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Abstract  
The E2F family of transcription factors is important for many cellular processes, from their 

canonical role in cell cycle regulation to other roles in angiogenesis and metastasis.  Alteration of 

the Rb/E2F pathway occurs in various forms of cancer, including breast cancer.  E2F1 ablation 

has been shown to decrease metastasis in MMTV-Neu and MMTV-PyMT transgenic mouse 

models of breast cancer.  Here we take a bioinformatic approach to determine the E2F1 regulated 

genomic alterations involved in the metastatic cascade, in both Neu and PyMT models.  Through 

gene expression analysis, we reveal few transcriptome changes in non-metastatic E2F1-/- tumors 

relative to transgenic tumor controls.  However investigation of these models through whole 

genome sequencing found numerous differences between the models, including differences in the 

proposed tumor etiology between E2F1-/- and E2F1+/+ tumors induced by Neu or PyMT.  

Investigating mutated genes through gene set analysis also found a significant number of genes 

mutated in the cell adhesion pathway in E2F1-/- tumors, indicating this may be a route for 

disruption of metastasis in E2F1-/- tumors.  Overall, these findings illustrate the complicated nature 

of uncovering drivers of the metastatic process. 

 

Introduction 
 

Breast cancer is the most diagnosed cancer, and second leading cause of cancer death in 

women.  To study underlying genomic events contributing to breast cancer, numerous genetically 

engineered mouse models have been generated, including the MMTV-Neu model [1] which 

recapitulates HER2+ve breast cancer, and the MMTV-Polyoma virus Middle T antigen (PyMT) 

[2] model.  The PyMT model is highly aggressive, with tumors appearing as early as 45 days of 

age, and metastasis to the lung occurring in over 90% of tumor bearing mice.  These phenotypes 

make PyMT a widely used model for the study of metastatic breast cancer.    Similar to human 
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breast cancers, both the Neu and PyMT models have striking heterogeneity at a histological, and 

gene expression level [3–6].  This heterogeneity reinforces the importance of these models as tools 

for the study of breast cancer. 

Previous bioinformatic predictions using the Neu and PyMT models suggested a key role 

for the E2F1 transcription factor in Neu and PyMT tumors, suggesting that mechanisms outside 

the overexpression of the Neu or PyMT oncogene were contributing to tumor biology [7, 8].  The 

E2F family of transcription factors is involved in many important cellular processes, including 

apoptosis and cell cycle control.  Usually sequestered by the retinoblastoma (Rb) protein, E2F1 is 

released to act on downstream targets once Rb becomes phosphorylated by cyclin dependent 

kinases (CDK) [9].  While mutations in E2F1 do not occur frequently in human breast cancer, 

mutations within the E2F pathway (Cyclin dependent Kinases, Retinoblastoma, etc.) occur in over 

25% of breast cancer patients, illustrating the importance of the pathway [10–14]. 

To test the hypothesis that E2F1 regulated key events in Neu and PyMT tumors, E2F1 

knockout (KO) mice [13] were interbred with Neu and PyMT models [7, 8].  This resulted in 

mammary tumors with altered phenotypic characteristics, including changes in latency, growth 

rate, and a significant decrease in metastasis to the lung.  Metastasis is the ultimate cause of 

mortality in cancer, with an estimated 90% of cancer deaths resulting from the spread of cancer 

cells to distal sites within the body [15].  Typically, cancer cells undergo numerous important steps 

for completion of the metastatic cascade.  These include escape from the primary tumor, 

intravasation, extravasation, and seeding the distal site [16].    The complicated nature of metastasis 

is illustrated in a recent review by Welch et al [17]. 

