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Abstract 1 

When species simultaneously compete with two or more species of competitor, 2 

higher order interactions (HOIs) can lead to emergent properties not present when species 3 

interact in isolated pairs. In order to extend ecological theory to multi-competitor 4 

communities, ecologists must develop a practical and general definition for HOIs that can 5 

be applied to a wide range of competition models. In this paper we propose a definition 6 

for HOIs and outline a set of criteria for testing whether a model has or does not have 7 

HOIs. These criteria are valuable for empirical ecologists in need of clarity when 8 

discussing HOIs in empirical data. We also provide thorough discussion of how our 9 

definition compares with previous definitions of HOIs and interaction modification in the 10 

literature. In the second part of the paper we demonstrate the steps required for a rigorous 11 

test of HOIs in empirical data. To do this we simulate resource competition between three 12 

annual plant species which differ in phenology. We then fit phenomenological 13 

competition models to the outcome of simulated competition and use these to test for the 14 

presence of HOIs. In our simulations, we find the strength of HOIs varies with 15 

phenology: species that grow later experience stronger HOIs than earlier growing species. 16 

Our simulation shows how HOIs could emerge in ecosystems where resource availability 17 

and individual size change rapidly throughout the course of the growing season and 18 

where there are differences in the timing of resource acquisition between competitors.  19 

  20 
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Introduction 21 

Almost all species interact with a diversity of predators, pathogens and 22 

competitors. Despite this, most classical models in community ecology assume that the 23 

per capita effects of each species on each other do not dependent on the densities of any 24 

other species in the community. This simplifying assumption means that we can predict 25 

the dynamics of multispecies communities from a model that only includes the 26 

interaction between each pairs of species (Chesson 2000, Levine et al. 2017).  27 

Higher order interactions (HOIs) between species invalidate the core assumption 28 

of independent per capita interactions and thus HOIs could have profound consequences 29 

for modeling community dynamics and species coexistence (Neill 1974, Mayfield and 30 

Stouffer 2017, Levine et al. 2017, Grilli et al. 2017). If HOIs are strong, even a perfect 31 

understanding of the interaction between each and every pair of species in isolation 32 

would not be sufficient to describe what happens when all the species are simultaneously 33 

interacting (Neill 1974, Billick and Case 1994, Levine et al. 2017). A specific example of 34 

the potential for HOIs to impact our understanding of community dynamics is in the 35 

application of the mutual invasibility criterion for determining the stability of coexistence 36 

(Levine et al. 2017). In theory, HOIs can allow three competitor species to coexist even 37 

where some pairs of competitors cannot coexist (Grilli et al. 2017).  38 

Despite the theoretical importance of HOIs, measuring HOIs in nature has been 39 

impeded by shifting definitions of what does and does not count as an HOIs (Pomerantz 40 

1981, Adler and Morris 1994, Billick and Case 1994, Letten and Stouffer 2019). 41 

Moreover, previous definitions of HOIs were developed with a small range of classical 42 
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competition models in mind. Since that time, new statistical modeling software now 43 

allows ecologists to fit a much wider range of interaction models (Mayfield and Stouffer 44 

2017). This increase in model flexibility requires deriving a more general definition for 45 

HOIs that can be applied to any density dependent model of population dynamics.  46 

In addition, to the basic issue of producing a shared definition for HOIs, 47 

ecologists lack a mechanistic understanding of how HOIs could emerge in nature (Levine 48 

et al. 2017, Letten and Stouffer 2019). Such an understanding is necessary for predicting 49 

the sets of competitors and ecosystems where strong HOIs are likely. One promising way 50 

to address these outstanding issues is to simulate virtual competition experiments based 51 

on mechanistic models in which the processes that cause competition are fully known, 52 

and then evaluate for which species, and under which conditions HOIs emerge (Letten 53 

and Stouffer 2018).  54 

We provide a general definition for HOIs based on interaction modification that 55 

distinguishes HOIs from related phenomena such as non-linear density dependence and 56 

indirect effects. In the second part of the paper, we use a simulation experiment to 57 

illustrate how our definition can be applied to properly identify interaction modification 58 

even against a backdrop of nonlinear density dependence. We then use the results of the 59 

simulation to shed light on possible mechanisms that could generate HOIs in nature.  60 

Higher order interactions result from interaction modification  61 

For the purpose of defining HOIs we focus on modeling a focal species’ 62 

performance (usually per capita population growth rate) as a function of the population 63 

density of multiple species of competitor. This can be expressed generally as,  64 
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1
𝑛#
𝑑𝑛#
𝑑𝑡 = 𝐹#(𝑛),… 𝑛,), (1) 

where Fi gives the per capita population growth rate of the focal species i, and nj are the 65 

population densities of competitor species one through m in the community, including the 66 

population density of the focal species, ni. An analogous equation holds for population 67 

growth rate over discrete time intervals: ./(01))
./(0)

= 𝐹#(𝑛),… 𝑛,). In most widely used 68 

models of species interactions, each competitor has one effect on itself and one effect on 69 

each of the other species in the community. The simplest example of such a pairwise 70 

competition model is the Lotka-Volterra (LV) model,  71 

 
1
𝑛#
𝑑𝑛#
𝑑𝑡 = 𝑟# 31 −	6𝛼#8𝑛8

,

89)

:, (2) 

where, ri is the intrinsic rate of growth of the focal species i and 𝛼#8 is the per capita 72 

effect of competitor j on the growth rate of the focal species. This model is pairwise 73 

because each interaction is specified by the pair of species involved, the focal species i 74 

and the competitor j. The defining property of any pairwise model, such as the LV model, 75 

is that the per capita effect of each species of competitor is independent of the densities of 76 

any other species of competitor (Figure 1A).  77 

By contrast, interaction modification disrupts pairwise competition and leads to 78 

