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Abstract

Motivation: Higher-order epistatic interactions can
be the driver for complex genetic diseases. An ex-
haustive search is the most accurate method for
identifying interactive SNPs. While there is a fast
bitwise algorithm for pairwise exhaustive searching
(BOOST), higher-order exhaustive searching has yet
to be efficiently optimized.
Results: In this paper, we introduce BitEpi, a pro-
gram to detect and visualize higher-order epistatic
interactions using an exhaustive search. BitEpi in-
troduces a novel bitwise algorithm that can perform
higher-order analysis more quickly and is the first bit-
wise algorithm to search for 4-SNP interactions. Fur-
thermore, BitEpi increases detection accuracy by us-
ing a novel entropy-based power analysis. BitEpi vi-
sualizes significant interactions in a publication-ready
interactive graph. BitEpi is 56 times faster than
MDR for 4-SNP searching and is up to 1.33 and 2.09
times more accurate than BOOST and MPI3SNP re-
spectively.
Availability: Codes and data are publicly
available on GitHub https://github.com/aehrc/

BitEpi. BitEpi is also available on CodeOcean
https://doi.org/10.24433/CO.3671084.v1.
Contact: Arash.Bayat@csiro.au - Denis.Bauer@

csiro.au

Supplementary information: Supplementary
data are available at bioRxiv online.

1 Introduction

Complex diseases often have a multi-genic compo-
nent where the individual genomic locations can be
both independently and interactively contribute to
the disease [1]. The interactive effects are referred
to as epistatic [2, 3]. Epistatic interactions involving
3 or more SNPs (higher-order) have been suggested
to contribute to the ’missing heritability’ problem in
complex diseases [1, 2]. However, detecting such in-
teractions is computationally challenging due to the
exponential complexity of the problem [4, 5, 6, 7, 8].
Given a dataset with n SNPs, the exhaustive epis-
tasis search with the order of m (number of interac-
tive SNPs) requires

(
n
m

)
combinations of SNPs to be

tested, resulting in a complexity of O(nm).
Due to the exponential complexity of higher-order

exhaustive search algorithms, it is not practical to
apply them to large datasets. However, it is possi-
ble to use a filter to reduce the search space to a
smaller number of SNPs before a more in-depth anal-
ysis [9, 10, 11, 12, 12] (i.e exhaustive search). Ran-
dom Forest [13] is an efficient method for this filter
as it preserves higher-order interactions [14]. Par-
ticularly, a new cloud-based implementation of Ran-
dom Forest called VariantSpark [15] is able to pro-
cess whole-genome data with 100,000,000 SNPs. It
is capable of fitting tens of thousands of trees, which
enables the interrogation of the search space more
deeply, thereby reducing the chance of missing im-
portant interactions.

Irrespective of the applied filtering methodology,
the key to discovering and annotating a complete set
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of interactions is a fast exhaustive search. There are
several algorithms for finding pairwise (2-SNP) inter-
actions between genomic locations using exhaustive
search approaches. With execution time a major lim-
itation, algorithmic improvements focus on speedup.
For example, TEAM [16] uses a minimum spanning
tree algorithm to minimize execution time. More re-
cently, BOOST [17] delivered a 168-fold speed up over
TEAM [5] by using bitwise operations for pairwise in-
teractions.

As it is likely that more than two genomic lo-
cations interact, efforts have been made to extend
the exhaustive search capability to higher-order in-
teractions. For example, CINOEDV [18] offers ex-
haustive searching for up to 5-SNP epistasis. How-
ever, with a focus on the visualization of the interac-
tions, CINODEV was not designed for speed and its
non-parallel implementation in R is 66.5 times slower
than BOOST when processing 100 SNPs [18]. Capa-
ble of processing higher-order interactions more effi-
ciently, MDR [19] (Multi-factor Dimensionality Re-
duction) is an extensive epistasis analysis platform
offering parallel exhaustive search functionality. Im-
proving on the algorithmic implementation further,
MPI3SNP [20] adapts the bitwise approach used by
BOOST. However, with MPI3SNP being limited to 3-
SNP searches, the need for a fast higher-order search
remains unaddressed.