An important component contributing to the metastatic capability of a tumor is its 

microenvironment.  Various collagens and proteins integral to cellular and tissue structure are 
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capable of impacting metastatic potential.  In fact, proteins within the extracellular matrix, 

including collagen IV, have been found to regulate metastasis within the liver [18].  Collagen IV 

is a major component of the basement membrane, which serves as an important barrier to tumor 

invasion.  Various other proteins including lamanins, integrins, and fibronectin proteins are 

essential components of the extracellular matrix.  The integrity of extracellular matrix, including 

the basement membrane, have been shown as being important for the early steps of tumor invasion 

and metastasis [19, 20].  Interestingly, a previous report demonstrated a decrease in the number of 

circulating tumor cells within PyMT E2F1-/- mice, suggesting a disruption to the early steps in the 

metastatic cascade.  Other data shows remodeling of the extracellular matrix at pre-metastatic 

lesion sites to be important for eventual seeding of distant metastasis [21]. 

Recent advances in bioinformatics methods have facilitated the investigation of cancer 

biology.  Microarray and RNA sequencing studies have led to an abundance of publically available 

datasets, which allow for transcriptomic comparisons between primary tumor and distant 

metastatic lesions [22, 23].  Next generation sequencing has become widely available, and the 

sequencing of primary tumors as well as metastatic lesions has greatly increased our understanding 

of cancer genomics.  Studies involving the sequencing of human tumors have described the 

mutation rate of solid tumors [24], as well as shown numerous genomic events are required for 

metastatic capability [25–27].  To study the underlying genomic events behind altered phenotypic 

characteristics in E2F1 KO tumors, whole genome sequencing was completed on E2F wild type 

and E2F1 knockout mammary tumors from the Neu and PyMT models.  Here, we characterize the 

genome landscape of E2F WT and E2F1 KO tumors from both the Neu and PyMT models, and 

uncover new targets that may be critical to tumor development and progression. 
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Results 

 We have previously demonstrated altered phenotypic characteristics upon ablation of E2F1 

within the Neu and PyMT models.  These included changes in growth rate and tumor latency upon 

interbreeding Neu and PyMT mice with E2F1-/- mice (Figure 1A).  Surprisingly, given the already 

shortened latency of PyMT mice, tumor latency in PyMT mice was significantly decreased upon 

E2F1 loss while growth rate remained unaffected.  Interestingly, the opposite effect was seen 

within Neu E2F1-/- mice, where latency was significantly increased, and growth rate was 

significantly decreased.  Perhaps the most striking phenotype was a significant reduction of 

metastasis to the lung with loss of E2F1 in both mouse model strains (Figure 1B and C).   

To determine whether gene expression differences were responsible for phenotypic 

changes in E2F1 knockout tumors, microarray data were analyzed for fold change differences.  

Volcano plots revealed relatively few genes with major changes in gene expression data when 

analyzing equal to or greater than log2 fold changes between E2F1 WT and E2F1 KO tumors 

(Figure 2A).  To elucidate whether this is recapitulated in human breast cancer, data from The 

Cancer Genome Atlas (TCGA) was analyzed.  Microarray data from HER2+ve samples were 

isolated and E2F1 activity for these tumors was determined using pathway signature analysis.  

These samples were then stratified into quartiles for E2F1 activity and a log 2-fold change between 

genes was determined by subtracting samples in the lower quartile, from samples in the upper 

quartile.  As shown by the volcano plot in figure 2B, human breast tumors resemble mouse 

mammary tumors in that low E2F1 activity does not lead to vast gene expression changes.  To test 

for genetic pathways affected by loss of E2F1, Gene Set Enrichment Analysis (GSEA) was applied 

to expression data from Neu and PyMT E2F1 WT tumors in comparison to Neu and PyMT E2F1 

KO tumors.  GSEA analysis resulted in several differentially regulated pathways, including those 
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involved in WNT signaling, and nucleotide excision repair (Figure 2C).  This analysis highlighted 

the difficulties associated with the identification of pathways that were directly involved in breast 

cancer metastasis in bulk tumor samples from transcriptomic data. 