HOIs. Interaction modification occurs when the effect of one competitor species is 79 

modified by the density of another competitor species (Adler and Morris 1994). We can 80 

introduce an interaction modification into the LV model by replacing any of the constant 81 

terms 𝛼#8 with a function of the density of another competitor (Billick and Case 1994). 82 
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For instance, in the following LV model, the focal species performance is dependent on 83 

two competitor species,  84 

 
1
𝑛#
𝑑𝑛#
𝑑𝑡 = 𝐹#(𝑛), 𝑛;) = 𝑟#(1 −	𝛼#)𝑛) − 𝛼#;𝑛;). (3) 

Replacing the term 𝛼#) with the expression 𝛼#) + 𝛽#();)𝑛;, makes the per capita effect of 85 

species one dependent on the density of another competitor, 𝑛;. More specifically the 86 

parameter 𝛽#();) measures the strength of this interaction modification (Figure 1B). 87 

Substituting this function into the model introduces the product of competitors one and 88 

two as a new term,  89 

 
1
𝑛#
𝑑𝑛#
𝑑𝑡 = 𝐹#?@A(𝑛), 𝑛;) = 𝑟#B1 − 𝛼#)𝑛) − 𝛼#;𝑛; − 𝛽#();)𝑛)𝑛;C.		 (4) 

Interaction modifications such as these imply that competition is functionally different 90 

when more than one competitor species is present and that there are emergent properties 91 

in the community that cannot be predicted by single species effects. These may suggest 92 

specific biological hypotheses: something about the behavior or traits of the competitors 93 

are functionally disctinct when they are together as compared to when they are separate. 94 

Importantly, an interaction modification cannot be attributed to any one competitor—95 

rather it is an emergent property of the multi-species system, what we call an HOI (Figure 96 

1B).  97 

An improved general definition of HOIs 98 

While the section above captures the essential connection between interaction 99 

modifications and HOIs, ecologists do not have a shared definition for HOIs that captures 100 
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this idea and which can be applied to any density dependent model of competition 101 

(Hairston et al. 1968, Pomerantz 1981, Billick and Case 1994, Grilli et al. 2017, Letten 102 

and Stouffer 2019). Here we provide a formal mathematical definition for HOIs rooted in 103 

their important implications for ecological theory and which can be applied to any 104 

interaction model of any functional form. We first present this more formal definition but 105 

follow up with a simple empirical heuristic which can be used to evaluate a model for 106 

HOIs.  107 

Let 𝐹#(𝑛),…	𝑛,) be a generic model describing the density dependent effects of 108 

m competitor species on the per capita growth of species i, where 𝑚 > 1. Let Θ be the set 109 

of all parameters in the model, Θ = {𝜃	|	𝐹#(𝑛). . . 𝑛,|𝜃)}. Here, the term parameter refers 110 

to constants in a model that are not themselves dependent variables (Bard 1974). Let 111 

𝑓#8(𝑛8) be a model describing the response of the focal species to competition from a 112 

single competitor species, j, where j is one of the competitor species included in 113 

𝐹#(𝑛),…	𝑛,). For any model Fi, we find 𝑓#8(𝑛8) by setting the densities of all 114 

competitors except j to zero and simplifying the model. Next, let Ψ8 be the set of 115 

parameters in 𝑓#8(𝑛8), ΨM = {𝜓	|	𝑓#8B𝑛8O𝜓)}. For most realistic competition models the 116 

parameters in ΨM will be a subset of those in Θ, i.e. ΨM ⊆ Θ. Next, let Φ be the set of all 117 

parameters found across all m sets Ψ8: Φ = Ψ) ∪ Ψ; ∪ …Ψ, = ⋃ Ψ8,
89) .	A model is 118 

pairwise if all parameters in Θ are found in the set Φ, i.e. Θ = Φ. Models with HOIs are 119 

defined by having parameters in Fi that are not found in the m single-competitor 120 

functions, or more precisely, when 𝚯 is a proper superset of 𝚽, 𝚯 ⊃ 𝚽. Finally, let Β 121 
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be the set of parameters in Θ but not in Φ, Β = Θ− Φ. The parameters in Β are those that 122 

define the HOI in the model.   123 

As a concrete illustration of our definition, consider the two competitor LV model 124 

defined in equation (3): for the full model Θ = {𝛼#), 𝛼#;, 𝑟#} and Φ = ⋃ ΨM;
89) =125 

{𝛼#), 𝛼#;, 𝑟#}, thus Θ = Φ and the model is pairwise. By contrast, for the HOI model 𝐹#?@A  126 

defined in equation (4), Θ = {𝛼#), 𝛼#;, 𝛽#();), 𝑟#} and Φ = ⋃ ΨM;
89) = {𝛼#), 𝛼#;, 𝑟#}, thus 127 

Θ ⊃ Φ and the model contains HOIs. Moreover, Β = Θ− Φ = {𝛽#();)}, thus the 128 

parameter 𝛽#();) is specifically the one that captures the HOI.  129 

This abstract representation belies a simple empirical heuristic for determining 130 

whether a model has HOIs: in order to parameterize a model with HOIs, the response of 131 

the focal species must be measured against density gradients of each competitor 132 

separately, as well as against varying combinations of competitors grown together 133 

(Figure 2). This is a natural consequence of the above definition. In essence, a model with 134 

HOIs includes additional parameters that an empiricist cannot measure when the 135 

response of a focal individual is measured against a single competitor species 136 

(Pomerantz 1981). Note, however, there is no way to determine whether there are HOIs 137 

among m competitors by examining all m pairwise models 𝑓#8 , rather the form for the 138 

multi-competitor model Fi must be chosen first in order to apply any HOI definition 139 

