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Abstract  48 

Objective: Cognitive decline is a hallmark of dementia; however, the brain epigenetic 49 

signature of cognitive decline is unclear. We investigated the associations between brain 50 

tissue-based DNA methylation and cognitive trajectory. 51 

Methods: We performed a brain epigenome-wide association study of cognitive trajectory in 52 

636 participants from the Religious Order Study and the Rush Memory and Aging Project 53 

(ROS/MAP) using DNA methylation profiles of the dorsal lateral prefrontal cortex (dPFC). 54 

To maximize our power to detect epigenetic associations, we used the recently developed 55 

Gene Association with Multiple Traits (GAMuT) test to analyze the five measured cognitive 56 

domains simultaneously.  57 

Results: We found an epigenome-wide association for differential methylation of sites in the 58 

Claudin-5 (CLDN5) locus and cognitive trajectory (p-value = 9.96 x 10-7), which was robust 59 

to adjustment for cell type proportions (p-value = 8.52 x 10-7). This association was primarily 60 

driven by association with declines in episodic (p-value = 4.65 x 10-6) and working memory 61 

(p-value = 2.54 x 10-7). This association between methylation in CLDN5 and cognitive 62 

decline was independent of beta-amyloid and neurofibrillary tangle pathology and present in 63 

participants with low levels of neuropathology. In addition, only 13-31% of the association 64 

between methylation and cognitive decline was mediated through levels of neuropathology, 65 

whereas the major part of the association was independent of it.  66 

Interpretation: We identified methylation in CLDN5 as new epigenetic factor associated with 67 

cognitive trajectory. Higher levels of methylation in CLDN5 were associated with faster 68 

cognitive decline implicating the blood brain barrier in maintenance of cognitive trajectory. 69 

 70 

  71 
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Introduction  72 

Cognitive decline is a common concern among older adults; however, the trajectory of 73 

cognitive performance with age has a wide range from stable to rapid decline. Cognitive 74 

trajectory is an important predictor of health outcomes and mortality, independent of other 75 

commonly assessed risk factors1. Dementia is a common consequence of a decline in 76 

cognition, and Alzheimer Disease (AD) is its leading cause2. AD is characterized by the 77 

neuropathological accumulation of neuritic plaques and neurofibrillary tangles, which is 78 

accompanied by neuronal loss3; however, most older individuals have several co-occurring 79 

neuropathologies. Collectively, neuropathologies explain about 40% of the variance in 80 

cognitive trajectory, leaving most unexplained4,5. Thus, cognitive trajectory may be 81 

considered a summation of the different neuropathological and biological processes 82 

independent of pathologies at work in the aging human brain5–7. 83 

Despite the importance of understanding cognitive trajectory, existing epigenetic work 84 

on DNA methylation levels measured in brain tissue has primarily focused on AD-specific 85 

pathologies 8–11 and clinical diagnosis of AD 12–14.  In contrast, epigenetic studies that focused 86 

on examining cognitive decline were limited due to measuring DNA methylation changes in 87 

blood15, which showed only moderate correlations (~0.4) with brain methylation15. Thus, 88 

there is need to understand the epigenetic changes that are associated with cognitive trajectory 89 

to identify potential mechanisms that may act through or independent of known 90 

neuropathologies. 91 

In this study, we investigated the associations between brain tissue-based DNA 92 

methylation and cognitive trajectory in 636 participants from the Religious Order Study and 93 

Rush Memory and Aging Project (ROS/MAP) cohorts. Cognitive trajectory was assessed in 94 

five cognitive domains (episodic memory, perceptual speed, perceptual orientation, semantic 95 

memory, and working memory), which were analyzed simultaneously by using an innovative 96 
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kernel procedure that allows to investigate associations between multiple predictors (e.g. 97 

methylation sites in a gene) with multiple outcomes (e.g. multiple cognitive domains) 16,17. 98 

Findings were validated in independent post-mortem frontal cortex samples10, and their 99 

biological plausibility were evaluated using gene expression and genotype data. 100 

 101 

Methods  102 

Study design and study population 103 

The discovery dataset included deceased subjects from two large, prospectively 104 

followed cohorts recruited by investigators at Rush Alzheimer’s Disease Center in Chicago, 105 

IL: The Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP)11,18. 106 

Both ROS and MAP collect detailed annual cognitive and clinical evaluations, and brain 107 

autopsy. Participants provided informed consent, an Anatomic Gift Act for organ donation, 108 

and a repository consent to allow their data to be repurposed. Both studies were approved by 109 

an Institutional Review Board of Rush University Medical Center. To be included in the 110 

present study, participants must have at least two follow-up evaluations, and available 111 

methylation data derived from dorsolateral prefrontal cortex. As in previous publications, the 112 

ROS and MAP data were analyzed jointly since much of the phenotypic data collected are 113 

identical at the item level in both studies and collected by the same investigative team11,19. 114 