 

 Given that the gene expression analysis did not identify a mechanism altering metastatic 

potential, we examined genomic events occurring in Neu and PyMT tumors in the E2F1+/+ and 

E2F1-/- backgrounds.  Whole genome sequencing was completed and single nucleotide variant 

profiles were called for each tumor using TCGA best practices.  Initial analysis of the single 

nucleotide variant (SNV) data showed an extremely high proportion of SNVs occurring within 

chromosome 2 of the E2F1 knockout tumors relative to the E2F1 wild type controls (Figure 3A-

B).  However, E2F1 is located within the qH1 band of chromosome 2 in mice, and correlates to 

where the increased proportion of SNVs were observed (Figure 3E).  While the E2F1 knockout 

mice were backcrossed 12 generations to FVB, we hypothesized this abundance of SNVs was 

called due to residual background strain DNA from the E2F1 knockout stain. Given that E2F1 

mice were generated in the SV129 background, and Neu and PyMT mice are on the FVB 

background, we filtered SNV calls using a list of SNVs that were generated from comparing the 

SV129 background against the C57/BL6 background, which is the standard mouse reference 

genome (Figure 3F).  As a result, the majority of chromosome 2 SNV calls were filtered out, and 

the proportion of SNVs was roughly equal across the 19 autosomal mouse chromosomes in our 

E2F1 WT and E2F1 KO Neu and PyMT tumors (Figure 3G).  This serves as an important caution 

when sequencing mouse models resulting from crosses or not in purebred backgrounds. 

Interestingly, the single nucleotide variant mutation burden was higher in PyMT mice as 

compared to Neu mice (p-value = 0.05), which was surprising due to the brief latency of PyMT 
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tumors (Figure 4A).  Except for one PyMT E2F1 knockout tumor, the rate of exonic single 

nucleotide mutations ranged from .005-.08 mutations per megabase.  This mutation rate is similar 

to previous rates shown for mouse tumors [28], and is lower than the 1 mutation / megabase exonic 

mutation rate commonly observed in human breast cancer [24].   

To analyze distinct types of SNVs occurring within our tumors, and investigate potential 

mechanisms driving these differences, a mutation signature approach was taken [29].  While 

trinucleotide signatures showed similarities between Neu and PyMT tumors, there were striking 

differences, such as T>G mutations occurring almost exclusively in Neu tumors of either E2F1 

status (Figure 4B).  The signatures for all 12 tumors are shown in Supplemental Figure 1.  Principal 

component analysis (PCA) completed using mutation signatures from all 12 tumors shows distinct 

clustering between Neu and PyMT tumors (Figure 4C).  Furthermore, apart from a single E2F1 

KO PyMT tumor, PCA separates E2F1 WT and E2F1 KO tumors into distinct clusters within the 

Neu and PyMT models.   

The contribution of the 30 known COSMIC (catalog of somatic mutations in cancer) 

signatures to each Neu and PyMT tumor were then determined [29].  While all Neu and PyMT 

tumors had some contribution from signature 18, there were stark differences in the other COSMIC 

signatures contributing to Neu and PyMT tumors (Figure 4D).  For example, Neu tumors had 

contributions from signatures 1 and 3, while PyMT tumors were associated with signatures 4 and 

20.  Furthermore, there were signature differences when comparing E2F1 WT tumors to E2F1 KO 

tumors within the Neu and PyMT models.  For example, Neu E2F1 WT tumors were associated 

with signatures 5 and 9, while Neu E2F1 KO tumors lacked these associations.  When analyzing 

the proposed etiology for these signatures, Neu tumor signatures are associated with age, while 

PyMT tumor signatures have no age association, which aligns in the context of Neu and PyMT 
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tumor latency (supplemental figure 1).  Interestingly, Neu tumors also have an association with 

inefficient double stranded break repair (DSB), with E2F1 KO tumors being more highly 

associated than E2F1 WT tumors. PyMT tumor signatures were not associated with DSB, but were 

highly associated with smoking, and defective DNA mismatch repair (MMR).  Together, these 

data suggest E2F1 loss drives differences in DNA repair and tumor etiology. 