(Adler and Morris 1994). 140 

We refer to the type of HOIs captured by our definition above as hard HOIs and 141 

contrast them with the wider phenomenon of non-linear density dependence which 142 

produces what we term soft HOIs. A general test for soft HOIs is to take the partial 143 
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derivative of the competition function, Fi in equation (1), with respect to the density of a 144 

single competitor species, XY/
X.Z

. This partial derivative defines the focal species’ sensitivity 145 

to a single competitor. If this partial derivative is a function of more than one 146 

competitors’ density, then there are soft HOIs. In general, all models with hard HOIs will 147 

be non-linear and have soft HOIs, but not all non-linear models will have hard HOIs. 148 

This is similar to definitions used in earlier discussions of HOIs based on LV forms of 149 

competition (Case and Bender 1981), and closely follows the verbal argument that HOIs 150 

emerge when the effect of one competitor on another depends on any other competitors. 151 

The problem is that any model in which growth is a nonlinear function of 152 

interspecific density will involve soft HOIs, and thus this definition does not distinguish 153 

interaction modification or HOIs from non-linear density dependence (Pomerantz 1981, 154 

Adler and Morris 1994). As an example consider the multi-competitor Hassel model 155 

(Hassell and Comins 1976),  156 

 
𝑛#(𝑡 + 1)
𝑛#(𝑡)

= 𝐹(𝑛),… 𝑛,) = 𝜆# \1 +	6𝛼#8𝑛8
#

]
^_/

, (5) 

where	𝜆#, > 0 is the maximum per capita seed production, 𝛼#8 is the per capita effect of 157 

species 𝑗 on species 𝑖 and 𝜏# > 0	allows each focal species to respond differently to the 158 

sum of competitor effects. This function has the partial derivative XY/
X.Z

= −𝛼#8𝜆#B1 +159 

∑ 𝛼#8𝑛8# C^_/^). Thus, the effect of competitor j on the focal species i is a function of the 160 

density of all other competitor species. However, as in the LV model, there are no hard 161 

HOIs in this model by our definition because all of the parameters in the multi-competitor 162 
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model are also found in the m separate single competitor functions, i.e. Θ = Φ =163 

	{𝛼#), …	𝛼#,, 𝜆#, 𝜏#}.  164 

Why distinguish hard HOIs and non-linear density dependence (soft HOIs)?  165 

Hard HOIs and soft HOIs have different interpretations and these differences are 166 

important to recognize if we are to advance our understanding of competition in 167 

multispecies communities. The question of whether population growth rate declines with 168 

competitor density, and whether this decline is linear or non-linear is a longstanding issue 169 

in ecology (Hassell and Comins 1976). It would be confusing at best to define HOIs as 170 

any non-linear decrease in performance with density—essentially renaming the issue of 171 

non-linear density dependence.  172 

More importantly, hard HOIs and non-linear density dependence are ecologically 173 

distinct as well. Hard HOIs indicate a qualitative change in the way competitors affect a 174 

focal species when other competitor species are present. Non-linear density dependence, 175 

soft HOIs, does not have the same interpretation. For instance, the net outcome of 176 

competition over discrete time intervals may be non-linear when the interaction between 177 

competitors is linear in continuous time—the discrete time Hassel model, which is non-178 

linear, is derived from a LV competition model, which is linear in continuous time 179 

(Hassell and Comins 1976, O’Dwyer 2018). In the case of the discrete time model, the 180 

lifetime competitive effect of each individual declines with competitor density because 181 

each individual competitor is smaller and thus has less of an effect on the focal species. 182 

Thus, the non-linearity in the model arguably reflects a quantitative not a qualitative 183 
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change in the nature of competition when more than one species is present. In models 184 

with hard HOIs, the qualitative, or functional change in the nature of competition is 185 

defined mathematically by the introduction of additional parameters in Θ that are not 186 

present in Φ	as	defined	above.	 187 

Adler and Morris (1994) provide another specific example where it is ecologically 188 

meaningful to differentiate between HOIs and non-linear density dependence. They 189 

describe a hypothetical scenario in which different species of plants compete for light and 190 

each species simply blocks a proportion of the light that passes through its canopy—thus 191 

taller species reduce the amount of light received by shorter species. In this way, the 192 

qualitative nature of the interaction between a tall species and a shorter one is 193 

independent of all other species. Nevertheless, this mechanism of interaction means that 194 

the effect of a taller species on a shorter species below it depends non-additively on the 195 

density of other competitors with a canopy between the two. Per capita competition is 196 

non-additive, but arguably there is no ecologically distinct interaction modification 197 

between the different competitors—they simply reduce the fraction of light received 198 

regardless of the presence of other species. By contrast, hard HOIs as we define them 199 

introduce new parameters, or new functional dependencies, between competitors that 200 

only kick in when more than one competitor is present.  201 

Our definition also helps resolve the question of whether single species effects 202 

can involve HOIs. For instance, recent papers by Letten and Stouffer (2019) and 203 

Mayfield and Letten (2017) define HOIs as any higher order terms of competitor density, 204 

including single species quadratic terms, 𝛽#(88)𝑁8;. Our definition, does not count these as 205 
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HOIs, and this agrees with the emphasis in the literature that HOIs are a phenomenon that 206 

arises between two or more different species of competitor (Hairston et al. 1968, 207 

Vandermeer 1969, Neill 1974, Morin et al. 1988). As per our definition, the coefficients 208 

for these terms, 𝛽#(88), are parameters in a pairwise model, 𝑓#8B𝑛8C, and thus are not hard 209 

HOIs. Nor can single species higher order terms (not to be confused with higher order 210 

interactions) generally be interpreted as examples of intraspecific interaction 211 

modification, i.e. the effect of each additional individual being modified by other 212 

individuals of the same species (Mayfield and Stouffer 2017). This interpretation only 213 

makes sense in the context of a model where density dependence is strictly linear. In non-214 

linear models, such as those fit in Mayfield and Stouffer (2017), higher order terms added 215 

to the model cannot be interpreted as individual-level interaction modifications; rather 216 

these additional terms simply allow an already non-linear function to more closely 217 

approximate the observed relationship between density and performance.  218 

Another definition for HOIs that is largely equivalent to ours is provided by Adler 219 

and Morris (1994). Like our definition, Adler and Morris distinguished between HOIs 220 

and non-linear density dependence, and their definition agrees with ours in most cases. 221 