 The replication dataset included samples from the MRC London Neurodegenerative 115 

Disease Brain Bank (GSE59685)10.  116 

 117 

DNA methylation 118 

In the discovery dataset, DNA methylation was measured from the dorsolateral 119 

prefrontal cortex (dPFC; Broadman area 46) as previously described in 737 ROS/MAP 120 
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participant samples 11, of which 665 had complete phenotype and covariate information. DNA 121 

was extracted from cortically dissected sections of dPFC and DNA methylation was measured 122 

using the Illumina HumanMethylation450 Beadchip array. Initial data processing, including 123 

color channel normalization and background removal, was performed using the Illumina 124 

GenomeStudio software. The raw IDAT files were obtained from Synapse 125 

(www.synapse.org; Synapse ID: syn7357283) and the following probes were removed: 1) 126 

probes with a detection p-value > 0.01 in any sample, 2) probes annotated to the X and Y 127 

chromosomes by Illumina, 3) probes that cross-hybridize with other probes due to sequence 128 

similarity (identified by 20), 3) non-CpG site probes, and 4) probes that overlap with common 129 

SNPs (identified by 21). After this filtering, the remaining CpG sites were normalized using 130 

the BMIQ algorithm in Watermelon R package22, and the ComBat function from the sva R 131 

package was used to adjust for batch effects23. CpG sites with a distance of more than 20 KB 132 

to the closest gene were excluded from analysis. After quality control 338,036 discrete CpG 133 

dinucleotides corresponding to 26,558 genes in 636 subjects were used for analysis.  134 

In the replication dataset, DNA methylation was derived from prefrontal cortex 135 

obtained from individuals archived in the Medical Research Counsil (MRC) London 136 

Neurodegenerative Disease Brain Bank. This previously published dataset provided samples 137 

with DNA methylation data measured on the Illumina HumanMethylation450 Beadchip array. 138 

Data was obtained from the Gene Expression Omnibus (GEO; GSE59685)10. Similar to above 139 

probes annotated to the X and Y chromosomes, cross-hybridizing probes, non-CpG site 140 

probes and probes that overlap with common SNP were removed. The data downloaded from 141 

GEO was already normalized using the dasen algorithm in Watermelon R package22 and then 142 

the ComBat function from the sva R package was used to adjust for array ID batch effects 23. 143 

Neuronal and non-neuronal brain cell-type proportions were estimated and normalized 144 

between PFC samples24. CpG sites with a distance of more than 20 KB to the closest gene 145 
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were excluded from analysis. After quality control 358,515 discrete CpG dinucleotides 146 

corresponding to 27,585 genes in 66 subjects were used for analysis.  147 

 148 

Genotype data 149 

Genotyping data was generated using two microarrays, Affymetrix GeneChip 6.0 150 

(Affymetrix, Inc, Santa Clara, CA, USA ) and Illumina HumanOmniExpress (Illumina, Inc, 151 

San Diego, CA, USA) as described previously25. Genotyping was imputed to the 1000 152 

Genome Project Phase 3 using the Michigan Imputation Server 26, and the following filtering 153 

criteria were applied minor allele frequency (MAF) > 5%, Hardy-Weinberg p-value >10-5 and 154 

genotype imputation R2 > 0.3. 155 

 156 

Gene expression 157 

 RNA extracted from ROS/MAP post-mortem dPFC was sequenced on the Illumina 158 

HiSeq with 101-bp paired-end reads using the strand-specific dUTP method with poly-A 159 

selection with a coverage of 50 million reads. BAM files were converted to FASTQ format 160 

using Picard, followed by alignment of reads to GRCh38 reference genome using STAR27. 161 

Gene level counts were computed using STAR27. Genes with < 1 count per million in at least 162 

50% of the samples and with missing length and percent GC content were removed. 163 

Additionally, two outlier samples were removed. After quality control, counts were 164 

normalized using variance stabilization transformation, which performed log2 transformation 165 

of the counts, normalizes for library size, and transforms the counts to approximately 166 

homoscedastic 28. Then the candidate mRNAs were extracted for association analysis with 167 

rate of cognitive decline adjusting for sex, age at death, RIN, PMI, RNA-sequencing batch, 168 

and cell type composition. Proportions of neurons, astrocytes, oligodendrocytes, and 169 
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microglia were estimated from RNA-sequencing data using CIBERSORT29 and cell-type 170 

specific signatures30. We used the proportions of cell type to adjust for tissue heterogeneity. 171 

Using the findings of the epigenome-wide association study of cognitive trajectory, we 172 

selected the transcripts corresponding to the associated genes for further analyses after the 173 

aforementioned quality control and variance stabilization transformation.  174 

 175 

Cognitive trajectory  176 

Cognitive trajectory was assessed in five different cognitive domains: episodic 177 

memory, perceptual speed, perceptual orientation, semantic memory, and working memory. 178 

