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1 Abstract

To acquire larger samples for answering complex questions in neuroscience, researchers
have increasingly turned to multi-site neuroimaging studies. However, these studies are hin-
dered by differences in images acquired across multiple scanners. These effects have been
shown to bias comparison between scanners, mask biologically meaningful associations, and
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even introduce spurious associations. To address this, the field has focused on harmoniz-
ing data by removing scanner-related effects in the mean and variance of measurements.
Contemporaneously with the increase in popularity of multi-center imaging, the use of mul-
tivariate pattern analysis has also become commonplace. These approaches have been shown
to provide improved sensitivity, specificity, and power due to their modeling the joint rela-
tionship across measurements in the brain. In this work, we demonstrate that the currently
available methods for removing scanner effects are inherently insufficient for MVPA. This
stems from the fact that no currently available harmonization approach has addressed how
correlations between measurements can vary across scanners. Data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) is used to show that considerable differences in co-
variance exist across scanners and that the state-of-the-art harmonization techniques do not
address this issue. We also propose a novel methodology that harmonizes covariance of mul-
tivariate image measurements across scanners and demonstrate its improved performance in
data harmonization, which further facilitates more power for detection of clinically relevant
associations.

2 Introduction

The need for larger samples in human subjects research have led to a growing number
of multi-site studies that aggregate data across multiple locations. This trend is especially
prevalent in neuroimaging research where the reliability and generalizabilty of findings from
the conventional single-site studies are often limited by the ability to recruit and study
sufficiently large and representative samples from the population. Many consortia have been
formed to address such issues Mueller et al. (2005); Sudlow et al. (2015); Trivedi et al. (2016);
Van Essen et al. (2013). The larger samples obtained through these efforts promote greater
power to detect significant associations as well as better generalizability of results. However,
these study designs also introduce heterogeneity in acquisition and processing that, if not
appropriately addressed, may impact study findings.

Several researchers have determined that variability driven by scanner, often called scan-
ner effects, reduce the reliability of derived measurements and can introduce bias. Neu-
roimaging measurements have been repeatedly shown to be affected by scanner manufac-
turer, model, magnetic field strength, head coil, voxel size, and acquisition parameters Han
et al. (2006); Kruggel et al. (2010); Reig et al. (2009); Wonderlick et al. (2009). Yet even
in scanners of the exact same model and manufacturer, differences still exist for certain
neuroimaging biomarkers Takao et al. (2011).

Until recently, neuroimaging analyses primarily involved mass univariate testing which
treats features as independent. Under this paradigm, the impact of scanner effects is through
changes in the mean and variance of measurements. Increasingly, researchers have used
sets of features as patterns for prediction algorithms in a framework called multivariate
pattern analysis (MVPA). This approach has become a powerful tool in diverse research
topics including pain perception Smith et al. (2017), neural representations Haxby et al.
(2014), and psychiatric illnesses Koutsouleris et al. (2014). One of the major benefits of
MVPA is that it leverages the joint distribution and correlation structure among multivariate
brain features in order to better characterize a phenotype of interest O’Toole et al. (2007).
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As a result, scanner effects on the covariance of measurements are likely to impact findings
substantially. In fact, a recent investigation showed that MVPA was able to detect scanner
with high accuracy and that the detection of sex depended heavily on the scanners included
in the training and test data Glocker et al. (2019).

The major statistical harmonization techniques employed in neuroimaging have gener-
ally corrected for differences across scanners in mean and variance, but not covariance Fortin
et al. (2016, 2018); Rao et al. (2017); Yamashita et al. (2019). Increasingly, the ComBat
model Johnson et al. (2007) has become a popular harmonization technique in neuroimaging
and has been successfully applied to structural and functional measures Bartlett et al. (2018);
Fortin et al. (2017, 2018); Marek et al. (2019); Yu et al. (2018). However, this model does
not address potential scanner effects in covariance. Recently, another stream of data-driven
harmonization methods have aimed to apply machine learning algorithms such as generative
adversarial network (GAN) or distance-based methods to unify distributions of measure-
ments across scanners, but these methods shift the original data distributions inexplicitly
and have not been tested for their potential influence on MVPA Nguyen et al. (2018); Zhou
et al. (2018).

In this paper, we examine whether scanner effects influence MVPA results. In partic-
ular, we study the cortical thickness measurements derived from images acquired by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and demonstrate the existence of scan-
ner effects in covariance of structural imaging measures. We then propose a novel harmo-
nization method called Correcting Covariance Batch Effects (CovBat) that removes scanner
effects in mean, variance, and covariance. We apply CovBat and show that within-scanner
correlation matrices are successfully harmonized. Furthermore, we find that machine learning
methods are unable to distinguish scanner manufacturer after our proposed harmonization is
applied, and that the CovBat-harmonized data facilitate more accurate prediction of disease
group. We also assess the performance of the proposed method in simulated data, and again
find that the method mitigates scanner effects and improves detection of meaningful associ-
ations. Our results demonstrate the need to consider covariance in harmonization methods,
and suggest a novel procedure that can be applied to better harmonize data from multi-site
imaging studies.