In this paper, we introduce BitEpi, a fast and accu-
rate exhaustive higher-order epistasis search program
able to identify and visualize up to 4-SNP interac-
tions. BitEpi introduces a novel bitwise approach ca-
pable of handling higher-order interactions, making
it the first bitwise optimization method to be able to
search for 4-SNP interactions. Unlike BOOST and
MPI3SNP, that code each SNP to 3 bit-vectors, our
algorithm uses 1 bit-vector to store each SNP, en-
abling a more efficient use of modern CPUs. Fur-
thermore, BitEpi uses entropy-based power analysis,
which has been demonstrated to better fit sparse con-
tingency tables in epistasis analysis [21, 22, 18].

BitEpi visualizes interactions in a Cytoscape
graph. Unlike CINOEDV’s static plots, BitEpi’s vi-
sualization is interactive and dynamic, allowing users
to customize the layout (location of the nodes in the
graph). This is essential when working with large in-

teraction graphs (e.g. grouping interactive SNPs to
better understand underlying biology).

The rest of this paper is organized as follows. Sec-
tion 2 describes the underlying algorithm used by
BitEpi. The performance and accuracy of BitEpi are
documented in Section 3.1. Finally, we conclude by
outlining future research directions.

2 Method

Processing each combination of SNPs includes two
steps: the counting step to find the frequency of geno-
type combinations and the power analysis to compute
the association power and the interaction effect size.
The counting step is responsible for most of the ex-
ecution time. Section 2.1 describes a bitwise process
to speed up computing the contingency table for up
to four SNPs. The accuracy to identify true epistasis
interactions depends on the method used for power
analysis. The statistics used to evaluate association
power and the interaction effect size from the con-
tingency table are then described in Section 2.2. We
elaborate on our experimental setup in Section 2.3.

2.1 Counting

The input to BitEpi is a set of bi-allelic SNPs where
there are three possible genotypes (0/0, 0/1 and 1/1).
Multi-allelic SNPs should be broken into multiple bi-
allelic SNPs before the analysis (i.e. using bcftools

norm). Given m is the order of the analysis (number
of interactive SNPs), the size of the contingency table
is 3m rows and two columns. Each row represents a
different genotype combination for the selected SNPs.
Columns represent the case and the control cohorts.
Each entry of the table is the number of samples with
a specific genotype for the selected SNPs in the case
or control cohort. Table 1 illustrates an example con-
tingency table for a pair of SNPs: A and B. The fifth
row of the table explains that there are 34 cases and
46 controls with a heterozygous genotype for both A
and B.

To speed up the process of counting samples in
each cohort with the same genotype, we have imple-
mented a fast bitwise algorithm. Bitwise represen-
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Table 1: An example contingency table for 2-SNP
interaction of two SNPs: A and B.

A B Case Control
0/0 0/0 23 424
0/0 0/1 263 423
0/0 1/1 534 634
0/1 0/0 87 45
0/1 0/1 34 46
0/1 1/1 56 345
1/1 0/0 345 34
1/1 0/1 56 64
1/1 1/1 456 547

tation of genotypes allows the genotypes of multiple
samples to be stored in a machine word (64-bit) and
processed in an operation (bit-level parallelization).
In our algorithm, a genotype is encoded using two
bits (i.e. 00, 01 and 10 for 0/0, 0/1 and 1/1 respec-
tively) and stored in a byte (8-bits). The remaining
6 bits are set to 0. Thus, 8 samples can be stored in
a 64-bit machine word (the parallelization factor is 8
samples per operation). Each SNP is stored in 1 bit-
vector (1-Vector bitwise approach). Our algorithm
uses bitwise SHIFT and OR operators to combine
genotypes of up to 4 SNPs. In the resulting vector,
each byte represents the genotype of all m SNPs for
a sample. Thus, the counting process loops through
the resulting vector and counts the frequency of each
byte.