Multiple programs were also used to determine copy number variants and translocations 

occurring within Neu and PyMT tumors (Figure 5A-D).  After considering the consensus CNV 

calls from two programs, over 98% of the copy number events were small in size (under 1 mb), 

while relatively few larger events (above 1 mb) were observed.  When analyzing CNV events from 

the programs individually, there was a larger proportion of copy number events greater than 1 mb 

in size.  However, these larger events still only accounted for approximately 5% of the copy 

number events occurring within a tumor.  Surprisingly, there was a large amount of copy number 

gene overlap between the E2F WT and E2F1 KO tumors (Figure 5E).  The large number of shared 

genes involved in copy number events may indicate E2F1 loss is not a primary driver of these 

events. 

There were a surprisingly large number of translocations occurring within the Neu and 

PyMT tumors.  When comparing the average number of translocations per sample across the 

genomic models, there were statistically more translocations occurring within Neu tumors than 

PyMT tumors, regardless of E2F1 status.  When comparing across E2F1 status within the each 

model however, there was no statistically significant difference (Figure 5F).  To confirm the 

translocation calls made by Delly and Lumpy, 20 translocations from each tumor were chosen at 

random and the read evidence for these translocations was analyzed using Genome Ribbon [43].  

Translocation read data for one tumor can be found in Table 1.  All tumors had at least 75% of 
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translocations with some read support, with 9 of 12 tumors having at least 85% of translocations 

with some read support (Supplemental Table 1).  Interestingly, all translocation events analyzed 

had wild type reads present, suggesting a level of heterogeneity occurring within the tumors.  To 

verify one of the translocation events from Table 1, PCR was completed with primers flanking the 

translocation junction.  Both translocated and wild type reads were present at the breakpoint, 

confirming the existence of the translocation (Figure 6).  Based on this evidence, upwards of 80% 

of the translocations are predicted to be real events. 

 

 

To determine whether cancer and metastasis related genes were mutated within E2F1 WT 

and E2F1 KO tumors, the list of mutations was screened with the list of known cancer genes from 

the Catalog of Somatic Mutation in Cancer (COSMIC).  This analysis found mutations in a number 

of genes associated with cancer (Supplemental Table 2), but failed to find key metastatic genes 

consistently mutated within the four sample groups To identify whether an abundance of mutations 

occurred within particular pathways of E2F1 knockout tumors versus E2F1 wildtype tumors, a 

database mining approach was taken using Gather [30].  First, genes with potentially impactful 

mutations were stratified into two gene lists that were distinct in E2F1-/- versus E2F1+/+ tumors.  

Potentially impactful mutations are regarded as SNVs causing stop gain or nonsynonymous 

mutations, translocations causing truncated or fusion genes, or copy number segments resulting in 

the amplification or deletion of genes.  These two gene lists were then applied to Gather to 

determine whether Gene Ontology (GO) lists or KEGG pathways were significantly mutated.  This 

analysis determined a number of significant GO lists that were present within the gene list from 

E2F1-/- tumors, but not E2F1+/+ tumors. 
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One of the most interesting GO lists present within E2F1 mutated tumors, but not E2F1 

wildtype tumors, included 48 genes involved in cell adhesion.  Many of these genes include various 

collagens, integrins, and cadherins (Figure 7).  Previous research has shown a number of collagens 

to be important for tumor maintenance, angiogenesis, and metastasis [20].  Collagen IV is the 

major component of the basement membrane, and is comprised of heterogeneous trimers stemming 

from six COL4A genes.  Three collagen IV genes were found mutated in different PyMT E2F1 

KO tumors.  Other mutations within PyMT E2F1 KO tumors include COL5A2, with collagen V 

being a component of the interstitial matrix, COL6A1-3, with collagen VI being abundant in the 

tumor invasive front [21–23], and various integrin and cadherin genes.  Interestingly, when re-

analyzing the gene expression data, the integrin pathway was also found dysregulated through 

Gene Set Enrichment Analysis.  There was also an abundance of intronic and synonymous 

mutations within these genes, suggesting they may be hypermutated due to the disruption of E2F1 

within the model.  In fact, of the 48 mutated genes from Gather, 24 were predicted to be regulated 

by E2F1 through TRANSFAC.  
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Discussion 