Participants in both studies underwent structured, annual clinical evaluations that included 179 

detailed cognitive and neurologic examinations, as previously reported 31,32. Scores from 180 

those tests were converted to z-scores using the mean and standard deviation of the cohorts at 181 

baseline. Cognitive scores were modeled longitudinally with a mixed effects model, adjusting 182 

for age, sex and education, providing person-specific random slopes of decline. The random 183 

slope of each subject captures the individual rate of cognitive decline after adjusting for age, 184 

sex and education. 185 

 186 

Neuropathologic Outcomes 187 

We used the CERAD score and Braak staging as neuropathological outcomes in our 188 

analyses. The CERAD score is a semiquantitative measure of neuritic plaque density as 189 

recommended by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). 190 

A CERAD neuropathological diagnosis of AD requires moderate (probable AD) or frequent 191 

neuritic plaques (definite AD) in one or more neocortical regions. The Braak stage is a 192 

standardized measure of neurofibrillary tangle distribution and burden determined at autopsy 193 
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with modified Bielschowsky silver stained sections33. Braak stages I and II indicate 194 

neurofibrillary tangle confined mainly to the entorhinal region of the brain, Braak stages III 195 

and IV indicate involvement of limbic regions such as the hippocampus and Braak stages V 196 

and VI indicate moderate to severe neocortical involvement. 197 

 198 

Statistical analysis 199 

In our main analysis, we estimated epigenetic associations across five neurocognitive 200 

domains in a gene-based analysis, in which each CpG site was assigned to the closest gene 201 

using the Bioconductor package hiAnnotator34 and the ensembl gene predictions (ensGene, 202 

version of Apr-06-2014). All CpG sites with a distance of no more than 20 KB to the closest 203 

gene, were included in the analyses. In addition, we conducted a sensitivity analysis in which 204 

we only included CpG sites with a distance of no more than 10 KB to the closest gene. In a 205 

traditional association study of cognitive trajectory, each cognitive test may be either tested 206 

individually 15 or used to estimate a composite measure aggregated across several cognitive 207 

tests35. However, these approaches are underpowered in the presence of pleiotropy since they 208 

fail to exploit correlation among domains17. Thus, analysis of a single composite measure can 209 

lose power if the causal CpG sites are only associated with a subset of the features that make 210 

the composite measure17. Hence, it can be more powerful to directly account for the trait 211 

correlations using kernel methods36. Kernel methods quantify the genetic similarity among 212 

pairs of subjects and test whether this genetic similarity is associated with trait similarity. 213 

Thus, they harness potential pleiotropy that exists between traits to improve power to detect 214 

associations. To analyze epigenetic associations across five neurocognitive domains 215 

simultaneously, we applied a variation of the GAMuT test 16 that was adapted to DNA 216 

methylation data. GAMuT is motivated by the idea that individuals with similar epigenetic 217 

patterns should also have similar cognitive traits across the different cognitive domains. 218 
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Consequently, GAMuT constructs two different similarity matrices; one similarity matrix 219 

including cognitive decline in the five cognitive domains and the other similarity matrix for 220 

the epigenetic variation (beta values of CpG sites) assigned to a gene. Phenotypic and 221 

epigenetic similarity were modelled using linear kernels. P-values for GAMuT were derived 222 

using Davies’ exact method, which is a computationally efficient method to provide accurate 223 

p-values in the extreme tails of tests that follow mixtures of chi-square variables 37,38. To test 224 

which cognitive domains and CpG sites were likely main drivers in our multivariate analysis, 225 

we conducted an association analysis for each domain separately. The gene-based analyses for 226 

the single domains were performed with GAMuT and linear regression analyses were used in 227 

the CpG-based analyses. 228 

All association models were adjusted for age at death, education, sex, ancestry, 229 

smoking status and post-mortem interval (PMI). Principal components (PCs) based on CpG 230 

sites chosen for their potential to proxy nearby SNPs (within 10 BP) were used to correct for 231 

population stratification (first three PCs, Figure S1) and cell type heterogeneity 21. Samples 232 

whose first PC (PC1) deviated more than 3 standard deviations from the mean PC1, were 233 

excluded from analyses, reducing the final sample size from 665 to 636. In a sensitivity 234 

analysis, associations were additionally adjusted for cell type proportions24. All analyses were 235 

performed using R (version 3.4.3) using built-in functions unless otherwise specified. 236 

We applied a Bonferroni threshold to correct for multiple testing. In the gene-based 237 

GAMuT analysis, the significance threshold was adjusted for the number of tested genes 238 