Figure 1 is an example that shows the binary rep-
resentation of genotypes of four different SNPs: A,
B, C and D across 8 samples (4 cases and 4 con-
trols). The second, third and fourth SNPs are then
shifted to the left by 2, 4 and 6 bits respectively.
Next, all four SNPs are combined using bit-wise OR
operations. These two steps are also shown in Fig-
ure 1. In the resulting array, each byte represents
a genotype combination for a sample (a row in the
contingency table). For example, 00010010 (for sam-
ple S4) represents the row in which D and B have
the 0/0 genotype, C has the 0/1 genotype and A has
the 1/1 genotype. To form the contingency table,
BitEpi loops through the OR vector and counts the
occurrences of each byte.

BitEpi eliminates the shift operations at each test
by pre-computing 2, 4 and 6 bit shifted versions of
the entire dataset (producing 3 extra copies) and stor-
ing them in memory before the analysis. Since the
number of SNPs for an exhaustive epistasis analysis
is limited, the redundancy in memory usage and the
time to pre-compute shifted datasets are negligible.

Our 1-Vector bitwise approach is different from
the 3-Vector bitwise approach used in BOOST and
MPI3SNP. Algorithm 1 and Algorithm 2 illustrate
the 3-Vector and 1-Vector bitwise approaches to com-
pute one column of the contingency table in a m-
SNPs interaction (i.e case column or control column).
Both cohorts can be processed using the same algo-
rithm.

Here, C represent a column of the contingency ta-
ble where C[i] is the number of samples in the ith row
of the table (i starts from 0). {P [1] . . . P [m]} repre-
sent m SNPs and R is a temporary variable (a 64-bit
machine word).

In Algorithm 1, each SNP is encoded into 3 bit-
vectors, v[1], v[2] and v[3]. Each bit-vector corre-
sponds to a genotype (0/0, 0/1 and 1/1 respectively).
For P [i], if the jth sample has the 0/1 genotype, then
the jth bit in P [i].v[2] is set to 1. Each bit-vector
is stored in an array of 64-bit machine words where
each word contains the information for 64 samples (1
bit per sample). Thus the parallelization factor is 64
samples per operation. P [i].v[j][k] represents the kth

word of the jth vector of the ith SNP. There are d s
64e

words in each vector where s is the number of sam-
ples in the cohort (i.e. cases or controls). The core
operation of Algorithm 1 includes m bit-wise AND
operations, a BitCount operation to count number
of set bits (1’s) in the result of AND operations (R)
as well as an ADD operation. In this program there
are m nested loops each iterating from 1 to 3. xi is
the iterator for the ith loop. These loops result in the
complexity of 3ms to perform each test.

On the other hand, our proposed 1-Vector bitwise
method shown in Algorithm 2 does not have the 3m

exponential complexity. The down side is the lower
parallelization factor (8 compared to 64). In Algo-
rithm 2, P k[i].v[j] represents the jth word in the bit-
vector of ith SNP shifted k bits to the left. The core
operation of the algorithm is m bitwise OR operation
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SNPs
Samples

Controls Cases
S1 S2 S3 S4 S5 S6 S7 S8

A 0/1 1/1 0/1 1/1 0/1 0/1 1/1 0/1
B 0/0 1/1 0/0 0/0 1/1 0/1 0/1 0/0
C 0/1 0/0 1/1 0/1 1/1 0/1 0/0 0/0
D 0/1 0/0 0/1 0/0 1/1 1/1 0/1 0/1

Binary Genotypes
A 00000001 00000010 00000001 00000010 00000001 00000001 00000010 00000001
B 00000000 00000010 00000000 00000000 00000010 00000001 00000001 00000000
C 00000001 00000000 00000010 00000001 00000010 00000001 00000000 00000000
D 00000001 00000000 00000001 00000000 00000010 00000010 00000001 00000001

Shifted Binary Genotypes
A 00000001 00000010 00000001 00000010 00000001 00000001 00000010 00000001

B << 2 00000000 00001000 00000000 00000000 00001000 00000100 00000100 00000000
C << 4 00010000 00000000 00100000 00010000 00100000 00010000 00000000 00000000
D << 6 01000000 00000000 01000000 00000000 10000000 10000000 01000000 01000000

Bitwise OR of Shifted Binary Genotypes
OR 01010001 00001010 01100001 00010010 10101001 10010101 01000110 01000001