Ablation of E2F1 in PyMT and Neu transgenic mice results in a significant decrease in metastasis 

to the lung.  To determine whether gene expression changes were responsible for the altered 

phenotypes, microarray data was analyzed but showed no large changes in gene expression 

between E2F1+/+ and E2F1-/- mice.  This was recapitulated in human HER2+ breast cancers after 

separation into E2F1 high/low quartiles.  Examination of pathways through GSEA revealed several 

pathways differentially regulated between E2F1+/+ and E2F1-/- tumors, but none of these pathways 

had obvious implications in regulating metastasis.  To test for genomic alterations impacting 

metastasis, we completed WGS of E2F1+/+ and E2F1-/- tumors in both the Neu and PyMT models.  

Initial analysis showed an abundance of SNV mutations within chromosome 2 of E2F1 knockout 

mice, but this was corrected by filtering SNVs based on the mouse background.  Mutation 

trinucleotide signatures showed differences between etiology of Neu and PyMT tumors, as well as 

between the E2F1 knockout and E2F1 WT tumors, with each group clustering separately in a PCA 

plot.  Neu tumors were more closely associated with double stranded break repair, while PyMT 

tumors were associated with DNA Mismatch Repair.  Structural variant analysis showed 

conservation of copy number genes between the Neu and PyMT models, and a surprisingly high 

number of translocations within the tumors.  Based on the read evidence, we predict greater than 

80% of the called translocations are real events.  Analyzing the lists of mutated genes for GO and 

KEGG pathways revealed a significant number of mutated genes involved in cell adhesion.  

Further analysis of these genes found many of them are involved in the basement membrane and 

interstitial matrix, which could be a potential route for disruption of the metastatic cascade. 

Sequencing data from genetically engineered mouse models is largely lacking, with only a 

few models having been sequenced [28, 31–33].  SNV mutation rates between previous studies 
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and ours indicate similarities, and the small discrepancies may be explained through differences 

in data processing methods.  Regarding copy number variation, prior research has shown numerous 

small copy number events, as well as a few larger events [31], although that publication had 

estimated copy number variation regions from whole exome sequencing data. This was 

recapitulated in our data, with the exception that large events were not prevalent after taking the 

consensus of two structural variant callers.  We also noted a substantially greater number of 

translocations within the mouse tumors as compared to a previous study comparing Neu and PyMT 

E2F1 wildtype tumors, however, the same trend of Neu tumors having more translocations than 

PyMT tumors holds.  This increase in called translocations is likely explained by differences in 

calling methods, with the previous method being more stringent.  Overall, the field may benefit 

from a large comparison of mouse tumor sequencing data with tumors analyzed under the same 

parameters. 

After analyzing mutated genes using a pathway approach, many genes involved in cell 

adhesion were found having potentially impactful mutations in E2F1 knockout tumors, but not 

E2F1 wild type tumors.  These included various collagens, integrins, cadherins, and related genes.  

Of the mutated genes found important to cell adhesion, some, such as Col4a1, are important 

components of the basement membrane and are involved in tumor progression.  Disruptions to the 

basement membrane and other collagen formations has potential to disrupt the metastatic process 

during pre-intravasation. This theory is supported by previous data we generated, which found a 

significant decrease in circulating tumor cells [7].  Interestingly, we have also previously noted 

amplification of Col1a1 in Neu E2F1 WT tumors, and found this event to be important for the 

metastatic process [16].  Combined, these data highly suggest various collagens and proteins 

within the basement membrane are important to the metastatic process in Neu and PyMT tumors. 
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SNV profiling for human tumors has utility for both discovery and treatment purposes.  