(threshold: 0.05/26,558 = 1.88 x 10-6) and in the CpG-site-based linear regression analyses for 239 

the number of tested CpG sites (threshold: 0.05/338,036=1.48 x 10-7). 240 

Methylation signals associated with cognitive decline were validated using CERAD 241 

and Braak stage as outcomes. In addition, we analyzed whether the association between 242 

methylation and cognitive decline was modified (interaction analysis) or mediated (causal 243 
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mediation analysis) by neuropathology (CERAD, Braak stage). Causal mediation analysis 244 

from a counterfactual perspective was performed by using the R package “mediation” 39, an 245 

approach that relies on the quasi-Bayesian Monte Carlo method based on normal 246 

approximation 40. Using the counterfactual framework allows for definition of direct and 247 

indirect effects and a total effect as the sum of direct and indirect effects. The indirect effect 248 

refers to the effect through the mediator under study. The direct effect refers to the remaining 249 

effect that is not through the mediator 41. The proportion of the indirect effect in the total 250 

effect was used to assess the extent to which the association between methylation and 251 

cognitive decline was mediated through neuropathology as an intermediate pathway 42. 252 

The replication dataset did only have Braak stage as neurocognitive outcome, which is 253 

strongly associated with cognitive decline 33. In the replication dataset, associations between 254 

CpG sites within a gene and the Braak stage were tested with GAMuT after correction for age 255 

at death, sex and cell type composition. Due to the small sample size of the replication 256 

dataset, we conducted a permutation test with 10,000 replications in addition to the Davies’ 257 

approximation to verify the accuracy of p-values. 258 

The biological plausibility of our findings was examined by investigating the 259 

association 1) of DNA methylation with gene expression as well as of gene expression with 260 

cognitive decline and 2) of genotypes with cognitive decline to investigate if our associations 261 

were due to a hidden genotype effect. All of these associations were tested using GAMuT and 262 

the genotype associations were followed by a linear regression analysis on the single SNP 263 

level. Fine-mapping of our epigenome-wide associations was done with coMET 43, which is a 264 

visualization tool of EWAS results with functional genomic annotations and estimation of co-265 

methylation patterns.  266 

 267 

Results 268 
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Description of study participants 269 

There were 636 ROS/MAP participants included in this study with an average age at 270 

death of 86 years and with 63% being female (Table 1). Most of the participants were white 271 

(98%), had a high level of education and 70% had never smoked. On average, cognitive 272 

performance declined with age for every single domain (Table 1) and correlations of cognitive 273 

decline between different domains were moderate, ranging from 0.54 to 0.78 (Table S1). 274 

Cognitive decline was associated with more signs of neuropathology (CERAD and Braak 275 

stage, Table S2). 276 

There were 66 MRC Brain Bank participants with an average age at death of 87 years, 277 

with 67% being female and an average Braak stage of 5 (Table 1).  278 

 279 

Methylation patterns of CLDN5 associated with cognitive decline 280 

In the ROS/MAP participants (discovery dataset), we found that methylated CpG sites 281 

in the Claudin-5 (CLDN5) locus were associated with cognitive trajectory (p-value = 9.96 x 282 

10-7; Figure 1, Table 2, Table S3, and Figure S1). This association was robust to adjustment 283 

for cell type proportions (p-value = 8.52 x 10-7, Table S4, Figures S2 and S3), to the selection 284 

of a smaller window of CpG sites around each gene (p-value = 9.96 x 10-7, within 10kb, Table 285 

S5), and to the restriction to participants with European ancestry (621/636 participants, p-286 

value = 9.73 x 10-7, Table S6). The trajectories of episodic and working memory were the 287 

main drivers for the observed association with both being associated with CpG sites assigned 288 

to CLDN5 in the analyses of the single domains (Table 2, Figure S4 and Tables S7-S11). 289 

Genes showing suggestive association with cognitive trajectory (p-values < 5 x 10-5) included 290 

AC084018.1, CTB-186G2.1, ATG16L2, KCNN4, RP11-779O18.1, TTC22, DCUN1D2-AS, 291 

PNMA1 and RP11-101C11.1. The strongest associations with these genes were found with 292 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/857953doi: bioRxiv preprint 

https://doi.org/10.1101/857953


13 
 

episodic memory, followed by working memory. Interestingly, most top methylation signals 293 

in Table 2 (CLDN5 and 7/9 suggestive genes) were also at least nominally associated with 294 

CERAD (Table 3, Figures S5-S6 and Table S12) and Braak stage (Table 3, Figure S7 and 295 

Table S13).  296 

To generalize our findings from the ROS/MAP participants, we performed the same 297 

epigenetic analysis in MRC Brain Bank participants with DNA methylation data available 298 

(replication dataset). We tested for differential methylation using Braak stage. Of the 8 299 

methylation signals, which were at least nominally associated with Braak stage in the 300 

discovery dataset, CLDN5, CTB-186G2.1 and KCNN4 could be replicated in the replication 301 

dataset (Table 3, Table S14, Figure S8). 302 

 303 

Higher levels of methylation in CLDN5 locus associated with cognitive decline 304 