Figure 1: The bitwise representation of 4 example SNPs (A, B, C, and D) and the shifted bit-vectors as well
as combined bit-vector.
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for x1 ← 1 to 3 do
. . .

for xm ← 1 to 3 do
for w ← 1 to d s

64e do
R← P [1].v[x1][w];
for j ← 2 to m do

R← R ∧ P [j].v[xj ][w];
end
row ← 0;
for j ← 1 to m do

row ← (row × 3) + (xj − 1);
end
C[row]← C[row] +BitCount(R);

end

end

end
Algorithm 1: 3-Vector bitwise algorithm used in
BOOST and MPI3SNP

and 8 increment operations. R.byte[b] represents bth

byte in R (R consist of 8 bytes).

for w ← 1 to d s8e do
R← P 0[1].v[w];
for x← 2 to m do

R← R ∨ P 2(x−1)[x].v[w];
end
for b← 1 to 8 do

C[R.byte[b]] + +;
end

end
Algorithm 2: 1-Vector bitwise algorithm used in
BitEpi

In the final executable all loops that are not a func-
tion of s are unfolded and flattened. Nevertheless,
this implementation optimization does not eliminate
the fact that in the 3-Vector method the time to test
combinations of m SNPs exponentially increases with
m (3m). The results in Section 3.1 show this depen-
dency.

2.2 Power Analysis

BitEpi computes two metrics for each combination of
SNPs: the combined association power (β) and the
interaction effect size (α). In a m-SNP analysis, β
represents the combined association power of all m
SNPs together. α represents the gain in the associ-
ation power that only exists when considering all m
SNPs together. If one of the SNPs is excluded from
the set, the association power drops by at least α.
α and β are entropy metrics designed based on the

concept of set purity in Gini-Index. The purity of a
set p is computed using Equation 1 where x and y
represent the number of case and control samples in
the set. Each row of the contingency table represents
a set of samples. The weighted average purity of these
sets represents the combined association power of the
given contingency table (β). The weight for each set
is the ratio of the number of samples in the set to the
total number of samples. Assuming xi and yi repre-
sent the number of case and control samples in the
ith row of the contingency table, the combined asso-
ciation power is computed using Equation 2 where
xi+yi

n and xi
2+yi

2

(xi+yi)2
are weight and purity of ith set

(row) respectively.

p =
x2 + y2

(x+ y)2
(1)

β =
m3∑
i=1

(
xi + yi
n

)(
xi

2 + yi
2

(xi + yi)2
) (2)

Assume Gm is a set of m SNPs (a1, a2, ..., am) and
Gm−1

i is Gm excluding ai (i.e. Gm−1
i is a subset of

Gm). Combined association power of Gm (βGm) is
always greater than or equal to the combined asso-
ciation power of Gm−1

i (βGm−1
i

). We call βGm−1
i

the

lower-order β for βGm .
A high value of βGm does not necessarily indicate

a strong interaction between SNPs. For example
β(A,B,C) could be significant only because β(A,C) is
significant. In this case, B does not play a role in the
interaction (i.e. including B has a negligible effect on
combined association power).

We are interested in the set of SNPs where the as-
sociation power is driven by the interaction between
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all SNPs in the set, as opposed to an individual SNP
or through additive effects of SNP subsets. Thus to
compute αGm , we subtract maximum lower-order β
from βGm (see Equation 3). BitEpi computes α and
β for individual SNPs too (normal GWAS). To com-
pute α for an individual SNP βG0 is computed as the
purity of the set that includes all samples.

αGm = βGm − m
max
i=1

βGm−1
i

(3)

In order to compute αGm , the program needs to
compute βGm−1

i
. Since there could be common SNPs

between two sets of m SNPs, the same βGm−1
i

should

be recomputed multiple times. For example, to com-
pute α(A,B,C,x) where x could be any SNP in the
dataset other than A, B and C, β(A,B,C) should be
recomputed. This results in a huge computational
redundancy. To avoid this redundancy, prior to
computing αGm , BitEpi computes all lower-order βs
(βGm−1) and stores them in a multi-dimensional ar-
ray. Using a multi-dimensional array to store β for all
possible (m − 1)-SNP combinations results in mem-
ory redundancy (memory is allocated but not used).
However, lower order β values are accessed frequently
and a multi-dimensional array allows for the fastest
retrieval.

