per replicate for 202 MMP strains 723 

across the 4 defined classes 1 (a), class 2 (b), class 3 (c), and class 4 (d). Each violin plot discriminates between food sources HT115 (black squares), NA22 (red circles) and OP50 724 

(blue triangles). Strains are sorted within class by the mean FCR (log2, purple cross) of all replicate conditions for that strain. Coloured dotted lines represent category boundaries using 725 

an FCR of -0.4315 (red), -0.0.985 (yellow), and 0.2327 (green).  726 
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 727 

Supplemental figure S6. MMP strains were tested across a trio of food sources. (a) Venn 728 
diagram of each food source used in the PhenoMIP assays and the number of strains tested 729 
with HT115 (pink), NA22 (purple) and OP50 (green). 105 strains were tested on all three food 730 
conditions. (b) VC20128 data from the same pool (M10) suggests specific fitness differences 731 
between growth on NA22 versus growth on HT115 and OP50. (c) VC20407 data from the same 732 
pool (M11) suggests significant changes to growth when comparing samples transferred by 733 
chunking versus washing – regardless of food source. Coloured dotted lines represent category 734 
boundaries using an FCR of -0.4315 (red), -0.0.985 (yellow), and 0.2327 (green). * p < 0.05; ** 735 
p < 0.01; *** p < 0.001 by Kruskal-Wallis with p-values adjusted for multiple testing by 736 
Benjamini-Hochberg method  737 
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 738 

Supplemental Figure S8. Violin plots of VC20019 mean FCR for all replicates grouped by 739 

pool. Violin plots for VC20019 replicates in each pool were generated with M11 represented by 740 

combining datasets based on food source (HT115 = HT115 chunk + HT115 wash; NA22 = 741 

NA22 chunk + NA22 wash). M8 replicate data is significantly different compared to M3, M5, 742 

M10 and M11 which are not significantly different from each other. Each violin plot discriminates 743 

between food sources HT115 (black squares), Na22 (red circles) and OP50 (blue triangles) and 744 

mean FCR (purple cross). Coloured dotted lines represent category boundaries using an FCR 745 

of -0.4315 (red), -0.0.985 (yellow), and 0.2327 (green). *** p < 0.001 by Kruskal-Wallis with p-746 

values adjusted for multiple testing by Benjamini-Hochberg method.  747 
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 748 

Supplemental Figure S9. MIP-MAP data for 6 strains categorized as class 0 or class 1 by 749 

mean FCR. Strains were mapped using VC20019 with the y-axis representing the proportion of 750 

VC20019 present versus all reads for a MIP target at each locus across the genome. Strains 751 

were mapped in replicate (solid versus dotted lines) and sequenced at two timepoints each (ie. 752 

F2 vs F4). The strains mapped in this fashion were (a) VC30079, (b) VC30188, (c) VC40196, 753 

(d) VC40296, (e) VC40545, and (f) VC40611. X-axis units are in megabases across each 754 

chromosome.   755 
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Table 1. Summary of pooled strains 756 
 757 

Pool 

name Strains 

Final 

sequenced 

generation 

HT115 

replicates 

NA22 

replicates 

OP50 

replicates 

Combined 

replicates 

M1 56 7 0 8 0 8 

M3 57 9 0 10 0 10 

M5 45 4 10 0 0 10 

M7 41 4 9 0 0 9 

M8 42 4 10 0 0 10 

M10 60 7 10 8 6 24 

M11 59 7 10 (5+5)* 8 (4+4)* 6 24 

Combined 

Unique 

strains 

Timepoints 

Sequenced 

Total 

HT115 

Total 

NA22 

Total 

OP50 

Total 

Replicates 

Total 217 29 49 34 12 95 

* Two different methods of transfer were used for replicates 758 

Table 2. Mean fold-change rate summary 759 
 760 

Class Lower bound FCR Upper bound FCR Total strains % of strains 

0 NA NA 15 6.9 

1 -8.64 < -0.4315 96 44.2 

2 ≥ -0.4315 < -0.0985 68 31.3 

3 ≥ -0.0985 < 0.2327 29 13.4 

4 ≥ 0.2327  9 4.1 

 761 

Table 3. Mapping data summary 762 
 763 

Strain Pools 

Mean 

FCR Class 

Mapping 

Interval 

Coding 

alleles 

Likely 

Candidate 

VC20019 All but 

M1 

0.136 3 -- -- -- 

VC30079 M5, M6 -0.740 1 II:7.49-11.5 Mb 3 hpo-35 

    III:5.8-7.6 Mb 3 dig-1 

VC30188 M5, M6 -1.038 1 II:6.2-12.1 Mb 1 mel-11 

VC40196 M1, M3 -- 0 IV:8.4-13.9 Mb 13 -- 

VC40296 M5, M6 -- 0 IV:4.2-6.4 Mb 2 rme-2 

VC40545 M1, M3 -- 0 II:4.4-8.1 Mb 12 tsn-1 

VC40611 M1, M3 -- 0 II:6.3-8.1 Mb 7 -- 

VC40788 M1, M3 -- 0 III:7.6-10.8 Mb 2 B0303.3 

 764 
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Supplemental Table S1. Class 0 mutants, not analysed due to low abundance at 765 
experimental start 766 
 767 

Strain Pool(s) Initial abundance 

VC20190 M5  0.00180 / 0.00077 

VC20245 M1 / M3 0.00027 / 0.00026 

VC20262 M5  0.00074 / 0.00128 

VC20315 M1 / M3 0.00000 / 0.00059 

VC20328 M1 / M3 0.00136 / 0.00216 

VC20338 M5  0.00166 / 0.00209 

VC40291 M1 / M3 0.00114 / 0.00000 

VC40296 M5  0.00118 / 0.00017 

VC40545 M1 / M3 0.00064 / 0.00017 

VC40611 M1 / M3 0.00000 / 0.00034 

VC40697 M1 / M3 0.00176 / 0.00219 

VC40745 M5  0.00098 / 0.00118 

VC40747 M1 / M3 0.00151 / 0.00147 

VC40788 M1 / M3 0.00038 / 0.00029 

VC40804 M1 / M3 0.00054 / 0.00036 

 768 
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