To identify which CpG sites are the main drivers of the observed associations and to 305 

understand the direction of association, we conducted a linear regression analysis for the 306 

cognitive trajectory of each cognitive domain. Interestingly, except for PNMA1, higher levels 307 

of methylation within our top genes were associated with an increased cognitive decline in 308 

every single cognitive domain (Table S15). Within the CpG sites assigned to CLDN5, 309 

cg16773741 and cg05460329 were the main drivers of the association with cg16773741 being 310 

associated with episodic memory (p-value = 1.48 x 10-8), semantic memory (8.81 x 10-8) and 311 

working memory (8.66 x 10-9) (Table 4). The direction of association with these two CpG 312 

sites was consistent with the association observed for CERAD and Braak stage, which could 313 

further be replicated in the replication dataset (Table S15, N=66). 314 

 315 

Association with CLDN5 even present without signs of neuropathology 316 
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To investigate if the association between methylation in CLDN5 and cognitive decline 317 

is also present in participants without clear signs of neuropathology, we conducted an analysis 318 

of the interaction between the most significantly associated CpG site (cg16773741) and 319 

CERAD or Braak stage on cognitive decline. The association between methylation in 320 

cg16773741 did not significantly differ between participants with no to little signs of 321 

neuropathology versus participants with moderate to severe signs of neuropathology 322 

(measured by CERAD and Braak stage; Figure 3). Consequently, the association between 323 

methylation in cg16773741 and decline in episodic, semantic, and working memory was even 324 

significant in participants with no or little signs of neuropathology.. 325 

 326 

Partial mediation through neuropathology 327 

The association between DNA methylation in the CLDN5 locus (cg16773741) and 328 

cognitive trajectory was only partially mediated through an increased neuropathology. It 329 

ranged between 17% (95% confidence interval (CI): 18-40%) to 31% (95% CI: 18-61%) for 330 

CERAD and 13% (95% CI: 7-21%) to 27% (95% CI: 15-41%) for Braak stage depending on 331 

the cognitive domain (Figure 4). Therefore, the major part of the association with CLDN5 was 332 

a direct association between methylation and cognitive decline, which was independent of 333 

beta-amyloid and neurofibrillary neuropathology. 334 

 335 

Methylation signals were independent of genotypes 336 

Genotypes located within the windows of CLDN5 were associated with DNA 337 

methylation (p-value < 10-6), but not with cognitive trajectory (p-value = 0.4415, Table S16 338 

A). In line, associations of DNA methylation in the CLDN5 window with cognitive trajectory 339 

were robust to adjustment for genotypes from the same window (Table S16 B). 340 
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This observation was confirmed by the subsequent analyses on the single CpG / SNP 341 

level, which showed that the CpG sites associated with genotypes were not the same as being 342 

associated with cognitive trajectory (Table S17, Figure 2 and Figures S9 to S12). This 343 

indicates that our methylation signals were not caused by hidden genotype effects. 344 

 345 

No clear association with gene expression levels  346 

In our sample, we find no association between DNA methylation in the CLDN5 347 

window and CLDN5 expression (p-value = 0.1978; Table S17). KCNN4 was the only top gene 348 

(Table 2) for which methylation levels were associated with expression levels (p-value = 349 

0.0004; Table S18). Furthermore, cognitive trajectory was not associated with expression of 350 

any gene in Table 2 (Table S18). 351 

 352 

Discussion 353 

In this study, we found an epigenome-wide association between brain-tissue-based 354 

DNA methylation in the CLDN5 locus and cognitive trajectory in more than 600 participants 355 

from the ROS/MAP cohort. This association was significant across different domains and 356 

particularly associated with trajectories in episodic and working memory. We also found that 357 

higher levels of methylation in CLDN5 were associated with neuropathology in our discovery 358 

and replication datasets consistent with the direction of association found with cognitive 359 

decline. Most interestingly, the association between methylation in CLDN5 and cognitive 360 

decline was independent of beta-amyloid and neurofibrillary neuropathology and even present 361 

in participants with low levels of those pathologies. In addition, only 13-31% of the 362 

association between methylation and cognitive decline was mediated through levels of 363 

neuropathology, whereas the major part of the association was independent of it. Finally, we 364 
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found no evidence that hidden effects of genotypes in the CLDN5 locus confounded our 365 

methylation results. 366 

CLDN5 is an integral membrane protein and an important component of tight junction 367 

protein complexes that comprise the blood-brain barrier. The blood-brain barrier is located at 368 

endothelial cells lining the brain microvasculature and is maintained by the neurovascular 369 

unit, a functional relationship between astrocytes, neurons, and endothelial cells 44. 370 

Dysfunction of the blood-brain barrier has been implicated in neurodegenerative disorders, 371 

such as AD 44–47. Thus, our finding that altered regulation of CLDN5 is associated with 372 

cognitive decline suggests a role of blood-brain barrier dysfunction in cognitive decline. We 373 

note that an estimated two-thirds of AD dementia (clinically defined) and that an estimated 374 