BitEpi can perform any combination of m-SNP α
and β test in the same analysis where m could be 1,
2, 3 or 4. There is a special mode of operation called
best. For each SNP, the best mode lists the 2-SNP,
3-SNP and 4-SNP interaction with the highest α.

BitEpi is implemented in C++ with support for
multi-threading. It includes a python wrapper so
that it can be installed using pip and used in a
python program. An R script is provided to turn
BitEpi best output to a static igraph graph and a
dynamic Cytoscape graph.

2.3 Experimental setup

Several synthetic datasets are used to evaluate the
performance and accuracy of BitEpi and compare it
with BOOST, MPI3SNP, and MDR.

To test the accuracy (detection power), we use
GAMETES [23] to generate ground truth datasets
(where the interactive SNPs are known). We create

10 simulated 2-SNP epistasis models with different
heritability and minor allele frequency (MAF=0.01
and 0.5) of the interactive SNPs (PM1∼PM10), see
Supplementary Data Table 4. Each model includes
one 2-SNP interaction. We also create 9 epistasis
models (TM1∼TM9) each of which includes one 3-
SNP interactions (see Supplementary Data Table 5).
For each model, 100 datasets are generated each with
100 SNPs and 2,000 samples (1,000 cases and 1,000
controls). To compute the detection power of algo-
rithm A for model M, we process all 100 datasets gen-
erated from model M using algorithm A and count
how many times the known interactive SNPs are
ranked first. Model files with detailed model param-
eters are available in Supplementary Data.

To test execution time, we create much larger
datasets by randomly assigning genotypes and phe-
notypes to samples. Each dataset consists of a differ-
ent number of SNPs and samples (see Supplementary
Data Table 1, Supplementary Data Table 2 and Sup-
plementary Data Table 3 as well as Table 2).

To benchmark the performance of BitEpi against
existing tools and test a wider range of epistatic
models, we also compare on previously published
synthetic datasets [24]. These datasets include 12
Marginal Effect (ME1∼ME12) and 40 No Marginal
Effect (NME1∼NME40) epistasis models where each
model includes one 2-SNP interaction. For each epis-
tasis model, 100 datasets each with 100 SNPs and
1,600 samples (800 case and 800 controls) are simu-
lated.

In our analysis, we use a multi-threaded
implementation of BOOST available in Plink
v1.9 (https://www.cog-genomics.org/Plink/1.9/
epistasis#fast).

3 Result

3.1 BitEpi is faster for higher-order
interactions

Table 2 compares the execution time of BitEpi’s α
test with BOOST, MPI3SNP and MDR, all exhaus-
tive search algorithms finding up to 2-SNP, 3-SNP,
and 4-SNP interactions, respectively. Both BitEpi
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and BOOST can be applied to the largest dataset
(50,000 SNPs), where BOOST’s targeted 2-SNP al-
gorithm is up to 4 times faster than BitEpi. For
higher-order interactions, BitEpi performs the fastest
out of all surveyed methods. Specifically, BitEpi per-
forms up to 1.7 times faster than MPI3SNP for 3-
SNP searches (2,000 SNPs dataset) and up to 65,
76 and 56 times faster than MDR for 2-SNP, 3-SNP
and 4-SNP searches (20,000 SNPs, 1,000 SNPs, and
200 SNPs datasets) respectively. Note that we re-
port the largest dataset the algorithms were capable
of processing within the given compute resources and
time-cutoff (1 hour).

BitEpi’s observed speedups over MPI3SNP are
likely due to the 1-Vector algorithm in BitEpi be-
ing independent of the order of the epistasis inter-
action. This allows BitEpi to perform the individ-
ual interaction tests at the same speed irrespective
of whether a 2-SNP, 3-SNP or 4-SNP interaction is
tested. To quantify the improvement, we compute
the test time for each order. As the order of epis-
tasis also increases the number of tests that need to
be performed, we normalize execution time by the
number of tests performed, to be able to directly
compare the individual 2-SNP, 3-SNP and 4-SNP
tests between 3-Vector and 1-Vector bitwise algo-
rithms. We hence compute the average test time as
(ExecutionTime×NumberOfThreads

(n
m)

). Where
(
n
m

)
is the

number of m-SNP tests in a dataset with n SNPs for
the datasets highlighted in Table 2.