However, there are some cases with three or more competitor species where the Adler 222 

and Morris approach would indicate an HOI and our definition would not. We believe 223 

our definition is more general, it does not depend on the number of competitor species 224 

present and it can be more directly related to the traditional verbal definitions that 225 

ecologists have used when discussing HOIs.  226 
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In the remainder of this paper we outline the experimental set-up and statistical 227 

analyses required to test for HOIs in empirical data. Because real world data that would 228 

allow for rigorous tests of HOIs are limited, we use a mechanistic growth model to 229 

simulate a virtual competition experiment among three annual plant species (Figure 3). 230 

We then fit species’ responses to interspecific competition using phenomenological 231 

competition models with and without HOIs and evaluate which species’ responses are 232 

best fit by competition model with HOIs. By considering when HOIs emerge in this 233 

simple simulation we show the steps required to detect HOIs in empirical data and shed 234 

light on the processes that could generate HOIs in nature. 235 

Simulating a Higher Order Competition Experiment 236 

A rigorous demonstration of HOIs requires measuring how focal species’ 237 

performance changes in response to increasing densities of each competitor species in 238 

isolation, as well as to varying densities of combinations of different competitor species. 239 

This requires an orthogonal response surface design where each competitor’s density is 240 

varied independently of each other species.   241 

Instead of analyzing real data, we used a mechanistic growth model to simulate a 242 

virtual experiment in which individuals of each annual plant species are grown in 243 

separate plots with a range of competitor densities (Figure 2). The simulation lasts one 244 

growing season (200 days). After the simulation ends, we find the per capita seed output 245 

of each focal individual and record this as a measure of performance. We quantified 246 

performance in plots with densities of 0, 1, 2, 3, 4, 9, 16, 25 or 36 individuals of each 247 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/857920doi: bioRxiv preprint 

https://doi.org/10.1101/857920
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

other competitor species, including intraspecific competition. We also measured 248 

performance when the focal species was grown against all possible combinations of two 249 

competitor species at the same densities. This design allows us to fit non-linear functions 250 

to the interaction between each pair of species and test for any HOIs when more than two 251 

competitors are present together.  252 

We developed a mechanistic growth and resource competition model intended to 253 

simulate the growth of annual plants in a Mediterranean climate (Figure S 1). The 254 

simulated individuals germinate in the winter and then grow, flower, and produce seeds 255 

by the early summer (Godoy and Levine 2014). In our model, we track a single pool of 256 

soil resources, most easily thought of as water or water-soluble nutrients. This pool is not 257 

resupplied during the season and is depleted over time. As the resource concentration 258 

declines, plant growth slows and eventually stops (Figure 3). We make the assumption 259 

that when individual net growth is zero, the plant will convert a fraction of its biomass 260 

into seeds that remain dormant until the start of the next growing season (Cohen 1976). 261 

Assuming all seeds germinate at the same time, and no seed mortality, we can use the per 262 

capita seed production as a direct measure of population growth rate in each competition 263 

treatment.  264 

Resource dynamics in the model are given by the differential equation, 265 

 
𝑑𝑅
𝑑𝑢 = 𝐼 −6𝑛#𝑔#(𝑏#)ℎ(𝑅(𝑢))

,

#9)

, (6) 

where 𝑅(𝑢) is the resource availability at time 𝑢 (𝑢 being day within the growing 266 

season), 𝐼 is the resource supply rate, and the final term is the sum of resource uptake 267 
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rates of all m species in the community. Biomass per individual of each species 𝑖 at time 268 

𝑢 is given by 𝑏# and the number of individuals in the population is given by ni. The 269 

function gi(bi) converts per capita biomass into surface area of fine roots. Total resource 270 

uptake rate is the product of root surface area and the rate of resource conductance per 271 

unit root surface area. The rate of resource conductance into the roots is a function, ℎ(𝑅), 272 

of soil resource concentration, which we specify below. We simulate a Mediterranean 273 

climate by setting initial resource availability high, 𝑅(𝑢 = 0) ≫ 0, and setting the 274 

resource supply rate, 𝐼, to zero.  275 

Growth of each species is given by a piecewise differential equation, 276 

 
𝑑𝐵#
𝑑𝑢 = x𝑛#𝑔#

(𝑏#)ℎ(𝑅)𝑞 − 𝛿#𝐵#, 𝑛#𝑔#(𝑏#)ℎ(𝑅)𝑞 > 𝛿#𝐵#
0, 𝑛#𝑔#(𝑏#)ℎ(𝑅)𝑞 ≤ 𝛿#𝐵#

	 (7) 

where, q is the rate of resource conversion into biomass and 𝛿# is the rate of biomass loss 277 

and respiration. The conditions indicate that when net growth of each species is less than 278 

or equal to zero, growth and resource consumption stops (i.e. is set to zero). Biomass per 279 

individual plant, bi, is converted into root surface area for each individual via the function 280 

𝑔#(𝑏#) = |}~/
�/
�
�
, where p is the proportion of growth allocated to roots, di is root tissue 281 

density in g cm-3 and 𝜈 is an exponent that scales root volume to root surface area (see 282 

Kooijmans (1986) for a conceptually similar approach to protists). The rate of resource 283 

uptake per unit root surface area is dependent on resource concentration following 284 

Michaelis-Menton kinetics: 285 

 ℎ(𝑅) =
𝑉,��𝑅
𝐾 + 𝑅.	 