40% of cognitive decline are attributable to known age-related neuropathologies 4,48. Thus, 375 

our findings may account for some of the unaccounted-for variation in cognitive decline and 376 

AD dementia. 377 

This is the first epigenome-wide study using cognitive trajectory in older individuals. 378 

A previous study on the same cohort showed an association of 71 CpG sites with neuritic 379 

plaque burden, of which 11 were validated in an independent cohort11. Here, we showed that 380 

all of these 11 signals were at least nominally associated with cognitive trajectory and the 381 

strongest associations were again found for cognitive trajectory of episodic and working 382 

memory (Table S19). In addition, we identified methylation in CLDN5 as new epigenetic 383 

factor associated with cognitive trajectory, a gene that has not been linked to AD in a 384 

population-based cohort. 385 

 By contrast, associations of blood-based methylation levels with global cognitive 386 

function (cg21450381) and phonemic verbal fluency (cg12507869) 15 could not be validated 387 

in our study (Table S20). The likely reasons are the different source of methylation data, and 388 
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differences in the phenotype (i.e., cognitive trajectory over time in our study versus cognitive 389 

testing at a single time point15). 390 

 Strengths of this study include the ROS/MAP cohort as a discovery dataset which is 391 

notable for its longitudinal nature with very high follow-up rates, prospective collection of 392 

data, a community-based cohort design, and detailed neuropathological examination 393 

following high autopsy rates. The validity of our signals was also determined in an 394 

independent replication dataset, and the availability of genomic data allowed us to determine 395 

methylation changes were not the result of hidden genotype effect. This study is also 396 

strengthened by the GAMuT 16 statistical method that harnesses correlations among cognitive 397 

domains and among CpG sites to improve statistical power compared to standard univariate 398 

techniques. 399 

 The study is potentially limited by its cross-sectional nature. Although brain tissue is 400 

the ideal target tissue to measure DNA methylation related to cognitive trajectory, it inhibited 401 

a simultaneous (or even later) assessment of cognitive function. Consequently, we cannot 402 

exclude the potential risk of reverse causality in our associations. Another potential limitation 403 

is the use of bulk tissue analysis which might obscure signals from different cell populations. 404 

This problem was mitigated in our analysis by adjusting for cell-type composition. However, 405 

the bulk tissue analysis may have obscured an association between CLDN5 methylation and 406 

RNA expression. Future studies should investigate the role of CLDN5 in specific cell types 407 

from brain and investigate whether there is a causal relationship between CLDN5 408 

dysregulation and cognitive decline in animal models of AD.  409 

 In conclusion, we have presented evidence for brain-based DNA methylation in 410 

association with cognitive trajectory. We identified methylation in CLDN5 as a new 411 

epigenetic factor associated with cognitive trajectory, which was validated in an independent 412 

dataset and independent of beta-amyloid and neurofibrillary neuropathology. Higher levels of 413 
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methylation in CLDN5 were associated with cognitive decline implicating the blood brain 414 

barrier in maintenance of cognitive trajectory with aging. 415 
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Tables  

Table 1. Study characteristics of the discovery (ROS/MAP) and replication datasets. 
Discovery Dataset Replication Dataset 

N 636 66 
Age at death, mean ± sd 86.22 ± 4.72 87.48 ± 6.57 
Female, n (%) 401 (63.1%) 44 (66.67%) 
Ancestry   
   European, n (%) 621 (97.6%) n.a. 
   African American, n (%) 11 (1.7%) n.a. 
   Native American, n (%) 1 (0.2%) n.a. 
   Asian, n (%) 3 (0.5%) n.a. 
Years of education, mean ± sd 16.63 ± 3.54 n.a. 
Never smoker, n (%) 444 (69.8%) n.a. 
Ex-smoker, n (%) 176 (27.7%) n.a. 
Smoker, n (%) 16 (2.5%) n.a. 
Post mortem interval (PMI), mean ± sd 7.43 ± 5.79 n.a. 
Decline in episodic memory, mean ± sd -0.03 ± 0.11 n.a. 
Decline in perceptual speed, mean ± sd -0.02 ± 0.08 n.a. 
Decline in perceptual orientation, mean ± sd -0.01 ± 0.04 n.a. 
Decline in semantic memory, mean ± sd -0.03 ± 0.13 n.a. 
Decline in working memory, mean ± sd -0.01 ± 0.05 n.a. 
CERAD, mean ± sd 2.27 ± 1.15 n.a. 
Braak stage, mean ± sd 3.44 ± 1.26 4.70 ± 1.62 
n.a.: information not available in replication dataset. 
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Table 2. Top signals (p-values < 5 x 10-5) for the association between DNA methylation and cognitive decline across all domains as 
well as in the single domains in the discovery dataset (ROS/MAP).  