Figure 2 shows that the exponential factor (3m) in
the 3-Vector bitwise procedure causes the execution
time to increase from the 2-SNP test with BOOST
taking 0.7µs on average, to 4.5µs on average for the 3-
SNP test with MPI3SNP (6.3 times slower). As there
are no 4-SNP bitwise methods published to date, we
need to extrapolate from the 3-SNP searches, which
results in execution time of 4.5µs × 3 = 13.5µs for
a 4-SNP search. Note that the complexity of the 3-
Vector bitwise method grow exponentially with the
number of interactive SNPs (3m).

This stands in stark contrast to the 1-Vector ap-
proach (BitEpi) where the execution time remains
constant (2.7∼2.9µs) for all tested orders, resulting
in 1.7 and 4.7 fold faster tests for 3-SNP and 4-SNP

0
2
4
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10
12
14
16

2-SNP 3-SNP 4-SNP 2-SNP 3-SNP 4-SNP

BOOST MPI3SNP Expected BitEpi

3-Vector Bitwise 1-Vector Bitwise

Average Test Time (µSec)

Figure 2: The average test time using BitEpi’s 1-
Vector bitwise approach compared to the existing 3-
Vector bitwise approach. The expected 4-SNP aver-
age test time with the 3-Vector bitwise approach is
computed as MPI3SNP × 3. The average test time
is computed based on the highlighted execution time
in Table 2

search, respectively. Note that the non-bitwise 4-SNP
method tested, MRD, is significantly slower with an
average test time of 210µs, 204µs and 206µs for 2-
SNP, 3-SNP and 4-SNP search, respectively.

BitEpi scales linearly with the number of sam-
ples, as shown in Supplementary Data Table 2 (total
execution time with increase samples) and Supple-
mentary Data Figure 1.b (normalized by samples).
BitEpi scales exponentially with the number of SNPs,
v, resulting in O(v2), O(v3) and O(v4) for 2-SNP, 3-
SNP and 4-SNP, respectively, show in Supplementary
Data Table 1 (total execution time) and Supplemen-
tary Data Figure 1.a (normalized execution time per
SNP). Both execution times can be curbed by paral-
lelization, as shown in Supplementary Data Table 3
and Supplementary Data Figure 1.c, in which using
2,4,8 and 16 CPUs results in a non-saturated, near-
linear speed-up.

3.2 BitEpi is more accurate in detect-
ing interactions

To compare the accuracy of BitEpi with BOOST and
MPI3SNP, we compute the detection power for all
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Table 2: The execution time (in seconds) of epistasis algorithms for 2,000 samples and different numbers
of SNPs. The process is killed if it takes more than an hour to complete and the execution time is not
measured. If the execution time is less than a second it is reported as 1 in this table. All programs are
executed with 16 parallel threads. Highlighted execution times are used to compute the average test time
(see Figure 2).

Order of

Epistasis
Algorithm

Number of SNPs

100 200 500 1,000 2,000 5,000 10,000 20,000 50,000

2-SNP

BitEpi 1 1 1 1 1 4 11 40 227

BOOST 1 1 1 1 1 1 4 15 56

MDR 1 1 2 6 29 148 390 2619 -

3-SNP

BitEpi 1 1 4 28 221 - - - -

MPI3SNP 1 1 6 47 375 - - - -

MDR 3 14 212 2121 - - - - -

4-SNP
BitEpi 1 15 460 - - - - - -

MDR 51 834 - - - - - - -

models simulated by GAMETES including models
simulated by others [24]. Figure 3a shows the 2-SNP
detection power of BitEpi and BOOST for the mod-
els we simulated. Except for the PM1 model where
both methods result in poor detection power, BitEpi
performs better than BOOST (i.e. between 1.22 and
1.33 times more accurate) and reaches 100% detec-
tion power for PM7∼PM10 Models.