(8) 
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 The equations above describe growth in total population biomass, Bi, over the 286 

course of days within a single growing season. In contrast, a population-level 287 

phenomenological competition model would track the total population density, ni, over 288 

annual time steps, 𝑡. In order to convert population density into biomass, we assume that 289 

individuals start the growing season as seeds with a fixed size. Thus, the initial biomass 290 

is	𝐵#(0) = 	𝜇𝑛#(𝑡), where 𝜇 is mass per seed and 𝑛#(𝑡) is the number of seeds in the 291 

population in year t. The population density in the following year 𝑛#(𝑡 + 1) is the total 292 

number of seeds produced by the mature plants at the end of the growing season,  293 

 𝑛#(𝑡 + 1) =
𝑐
𝜇
(max𝐵#), (9) 

where max 𝐵# is the final accumulated biomass of species i and c gives the proportion of 294 

total biomass converted to seeds.  295 

We simulate the dynamics of three virtual annual plant species that differ in their 296 

allocation to roots and in their rates of resource uptake (Table S 1). This difference leads 297 

to phenology differences, i.e. some species stop growing earlier than others (Figure 3). 298 

Phenology differences emerge because of the assumed trade-off between species rank in 299 

terms of root density di and rank in terms of tissue respiration and loss rate, 𝛿#,	(Tjoelker 300 

et al. 2005, Birouste et al. 2014) (Table S1). Species with lower root density convert each 301 

gram of biomass into more root surface area and this allows them to grow faster early in 302 

the season when resource concentrations are high. In contrast, species with denser roots 303 

but lower rates of tissue loss and respiration grow more slowly but continue growing later 304 

into the season as resource availability declines. Thus, we refer to the three species in our 305 
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simulations as ‘early’, ‘mid’ and ‘late’, depending on when they stop growing during the 306 

simulation (Figure 3).   307 

We chose parameters that produced growth and phenology patterns qualitatively 308 

similar to biomass accumulation curves observed in annual plant communities (Godoy 309 

and Levine 2014). A table of parameter values for the simulations are provided in the 310 

supporting information (Table S 1). We simulated growth and resource dynamics by 311 

solving equations (6) and (7) with the package desolve in the statistical program R (R 312 

Core Team 2015). Code to reproduce analyses is available in a zip file and on github: 313 

https://github.com/akleinhesselink/Competitive_HOI/releases/tag/1.0   314 

Phenomenological annual plant model 315 

In order to investigate whether this simulation produces HOIs between the 316 

competitors, we fit non-linear phenomenological competition models to the per capita 317 

seed production of each species. After evaluating a number of non-linear models, we 318 

found that the Hassel model (Eq. [5]) fit the outcome of simulated pairwise competition 319 

well. We specified an HOI version of the Hassel model as follows,  320 

 
𝑛#(𝑡 + 1)
𝑛#(𝑡)

=
𝜆#

B1 +	∑ 𝛼#8𝑛8�
89) +	∑ ∑ 𝛽#(8�)𝑛8𝑛��

�981)
�
89) C_/

	,	 (10) 

where all HOI effects of two competitor species on the focal species i are fitted with the 321 

coefficients 𝛽#(8�) (following the notation in Mayfield and Stouffer (2017)). By our 322 

definition, 𝛽#(8�) is a hard HOI when 𝑗	 ≠ 𝑘.  323 

 Finally, we also considered a pairwise multiplicative version of the Hassel form,  324 
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𝑛#(𝑡 + 1)
𝑛#(𝑡)

=
𝜆#

B∏ B1 +	𝛼#8𝑛8C�
89) C_/

	.	 (11) 

This model does not have HOIs per our definition—all 𝛼#8 and 𝜏# parameters can be 325 

estimated from the pairwise cases where the focal species i competes with each other 326 

species j in isolation. However, when there are two or more competitors the denominator 327 

becomes a polynomial with multiplicative terms of competitor density. In the case of only 328 

one competitor species, it collapses to the same pairwise Hassel model. Thus, contrasting 329 

this model with the HOI model allows us to test whether hard HOIs are required as 330 

opposed to a simpler non-linear function without HOIs.  331 

We first fit the Hassel model to the pairwise cases and checked the model fit 332 

graphically. We then fit the Hassel models (Eq. [5]), the HOI model (Eq. [10]) and the 333 

multiplicative pairwise model (Eq. [11]) to the full set of two competitor densities. For 334 

each focal species and model, we calculated root mean squared error (RMSE) as a 335 

measure of goodness of fit and evaluated the strength and direction of HOIs by 336 

examining the HOI coefficients, 𝛽#(8�). We fit all models with the non-linear least squares 337 

modelling function, nls, in R. Code to run the simulations, fit the models and produce 338 

the figures is given in the online supporting information.   339 

Results 340 

For all three species we found the Hassel model fit the simulated pairwise data 341 

accurately (Figure 4). Next, we compared the three models fit to the full range of 342 

competitor densities (Figure 5). For the early season species, the Hassel model with and 343 

without the HOI showed more or less equivalent fits to the data with only a slight 344 
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decrease in RMSE for the HOI model (Figure 5A&G). For the mid-season and late-345 

season species, we found that the HOI model fit the data better than the pairwise Hassel 346 

model (Figure 5 B-I). The inability of the pairwise Hassel model to fit the per capita seed 347 

output of the mid and late-season species can be seen by plotting the observed and per 348 

capita seed production against two competitor densities at once (Figure S 2). In all cases, 349 

the fitted HOI coefficients, 𝛽#(8�), were of smaller magnitude than the fitted pairwise 350 

effects, 𝛼#8 (Figure 6). The fitted HOIs were stronger for the mid and late season species 351 

than for the early season species (Figure 6). The multiplicative model (Eq. [11]) fit the 352 

multi-competitor dynamics poorly when compared to the pairwise model and the HOI 353 

model (Figure 5). 354 

Discussion 355 

Evidence for higher order interactions 356 

Our simulation shows clear evidence for HOIs affecting two of the three virtual 357 

species in our simulations (Figure 6). For the mid and late season species, the functional 358 

form of per capita competition changed depending on the presence of other interspecific 359 

competitors. Specifically, the presence of early or mid-season competitors increased the 360 

per capita effects of competition on the late-season species (Figure 6F). Likewise, the 361 

presence of the early season species increased the per capita effects of competition on the 362 

mid-season species (Figure 6E). For the early season species, no clear HOIs were 363 

detected: the pairwise interaction Hassel model fit the data nearly as well as the HOI 364 
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model (Figure 5A&G) and the magnitudes of the HOI coefficients were small (Figure 365 