gene chr pos (lower) pos (upper) 
mean 

dist gene 
max 

dist gene #CpG sites 
p-value  

(across all  
domains) 

p-value 
(EM) 

p-value 
(PS) 

p-value 
(PO) 

p-value 
(SM) 

p-value 
(WM) 

CLDN5 chr22 19510877 19515608 1030 2062 18 9.96E-07 4.65E-06 7.16E-05 0.0021 2.35E-05 2.54E-07 

AC084018.1 chr12 122235169 122241475 501 1414 15 2.84E-06 5.96E-05 0.0001 0.0060 4.13E-06 0.0002 

CTB-186G2.1 chr19 39087135 39090701 692 1633 4 6.19E-06 7.33E-06 3.50E-05 0.0015 7.45E-05 7.69E-05 

ATG16L2 chr11 72521478 72546168 1326 12094 25 8.22E-06 1.32E-05 0.0002 0.0086 8.31E-05 0.0004 

KCNN4 chr19 44270892 44286076 1682 6854 13 1.01E-05 2.01E-05 0.0002 0.0127 0.0001 4.12E-05 

RP11-779O18.1 chr5 172168177 172189374 7685 17051 12 1.86E-05 1.26E-05 0.0002 0.0262 0.0009 3.18E-06 

TTC22 chr1 55240609 55268659 1189 4775 23 3.42E-05 0.000192 0.0002 0.0182 0.0002 6.16E-05 

DCUN1D2-AS chr13 114123258 114129580 2530 3583 10 3.87E-05 5.91E-06 0.0004 0.0176 0.0014 4.48E-05 

PNMA1 chr14 74177136 74181427 777 1357 9 3.88E-05 3.14E-05 0.0079 0.0030 0.0002 0.0006 

RP11-101C11.1 chr1 55682652 55709508 5270 9658 2 3.99E-05 2.36E-05 0.0004 0.0565 0.0006 0.0003 
EM: decline in episodic memory; PS: decline in perceptual speed; PO: decline in perceptual orientation; SM: decline in semantic memory; WM: decline in working memory 
Adjusted for age at death, education, sex, ancestry, smoking status, post-mortem interval (PMI) and the first three principal components (PCs). 
Bonferroni threshold: 0.05/26,558=1.88x10-6 (p-values below Bonferroni threshold in bold) 
Suggestive: p-values < 5x10-5 (underlined) 
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Table 3. Validation of ROS/MAP (discovery dataset) findings in replication dataset 
     Discovery Dataset  Replication Dataset 

gene chr pos (lower) pos (upper)  
#CpG  
sites 

p-value  
cognitive decline 

p-value  
CERAD 

p-value 
Braak  

#CpG  
sites 

p-value 
Braak  

p-value 
Braak  

(permutation  
Test1) 

CLDN5 chr22 19510877 19515608  18 9.96E-07 0.0023 0.0066  18 0.0088 0.0076 

AC084018.1 chr12 122235169 122241475  15 2.84E-06 0.0002 5.31E-06  16 0.1794 0.1791 

CTB-186G2.1 chr19 39087135 39090701  4 6.19E-06 0.0005 8.36E-05  4 0.0125 0.0121 

ATG16L2 chr11 72521478 72546168  25 8.22E-06 0.0003 5.67E-06  25 0.1535 0.1536 

KCNN4 chr19 44270892 44286076  13 1.01E-05 0.0028 0.0001  15 0.0222 0.0178 

RP11-779O18.1 chr5 172168177 172189374  12 1.86E-05 0.0168 0.0008  12 0.0890 0.0872 

TTC22 chr1 55240609 55268659  23 3.42E-05 0.0010 0.0002  24 0.2027 0.2096 

DCUN1D2-AS chr13 114123258 114129580  10 3.87E-05 0.0363 0.0344  11 0.6988 0.7057 

PNMA1 chr14 74177136 74181427  9 3.88E-05 0.0709 0.1913  10 0.1022 0.0999 

RP11-101C11.1 chr1 55682652 55709508  2 3.99E-05 0.1052 0.0831  2 0.1582 0.1654 

Discovery dataset: ROS/MAP samples. All analyses were adjusted for age at death, education, sex, ancestry, smoking status, post-mortem interval (PMI) and the first three 
principal components (PCs). Associations with CERAD were additionally adjusted for cell type proportions and the fourth PC. 
Replication dataset: MRC Brain Bank Samples (Lunnon et al., 2014) All analyses were adjusted for age at death, sex and cell type composition. 
Successful replication (p-value < 0.05 in validation cohort) in bold.  
1Due to the small sample size (N=66) we conducted a permutation test with 10,000 replications in addition to the Davies’ approximation to verify the p-values in the validation 
cohort. 