Figure 3b shows the 3-SNP detection power of
BitEpi and MPI3SNP. BitEpi performs better than
MPI3SNP for TM2∼TM6 Models (i.e. between 1.56
and 2.09 times more accurate), and equivalent for the
rest. Numerical comparisons are available in Supple-
mentary Data Table 4 (2-SNP) and Supplementary
Data Table 5 (3-SNP).

We also compute the 2-SNP detection power of
BitEpi and BOOST for 12 ME (Marginal Effect) and
40 NME (No Marginal Effect) epistasis models simu-
lated in [24]. Supplementary Data Figure 2 illustrates
the comparison result. Numerical comparisons are
available in Supplementary Data Table 6 and Supple-
mentary Data Table 7. BitEpi’s detection power for
ME models is 44% higher than BOOST’s on average.
For NME models, BitEpi’s average detection power
is the same as BOOST’s.

Out of the 71 epistasis models we have evaluated,

BitEpi performs better than other methods in 24
cases, similar to other methods in 39 cases and is less
accurate than other methods in 8 cases. Due to the
accurate isolation of interaction effect sizes, BitEpi
eliminates false positives more effectively.

3.3 BitEpi visualizes interactions

BitEpi visualizes interactions in an interactive Cy-
toscape graph. In the graph, SNPs and interactions
are shown as nodes. Edges connect interaction nodes
to the corresponding interactive SNPs. For exam-
ple in Figure 4, the 2-SNP interaction node BC is
connected to SNP nodes B and C. The example plot
shows the top 3 significant SNPs as well as the top
3 significant 2-SNP, 3-SNP, and 4-SNP interactions
highlighted by colors (red, blue, orange and green
respectively). Gray nodes represent SNPs that are
themselves not listed as the top 3 significant SNPs
but are part of interactions that are in the top 3. For
the colored nodes, the size of a node represents the
combined association power (β). For the gray node,
the size is set to the minimum node size. Node sizes
are scaled such that all nodes in the graph are visible.

The top significant SNPs and interactions are cho-
sen by α but the node size in the graph represents β.
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(b) 3-SNP detection power of BitEpi and MPI3SNP.

Figure 3: Compare detection power of BitEpi with BOOST and MPI3SNP for 2-SNP and 3-SNP analysis.

This is because we are looking for the most significant
interactions, and once we find them we are interested
in their combined association power. Note that node
sizes of different graphs can not be compared.

The dataset used to generate the graph in Figure 4
is created using GAMETES with 3 models: a sin-
gle SNP (A), a 2-SNP interaction (BC) and a 4-SNP
interaction (DEFG). Models and the dataset are dis-
tributed with BitEpi. As shown in the graph, BitEpi
correctly identifies the underlying ground truth sig-
nal and the user can get detailed information about
each node by selecting a node in the Cytoscape envi-
ronment.

Conclusion

We demonstrated that the current best prac-
tice for exhaustive epistasis search tools (BOOST,
MPI3SNP) can be improved upon in both speed and
accuracy. While heuristics such as Random Forest
remain necessary to reduce the initial search space,
BitEpi is then capable of detecting higher-order inter-
actions of up to 4-SNP exhaustively, resulting in an
up to 1.7 and 56 fold faster execution time than other
surveyed methods for 3-SNP and 4-SNP searches, re-
spectively.

BitEpi uses a novel 1-Vector bitwise approach that
is designed for higher-order analysis and allows mod-

Figure 4: BitEpi output graph (exported from Cy-
toscape) with labeled ground truth signal in an ex-
ample dataset.
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ern 64-bit machines to be used more effectively than
the previous 3-Vector bitwise approaches. It also iso-
lates the interaction effect size using an entropy-based
metric to eliminate false positives. BitEpi visualizes
the results in an interactive graph that can be dy-
namically scaled and rearranged, streamlining inter-
pretation and publication.

Future improvements will cover more advanced vi-
sualization approaches using either d3 or Cytoscape
JavaScript library for dynamic web-based visualiza-
tion and the end-to-end integration with cloud-based
Random Forest implementation VariantSpark [15], to
enable epistasis search within the ultra-high dimen-
sional data of whole-genome sequencing cohorts.
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