6D).  366 

We observe competition in our simulations because of a feedback between 367 

individual density and resource concentration. As individuals grow, they draw down 368 

resource concentrations (Figure S 1), this decreases the rate of resource acquisition into 369 

the roots by equation (8) and slows the growth of other individuals in the community. 370 

The magnitudes of pairwise interactions between species is easily understood from this 371 

perspective. For instance, the late season species has a weak per capita effect on the early 372 

season species because while the early species is active, roughly day 0 to day 30, the late-373 

season species remains small and has a slow absolute rate of resource uptake (Figure 374 

3A—blue line ). In contrast, the mid-season species has a stronger effect on the early 375 

season species because it grows faster during the same period (Figure 3—red line). On 376 

the other hand, the early season species has a weak effect on the late season species 377 

because the former stops growing before the latter does the majority of its growth (Figure 378 

3—black line).  379 

The simplicity of the simulation makes it possible to understand how HOIs 380 

emerge as well. The HOIs that affect the mid and late season species are in part due to an 381 

indirect effect of resource uptake on competitor size and in part due to changes in 382 

competitor phenology. For instance, in a scenario with one individual of each species the 383 

early season species slows the growth of both the mid and the late-season species, this 384 

keeps them smaller later into the season and makes them both more sensitive to 385 

competition as the season progresses (Figure 3). This is reflected in the HOI coefficients 386 
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that magnify competition for the mid and late-season species (Figure 6E&F). In contrast, 387 

the early season species grows fast and exerts the dominant effect on the resource while it 388 

is active, this makes it relatively insensitive to changes in the size of its interspecific 389 

competitors (Figure 6D).   390 

While the HOIs in this system are similar to competition mediated indirect effects 391 

(Levine et al. 2017) there are two important differences between the HOIs we observed 392 

and traditional indirect effects. First, indirect effects are not emergent properties of a 393 

multi-competitor system, rather they are a predictable result of pairwise per capita 394 

competition coefficients (Kleinhesselink and Adler 2015). Second, indirect effects can 395 

generally be understood as emerging because of changes in the density of competitors 396 

over time, not because of changes in per capita competition. For example, one species 397 

may have an indirect effect on its competitor by changing the density of a second 398 

competitor over the course of several year. In contrast, the HOIs in our simulation emerge 399 

over the course of a single growing season with fixed population densities. Thus, these 400 

HOIs indicate ecologically meaningful changes in the per capita effect of one species on 401 

another.  402 

Our example can be contrasted with a recent simulation of forest dynamics that 403 

demonstrated how HOIs could affect species coexistence (Grilli et al. 2017). In that 404 

simulation, unlike ours, per capita interactions between species were fixed. What the 405 

authors called HOIs in that model, were not due to changes in the per capita effect of 406 

competition, but were caused by changes in competitor density over time that were not 407 

explicitly tracked by the model.  408 
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The phenomenological nature of HOIs 409 

HOIs can only be defined and quantified within the context of phenomenological 410 

models of competition. Phenomenological models simplify community dynamics by 411 

tracking population densities and not the resources for which species compete (Chesson 412 

2000). HOIs emerge in phenomenological models precisely because they leave out 413 

mechanistic detail and do not explicitly model resource dynamics (Abrams 1983, 414 

O’Dwyer 2018, Letten and Stouffer 2019). Given this, one may be tempted to conclude 415 

that HOIs are an artifact of the inadequacy of such models. However, any concept of 416 

species interactions (at least competitive interactions) is essentially phenomenological in 417 

nature—biomass and nutrients do not flow directly between competing individuals, rather 418 

competitors influence each other’s growth or survival indirectly through changes in the 419 

abundance of shared resources. Thus one could sidestep the problem of HOIs by instead 420 

modeling communities mechanistically as biomass and resources (e.g. Dybzinski and 421 

Tilman (2007)). However, doing may require re-thinking ecological theory formulated on 422 

the concept of species interactions.  423 

Phenomenological competition coefficients can sometimes be derived analytically 424 

from mechanistic competition models by making the assumption that resource 425 

concentrations are near a fixed equilibrium (Tilman 1977, Meszéna et al. 2006, 426 

Kleinhesselink and Adler 2015, Letten et al. 2017). However, in many natural systems, 427 

such as such as those involving annual plants, resource concentrations and individual size 428 

fluctuate rapidly over the course of a single growing season or generation. This makes 429 

deriving competition coefficients directly from the resource dynamics more difficult, 430 
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perhaps impossible (O’Dwyer 2018). Thus, even in cases in which we actually know 431 

which resources species compete for, fitting a phenomenological model to population 432 

dynamics may be the only way to quantitively describe species interactions. Our work 433 

clarifies the what it means to fit models with and without HOIs to multi-competitor 434 

settings.  435 

Are HOIs widespread?  436 

In our virtual experiment, HOIs arise because individual size and phenology, the 437 

traits that determine each species’ impact on and sensitivity to resource availability, are 438 

themselves governed by resource availability. More generally, changes in individual size 439 

and corresponding changes in resource uptake rate may be a common cause of HOIs in 440 

nature. We predict that HOIs will likely be common in systems in which 1) consumers 441 

cause large resource fluctuations, 2) the per capita rate of resource uptake changes in 442 

response to resource availability, and 3) the strength of this response varies across 443 

species. Instead of changes in individual size, another mechanism that could generate 444 