Sequencing of human breast tumors has revealed larger genomic trends as well as mutation rates 

for oncogenes and tumor suppressors  [34].  Clinically, the benefits of SNV profiling are observed 

in examples such as EGFR mutant lung cancers being treated with tyrosine kinase inhibitors.  The 

importance of determining SNVs within mouse models is evidenced by previous research from 

our lab and others [28, 31].  Potential sources of error when determining SNVs can stem from 

differing genetic background within mice, even after backcrossing, as well as being too loose or 

too stringent with the filtering process.  Interestingly, a prior report identified an important 

mutation within the Ptprh gene [28] , but this mutation was not present within this sequence 

analysis.  This discrepancy was due to the different approaches taken for each analysis.  While the 

initial paper stipulated an SNV call must pass 3 of 4 SNV calling programs, the work herein 

stipulated a call must pass 3 of 3 programs used.  When analyzing the SNV data for each program 

used, a mutation in Ptprh was called from SomaticSniper and Varscan, but not called from 

Mutect2.  This suggests the usage of multiple programs to call SNVs is more applicable for 

discovery purposes, and that less stringent filtering parameters may be beneficial. 

When analyzing copy number alterations and translocations within the models, there were 

a surprising lack of differences across E2F1 status, suggesting E2F1 loss is not a primary driver of 

these events.  The large number of called translocations occurring within both models was 

surprising, and based on read evidence; we estimate at least 80% of these to be present within the 

tumors.  Furthermore, the varying read support seen for confirmed translocations indicates a high 

amount of tumor heterogeneity occurring in both models, regardless of E2F1 status.  While there 

were numerous Catalog of Somatic Mutations in Cancer (COSMIC) associated genes mutated 
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within the models, no mutations conserved between E2F1 knockout tumors (within or across 

models) immediately jumped out as important to the metastatic process. 

Analyzing gene expression changes between E2F1 WT and E2F1 KO tumors showed no 

major changes upon E2F1 loss.  This was recapitulated among human HER2+ve breast cancer 

tumors stratified between low and high E2F1 activity.  The lack of major changes on a gene 

expression level may indicate that compiled small changes are enough to result in phenotypic 

alterations, or that genomic mutations are leading to altered protein function/localization.  

Interestingly, the gene encoding Transcription Factor AP-2 Beta was significantly upregulated in 

Neu E2F1 KO mice.  This, combined with the data showing a lack of major gene expression 

changes between E2F1 WT and E2F1 KO tumors indicates a level of compensation is occurring 

by other members of the E2F family, as well as other transcription factors [7, 8].  The sequencing 

data from E2F1-/- Neu and PyMT mice indicate phenotypic changes may be due to an abundance 

of mutations in particular pathways in addition to minor expression changes observed in 

microarray data.  Taking into consideration that the metastatic process likely originates from a 

small population of metastatic cells within the primary tumor, the contribution of a few metastatic 

cells to the bulk tumor gene expression or sequencing data may also cause key events to be lost 

within the noise of the primary tumor.  Future work will address these issues through single cell 

sequencing and gene expression in matched primary and metastatic tumors. 

 

Methods 

Gene Expression Analysis:  Gene expression data was obtained as described previously [6, 8].  

Volcano plots for Neu and PyMT tumors were generated by removing outliers for each sample 

group using Nowaclean (Holsb, Einar. 2017. “Outlier detection with nowaclean.”), samples that 
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were at least 3.0 standard deviations away when constructing a PCA plot were removed.  Data 

were log2 transformed, and the mean for each gene was calculated within the four sample groups.  

Fold change was then calculated by subtracting the E2F1 KO mean from the E2F1 WT mean for 

each gene.  P-values were calculated, and data was plotted using EnhancedVolcano (Blighe, Kevin. 

2018. “EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and 

labeling.”) in R.  Human RSEM normalized RNAseq breast cancer data from TCGA was 

downloaded from UCSC Xena, filtered to HER2+ samples, and sorted by E2F1 expression.  The 

lower and upper quartiles were kept, and the data were processed for volcano plots as above.  

GSEA plots were generated from combining Neu and PyMT gene expression datasets.  Datasets 

were collapsed, and combatted to remove batch effects.  GSEA was run using GenePattern [35] 

from the Broad Institute. 