 
 

not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as
this version posted N

ovem
ber 29, 2019. 

; 
https://doi.org/10.1101/857953

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/857953


28 
 

Table 4. Identification of lead signals within CLDN5 and direction of associations.  

    beta  p-value  beta  p-value  beta  p-value  beta  p-value  beta  p-value  
gene chr pos CpG site (EM) (EM) (PS) (PS) (PO) (PO) (SM) (SM) (WM) (WM) 

CLDN5 chr22 19512903 cg05460329 -0.93 1.43E-06 -0.62 1.60E-05 -0.25 0.0003 -1.10 1.89E-06 -0.45 2.41E-06 

CLDN5 chr22 19512942 cg05498726 -0.55 0.0001 -0.36 0.0008 -0.13 0.0162 -0.61 0.0005 -0.26 0.0002 

CLDN5 chr22 19513006 cg11450827 -0.60 0.0007 -0.35 0.0064 -0.16 0.0111 -0.65 0.0019 -0.30 0.0005 

CLDN5 chr22 19513008 cg17583256 -0.57 0.0005 -0.30 0.0129 -0.14 0.0180 -0.51 0.0086 -0.27 0.0008 

CLDN5 chr22 19513017 cg16773741 -0.76 1.48E-08 -0.39 8.38E-05 -0.18 0.0003 -0.86 8.81E-08 -0.38 8.66E-09 
CLDN5 chr22 19513078 cg14553765 -0.44 0.0014 -0.32 0.0017 -0.13 0.0087 -0.60 0.0003 -0.29 1.92E-05 

CLDN5 chr22 19513176 cg00189989 -0.61 0.0004 -0.42 0.0009 -0.14 0.0224 -0.78 0.0001 -0.36 1.86E-05 
Only CpG sites with a p-value < 0.001 for at least one cognitive domain are shown. Bonferroni threshold: 0.05/338,036=1.48e-07 (p-values below Bonferroni 
threshold in bold). EM: decline in episodic memory; PS: decline in perceptual speed; PO: decline in perceptual orientation; SM: decline in semantic memory; 
WM: decline in working memory. Adjusted for age at death, education, sex, ancestry, smoking status, post-mortem interval (PMI) and the first four principal 
components. 
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Figure Legends 1 
 2 
Figure 1. DNA methylation and cognitive decline. Association between DNA methylation 3 
and cognitive decline in ROS/MAP (discovery dataset) tested with GAMuT. Adjusted for age 4 
at death, education, sex, ancestry, smoking status, post-mortem interval (PMI) and the first 5 
three principal components. 6 
 7 
Figure 2. Fine mapping of the association between DNA methylation and decline in 8 
working memory. Results from linear regression analyses on the association between CpG 9 
sites and cognitive decline in ROS/MAP (discovery dataset) adjusted for age at death, 10 
education, sex, ancestry, smoking status, post-mortem interval (PMI) and the first four 11 
principal components. The most significant CpG site (cg16773741) is marked in purple and 12 
CpG sites associated with genotypes in the same window are marked in yellow (compare 13 
Table S17).  14 
 15 
Figure 3. Interaction analysis. Associations between DNA methylation of the top CpG site 16 
of CLDN5 (cg16773741) and cognitive trajectory are shown in participants with no to little 17 
(category 0) vs. moderate to severe (category 1) signs of neuropathology. No to little signs of 18 
neuropathology are defined as a CERAD measure of 3 (possible) or 4 (no AD) or a Braak 19 
stage of 0 to II. Moderate to severe signs of neuropathology are defined as a CERAD measure 20 
of 1 (definite) or 2 (probable) or a Braak stage of III to VI. P-values are given for the test of 21 
deviations of the association between methylation in cognitive trajectory between the two 22 
strata. The bars present the distribution of the neuropathological variables. EM: decline in 23 
episodic memory; PS: decline in perceptual speed; PO: decline in perceptual orientation; SM: 24 
decline in semantic memory; WM: decline in working memory. Adjusted for age at death, 25 
education, sex, ancestry, smoking status, post-mortem interval (PMI) and the first three 26 
principal components. 27 
 28 
Figure 4. Causal mediation analysis. Beta-estimates and 95%-confidence intervals of the 29 
estimated average causal mediation effects, the average direct effects as well as the total 30 
effects. Proportion (with 95%-confidence interval) of the association between DNA 31 
methylation (DNAm) of the top CpG site of CLDN5 (cg16773741) and cognitive trajectory, 32 
which is mediated through neuropathology (CERAD & Braak stage) is given in percent. EM: 33 
decline in episodic memory; PS: decline in perceptual speed; PO: decline in perceptual 34 
orientation; SM: decline in semantic memory; WM: decline in working memory. Adjusted for 35 
age at death, education, sex, ancestry, smoking status, post-mortem interval (PMI) and the 36 
first three principal components (PCs).  37 
 38 
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