HOIs would be density-dependent changes in resource acquisition traits. For example, 445 

traits such as height, specific leaf area, and phenology, have been shown to change in 446 

response to competition or resource availability (e.g. Aronson et al. 1992, Bennett et al. 447 

2016, Conti et al. 2018). If per capita competition coefficients are a function of these 448 

traits, then it would not be surprising if changes in these traits led to HOIs. If changes in 449 

individual size within a season, or trait plasticity are common, and are also likely to cause 450 

HOIs, this begs the question of why there have been so few documented examples of 451 

HOIs in natural communities (but see Mayfield and Stouffer 2017).  452 
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One hypothesis is that HOIs are common but usually too weak to detect. A key 453 

factor in producing HOIs in our simulation is that each species has a uniquely shaped 454 

growth curve and phenology. In additional simulations, we found that as species became 455 

more similar in their traits HOIs became weaker (Appendix A). In nature, such large 456 

functional differences in the way species take-up resources over time may be rare. At the 457 

same time, these simulations suggest that quantifying how functional traits change in 458 

response to competitors provides a likely path to further understanding of HOIs. 459 

A second factor generating the HOIs in our simulation are the rapid changes in 460 

resource availability and average plant size, and consequently, species interactions, over 461 

the course of a season (Figure 3). Without these dynamics, species might have relatively 462 

constant per capita effects on one another and no HOIs would emerge. For instance, 463 

compare our system to an idealized version of resource competition for perennial plants 464 

(Dybzinski and Tilman 2007). Due to their large size perennial plants can be assumed to 465 

quickly draw resources down to a dynamic equilibrium. By contrast, seasonally forced 466 

systems such as annual plant communities in Mediterranean climates may be a good 467 

place to look for strong HOIs (Mayfield and Stouffer 2017).  468 

Conclusion 469 

HOIs have profound implications for how we understand and model multispecies 470 

communities. However, before ecologists can embark on measuring HOIs in nature, they 471 

must have a shared definition for what HOIs are. We have provided a more general 472 

definition of HOIs caused by interaction modifications that will be useful as ecologists 473 
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seek empirical evidence for HOIs in nature. By simulating growth and resource 474 

competition in a virtual experiment, we outline the steps required to fit pairwise and HOI 475 

models to field data. This simulation also sheds light on the environmental conditions and 476 

life-history traits that may be more likely to generate HOIs. While we believe that HOIs 477 

should be common in nature this does not mean that they will be strong enough to detect 478 

statistically. Our work suggests that environments in which resource availability and 479 

competitor size change rapidly during a single growing season may be a likely place for 480 

detectable HOIs to emerge.  481 
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Figures  563 

 564 

Figure 1. How interaction modifications lead to higher order interactions. In A, a 565 

pairwise model is shown without interaction modification. The competitive effect of 566 

species one and two on the per capita growth of the focal species i, are shown as 567 

separate blue arrows. These effects may be simple per competition coefficients, 𝜶𝟏𝟐 568 

and 𝜶𝟏𝟑, or could be more complicated non-linear functions of density. In B, a 569 

model with interaction modification is shown: in i) the dashed arrow shows that the 570 

effect of two is modified by the density of one; in ii) the effect of one is modified by 571 

the density of two. In reality, one cannot assign either species as the modifier, rather 572 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/857920doi: bioRxiv preprint 

https://doi.org/10.1101/857920
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

they modify each other’s effects in a way that emerges a single HOI.  The HOI in 573 

this case is quantified by introducing the new parameter 𝜷𝒊(𝟏,𝟐), and shown with the 574 

curved arrows in iii.  575 
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 576 

Figure 2 Schematic of orthogonal competition experiment required to detect higher 577 

order interactions. Each square represents a separate study plot. Competitor 1, (blue 578 

circles) and Competitor 2 (red circles) are grown in a gradient of increasing density 579 

alone and together. A single individual of the focal species (line drawing) is grown in 580 
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each plot allowing the response to competition from each competitor species to be 581 

fitted.   582 
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 583 

Figure 3. Example time course of A) annual plant growth and B) resource 584 

concentration during a single simulated growing season. In this example, each 585 

species’ population consists of a single individual. The early season species (black) 586 

grows rapidly when resource availability is high and senesces early. By contrast, the 587 

late season species (blue) grows more slowly but grows later into the season as 588 

resource availability declines. The growth curve for the mid-season species (red) lies 589 

between these extremes.  590 
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 591 

Figure 4. Simulated per capita seed production of the A) early, B) middle and C) 592 

late season species in response to a single competitor species at a time. Competitor 593 

density is shown on the x-axis. Colors and shapes indicate the identity of the 594 

competitor species. Open circles show the per capita seed production of each focal 595 

species in the absence of any competitors. The solid line shows the fit of the Hassel 596 

model.   597 
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 598 

Figure 5. Comparison of the Hassel, multiplicative (‘model 2’), and HOI models fit 599 

to each focal species. The y-axis shows the simulated per capita seed production of 600 

the focal species. The x-axis shows the per capita seed production predicted by the 601 

phenomenological model. The top row, A-C, shows the prediction for the pairwise 602 

Hassel model (eq. [5]); the middle row, D-F, shows the prediction from the 603 

multiplicative model (eq. [11]); and the bottom row, G-I, shows the prediction from 604 

the HOI model (eq. [10]). The one-to-one line and root-mean-squared error (RMSE) 605 

for predictions from each model are shown.   606 
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 607 

Figure 6. Interaction coefficients for each of focal species from the HOI model. The 608 

top row, A-C, shows the pairwise competition coefficients for the focal species and 609 

each competitor. The bottom row, D-F, shows the two-species HOI coefficients. 610 