 

Whole Genome Sequencing and Processing:  Three samples from each group, (for a total of 12), 

were used to extract DNA from flash frozen tumors according to the manufacture’s protocol of the 

Qiagen Genomic-tip 20/G kit.  Sequencing was completed at a depth of 40x with paired end, 150 

base pair reads.  DNA was prepped for sequencing using Illumina TruSeq Nano DNA library 

preparation, and sequenced on an Illumina HiSeq 2500.  After sequencing, raw fastq files assessed 

for quality control using FASTQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), 

trimmed using Trimmomatic [36], and assessed for quality control for a second time.  Files were 

aligned to the mm10 mouse reference using BWA MEM [37] under standard parameters.  After 

alignment, Picard tools (“Picard Toolkit.” 2019. Broad Institute, GitHub Repository. 

http://broadinstitute.github.io/picard/; Broad Institute) was used to add read groups, and Samtools 
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[38] was used to sort.  PCR duplicates were then removed using Picard tools, and the files were 

indexed. 

 

Variant Calling:  Somatic SNVs were called using SomaticSniper [39], Mutect2 [40], and VarScan 

[41].  Consensus calls were merged using R (R Core Team (2018). R: A language and environment 

for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available 

online at https://www.R-project.org/) base programming, and mutations were only kept if they 

were called by all three programs.  SNV calls were also filtered using base R to account for 

differences between the FVB strain and mm10 alignment (C57/BL6), as well as differences 

between the SV129 strain (original E2F1 mouse background) and C57/BL6.  SNVs were annotated 

using Annovar [42].  CNVs were determined by keeping the consensus of Lumpy [43] and Delly 

[44].  Consensus was determined using Intansv (Yao W (2019). intansv: Integrative analysis of 

structural variations. R package version 1.24.0) at a threshold of .2, and events smaller than 10,000 

bp were filtered out.  Intansv was also used to annotate CNV events.  Translocations were called 

using Lumpy and Delly, and filtered based on read evidence.  Lumpy calls were kept if they has 

at least 20 supporting split end and paired end reads, Delly calls were kept if there was split end 

and paired end read evidence for the call.  Where needed, WT FVB mouse sequence was used as 

a normal control. 

 

Mutation Signatures:  Trinucleotide mutation signatures were completed for each sample using the 

Musica [45] shiny app in R.  Musica code was altered to allow for the use of the mouse mm10 

reference genome. 
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Circos plots:  Circos plots were generated for each sample using CIRCOS version .69 [46].  

Genetic variants were plotted according to the mm10 reference genome. 

 

Translocation Verification:  Read evidence for 20 randomly selected translocations from all 12 

sequenced samples was examined using GenomeRibbon [47].  For PCR verification, primers were 

designed with at least 400 bp flanking the predicted breakpoint.  
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Figure Legends 

 

Figure 1:  Altered phenotypic characteristics in E2F1-/- tumors.  A) E2F1-/- mice were crossed with 

MMTV-Neu and MMTV-PyMT mice on the FVB background to create E2F1 knockouts in both 

models.  B) Phenotypic changes seen in PyMT E2F1-/- mice and (C) Neu E2F1-/- mice, 

summarizing changes in latency, growth rate, and number of metastasis.  H&E staining of E2F1+/+ 

mouse lung shows a large number of metastasis, while E2F1-/- mice have little to no metastasis.  

Histology of the lungs was obtained at primary tumor endpoint.   

 

Figure 2:  Gene expression changes in E2F1-/- mouse tumors, and E2F1 low human breast cancer.  

A)  Two volcano plots show significant fold changes in genes from Neu and PyMT mouse tumors 

respectively.  Fold change was determined by subtracting the E2F1 KO mean from the E2F1 WT 

mean for each gene.  Fold change and p-value cutoff for Neu tumors was .5, and .05 respectively.  

Fold change and Pvalue for PyMT tumors was 1.0 and .001 respectively.  B)  Diagram represents 

data processing steps for human TCGA data.  A volcano plot shows significant fold change genes 

in E2F1 high vs. E2F1 low human HER2+ve tumors.  Fold change was determined by subtracting 

samples in the lowest E2F1 quartile mean from the highest E2F1 quartile mean for each gene.  

Fold change cutoff and p-value for human tumors was 2.0, and 10e-60 respectively.  C)  GSEA 

plots generated for E2F1 WT vs E2F1 KO tumors (Neu and PyMT combined) show enrichment 

of Nucleotide excision repair, and WNT signaling pathways in E2F1 KO tumors. 

 

Figure 3:  Filtering background strain to remove artifacts that have potential to confound analysis.  

A) Pie chart from an E2F1+/+ PyMT tumor represents the normalized (SNVs/Chromosome Size) 

percentage of SNVs within each chromosome.  B) Pie chart from an E2F1-/- PyMT tumor 
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represents the normalized percentage of SNVs within each chromosome.  An abundance of SNVs 

within chromosome 2 is observed.  C) The banding pattern of mouse chromosome 2.  The arrow 

highlights the location of E2F1, and the yellow box represents the bands represented in D and E.  

D) Manhattan plot shows the number of SNVs occurring within the 2qF3-2qH3 bands of 

chromosome 2, in the E2F1+/+ sample from A. E) Manhattan plot shows the number of SNVs 

occurring within the 2qF3-2qH3 bands of chromosome 2, in the E2F1-/- sample from B.  F) Top 

pie chart is the same as in B.  Bottom pie chart represents the percentage of SNVs across each 

chromosome of the same sample as above, after filtering on the sv129 background. 

 

Figure 4:  SNV mutation burden in Neu and PyMT tumors.  A)  Bar graphs represent the number 

of total or exonic mutations per megabase occurring in all 12 sequenced tumors.  B) Shows 

representative mutation profiles for each of the four classes of samples sequenced.  Mutation 

profiles are derived from 96 bp trinucleotide signatures originally developed by Alexandrov et. al.  

Four classes of samples are Neu E2F1+/+, Neu E2F1-/-, PyMT E2F1+/+, PyMT E2F1-/-.  C) PCA 

plots derived from trinucleotide signatures show clustering of all 12 samples sequenced.  D)  The 

heatmap of cancer signatures for the 12 sequenced tumors, as well as various cancers is shown. 

 

Figure 5:  Mutation burden in Neu and PyMT tumors.  A)  Circos plot for a representative Neu 

E2F1+/+ sample.  B) Circos plot for a representative Neu E2F1-/- sample.  C) Circos plot for a 

representative PyMT E2F1+/+ sample.  D) Circos plot for a representative PyMT E2F1-/- sample.  

For A-D Circos plots, outer most ring represents the mouse chromosomes.  Four successive inner 

rings represent the following mutation types; total SNVs, exonic SNVs, Copy number variation 

with green being amplification and red being deletion, and translocations.  E) Venn diagram 
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showing the overlap of genes within copy number events.  Consensus copy number events were 

generated for each of the three samples within the four sample classes.  Genes were then extracted 

and compared across the sample classes.  F). Venn diagram showing the overlap of translocations 

occurring within the four sample classes.  Consensus translocations calls from each of the three 

samples within each class were generated, and the four classes were then compared.    

 

 

 

Figure 6:  Verification of translocation calls.  A)  Example of a GenomeRibbon plot where no 

structural variation occurs.  The top colored bands represent each chromosome of the mouse, and 

the red box below represents the location searched within a sample’s bam file.  Each line within 

that box represents a different read.  B) A GenomeRibbon plot representing translocation number 

13 from table 1.  Translocated reads are shown between chromosome 9 and chromosome 8.  C)  

Gel image of the chromosome 8/9 translocation from the GenomeRibbon plot above.  DNA was 

from a PyMT E2F1-/- tumor.  Both translocation and wild type tumor DNA were amplified.  

Translocated reads were amplified using a primer set flanking the region where the two 

translocated ends ligate. 

 

Figure 7:  Mutations in basement membrane genes.  Diagram shows various mutations occurring 

in genes that code for proteins making up the basement membrane and interstitial matrix. Circles 

at top indicate genes with colors representing 1 of 3 sequenced E2F1-/- PyMT tumors that has a 

mutation in that gene.  Image on left represents a breast tumor with surrounding basement 

membrane.  Image on right represents the basement membrane and interstitial matrix on the outer 

edge of a tumor. 
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