Coefficient subscripts indicate which focal species and competitor species are 611 

involved, 1 = Early, 2 = Mid, 3 = Late.   612 
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Supporting Information – Additional Tables 613 

Table S 1 Table of parameter values used in the growth simulation experiment in 614 

the main text.  615 

Parameter Value Definition 

U 200 Duration of growth simulation (days) 
I 0 Resource supply rate (g day-1) 

R(0) 400 Initial resource concentration (g kg-1) 
d1 0.06 Early competitor root density (g cm-3) 
d2 0.12 Mid competitor root density (g cm-3) 
d3 0.36 Late competitor root density (g cm-3) 
𝛿) 0.3 Early competitor loss and respiration rate (g g-1d-1) 
𝛿; 0.15 Mid competitor loss and respiration rate (g g-1d-1) 
𝛿� 0.053 Late competitor loss and respiration rate (g g-1d-1) 
K 350 Resource half-saturation constant (g kg-1) 

Vmax 1 Maximum resource conductance (g d-1cm-2) 
p 0.5 Ratio of root biomass to total biomass  
𝜈 0.66 Scaling exponent (unitless) 
q 0.2 Biomass assimilation rate (g g-1d-1) 
𝜇 0.005 Seed mass (g per seed) 
c 0.1 Conversion of final biomass to seed mass (g g-1) 

 616 

  617 
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Supporting Information – Additional figures  618 

 619 

Figure S 1 Diagram schematic of annual plant growth model used in simulation. A) 620 

in the model each individual plant start as a seed, grows over the course of a single 621 

growing season. Growth is a function of plant biomass, root surface area and soil 622 

resource availability. B) Over time the soil resources are depleted and plant growth 623 

slows down. Plants reach a maximum size when losses due to respiration and tissue 624 

senescence are greater than growth. At this point the plants convert stored 625 

resources to seeds. The number of seeds in the next growing season is determined as 626 

the total mass of seeds produced per species divided by the weight of a single seed.  627 
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Supporting Information – Additional figures  628 

 629 

Figure S 2 Simulated per capita seed production of the A) early, B) mid and C) late 630 

season species in response to density of two interspecific competitors. Densities of 631 

two competitors are shown in each panel—the x-axis shows the density of the first 632 

competitor, while different colored lines and shapes show the density of a second 633 

competitor. Text in each panel lists the identities of competitor one and two (early, 634 

mid or late). Lines show best fit from phenomenological models. Residual sum of 635 

squared error is shown for each model and focal species.  636 
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Appendix A – The effect of trait differences on higher order interactions  637 

We used an additional simulation experiment to test whether the strength of 638 

higher order interactions (HOIs) was associated with the magnitude of functional 639 

differences between competitor species. We started with the same parameter values as in 640 

the simulation in the main text in which there was a large difference between the species 641 

in root density (di) and tissue respiration rate (𝛿i). In four additional simulation scenarios, 642 

we gradually decreased the average difference between species in these traits (Table A1). 643 

Specifically, we held the traits of the mid-season species constant and decreased the 644 

difference in the root density trait, di, between the early and late-season species. We 645 

assumed a trade-off between root density and tissue respiration rate such that changing 646 

root density was accompanied by a change in tissue respiration rate, 𝛿i (Figure A1). We 647 

quantified the average functional difference between species as the standard deviation of 648 

root density among all species. In each scenario, we simulated competition and fitted the 649 

phenomenological HOI model as in the main text. For each species in each scenario, we 650 

quantified the strength of HOIs as the average magnitude of the 𝛽 coefficients divided by 651 

the average magnitude of the 𝛼 coefficients. For the mid and late season species, the 652 

strength of the HOIs increased with the functional difference between species (Figure A1 653 

B&C). For the early season species, HOIs were weak in all five scenarios (Figure A1 A). 654 

These simulations show that the functional differences between competitors drive the 655 

HOIs we observed in this system.   656 
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Table A 1. Parameter values for five simulations with gradually decreasing the trait 657 

difference between the early season and late season species. All other simulation 658 

parameters are the same as in Table S1.  659 

  
Functional 
Difference 

Scenario Species 
Root density 

d  
(g cm-3) 

Respiration rate 
𝛿i 

(g g—1d-1) 

Standard 
deviation 

of d 
 

1 
Early 0.066 0.300 

0.1460 Large Mid 0.128 0.150 
 Late 0.343 0.053 

 
2 

Early 0.075 0.261 
0.0821  Mid 0.128 0.150 

 Late 0.236 0.078 
 

3 
Early 0.088 0.222 

0.0467  Mid 0.128 0.150 
 Late 0.181 0.104 
 

4 
Early 0.105 0.184 

0.0208  Mid 0.128 0.150 
 Late 0.147 0.130 
 

5 
Early 0.132 0.145 

0.0405 Small Mid 0.128 0.150 
 Late 0.124 0.155 

  660 
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 661 

Figure A 1. Colored points show the value of functional traits, root density and 662 

tissue loss rate, for each of the three species in each of the five simulation scenarios 663 

(A-E). Across the five scenarios, the differences between the early season and late 664 

season species’ root density and respiration rates were gradually decreased. The 665 

mid-season species’ traits were held constant. The black line indicates the trade-off 666 

between the root density and tissue respiration rate traits.   667 
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 668 

Figure A 2. The strength of HOIs depends on the difference in species functional 669 

traits. The y-axis quantifies the strength of HOIs affecting the early (A), mid (B) and 670 

late (C) species as the ratio of the of the average magnitude of the 𝜷i(jk) coefficients to 671 

the average magnitude of the 𝜶 coefficients in the phenomenological HOI model. A 672 

larger ratio 𝜷: 𝜶 ratio indicates stronger HOIs compared to pairwise interactions. 673 

The x-axis quantifies the community-level trait difference as the standard deviation 674 

of the root density trait, d. 675 

 676 
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