Scanner Identified Despite Existing Harmonization

We first examine a subset of the ADNI dataset to determine if covariance among cortical
thickness measurements differs across scanners. Our data were obtained from the ADNI-
1 database which included a magnetization-prepared gradient echo (MP-RAGE) sequence
from Siemens and Philips scanners and a similar works-in-progress MP-RAGE sequence
for General Electric (GE) scanners Jack et al. (2010). All of these scans were collected
at a magnetic field strength of 1.5 telsa and there were a total of 90 scanners across 58
collaborating institutions. The T1 images were processed using the ANTs cross-sectional
cortical thickness pipeline Tustison et al. (2019). Lastly, the cortical thickness measures
were derived from the pre-processed images as the average thickness in 62 cortical regions,
31 in each hemisphere, defined through the Desikan-Killiany Atlas Klein & Tourville (2012).
For additional information, see SI Appendix.
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To investigate the potential impact of scanner differences in covariance using MVPA, we
conducted an experiment to predict scanner manufacturer labels using data harmonized with
existing methods. In particular, we use a Monte Carlo split-sample experiment including
data acquired on any scanner used to image three or more subjects. This sample consists
of 505 subjects across 64 scanners, with 213 subjects acquired on scanners manufactured by
Siemens, 70 by Philips, and 222 by GE. Using the 62 cortical thickness values as inputs,
we i) randomly split the sample into 50% training data and 50% testing data; ii) train a
random forests algorithm to recognize if a scanner was manufacturered by Siemens, and iii)
assess predictive performance on the testing data. We train it using data harmonized via the
existing ComBat method and our proposed method CovBat. For all tests, we accounted for
the possibility that scanner could be detected through the covariates age, sex, and disease
status by residualizing out those variables. We repeat steps (i)-(iii) 100 times and report the
area under the receiver operating characteristic curve (AUC) values. Figure 1 shows that
Siemens scanners are identifiable based on unharmonized cortical thickness measurements
(AUC 0.89±0.02), which is consistent with recent findings Glocker et al. (2019). We also note
that scanner manufacturer is still detectable after ComBat is applied (0.66 ± 0.03). After
using the proposed method method however, the performance for distinguishing Siemens
scanners is close to random (AUC 0.54± 0.03).

Statistical Harmonization of Covariance

Combatting Batch Effects

An increasingly popular method for harmonization of neuroimaging measures is a method
called ComBat Fortin et al. (2017, 2018); Johnson et al. (2007). This method seeks to remove
the mean and variance scanner effects in the data in an empirical Bayes framework. Let
yij = (yij1, yij2, . . . , yijp)

T , i = 1, . . . ,M , j = 1, . . . , ni denote the p × 1 vectors of observed
data where p is the number of features. Our goal is to harmonize these vectors across the
M scanners indexed by i. ComBat assumes that the features indexed by v follow

yijv = αv + xTijβv + γiv + δiveijv (1)

where αijv is the intercept, xij is the vector of covariates, βv is the vector of regression coef-
ficients, γiv is the mean scanner effect, and δiv is the variance scanner effect. The errors eijv
are assumed to follow eijv ∼ N(0, σ2

v). ComBat then finds empirical Bayes point estimates
γ∗iv and δ∗iv then residualizes with respect to these estimates to obtain

yComBatijv =
yijv − α̂v − xTijβ̂v − γ∗iv

δ∗iv
+ α̂v + xTijβ̂v (2)

Correcting Covariance Batch Effects

We propose the CovBat algorithm by accounting for the joint distribution of ComBat-
adjusted observations as follows:

Step 1. We first perform ComBat to remove the mean and variance shifts in the marginal
distributions of the cortical thickness measures and additionally residualize with respect to
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Figure 1: Results of an MVPA experiment for detection of scanner manufacturer using
cortical thickness data. The data is randomly split into 50% training and 50% validation
then used to train a random forests algorithm to predict if a scanner is manufactured by
Siemens. AUC values from 100 repetitions of this analysis are reported for unharmonized,
ComBat-adjusted, and CovBat-adjusted data.
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the covariates to obtain ComBat-adjusted residuals eComBatij = (eComBatij1 , eComBatij2 , . . . , eComBatijp )T

where

eComBatijv =
yijv − α̂v − xTijβ̂v − γ∗iv

δ∗iv
(3)

Step 2. The eComBatij are assumed to have mean 0; their covariance matrices which
we denote by Σi, however, may differ across scanners. We thus perform principal com-
ponents analysis (PCA) on the full dataset to obtain the full-data covariance matrix as
Σ =

∑q
k=1 λkφkφ

T
k where q = min(

∑M
i=1 ni, p). The ComBat-adjusted residuals can then be

expressed as eComBatij =
∑q

k=1 ξijkφk, where the λk are the eigenvalues of Σ, φk are the prin-
cipal components obtained as the eigenvectors of Σ, ξijk are the principal component scores,
and K < q is chosen to capture the majority of the variation in the observations. After
applying this decomposition, the scanner-specific covariance matrices can be expressed using
the full data eigenvectors as Σi =

∑q
k=1 λikφkφ

T
k where λik are scanner-specific eigenvalues.

This model assumes that the covariance scanner effect is contained within the λik, which can
be approximated as the sample variance of the principal component scores ξijk.

Step 3. Thus, we posit:
ξijk = µik + ρikεijk (4)

where εijk ∼ N(0, τ 2k ) and µik, ρik are the center and scale parameters corresponding to
each principal component indexed by k. Note that this is analogous to the ComBat model,
applied to each of the k principal component scores instead of the original measures. After
imposing an analogous prior on each parameter, we can then estimate each of the k pairs
of center and scale parameters by finding the values that bring each scanner’s mean and
variance in scores to the pooled mean and variance. We then remove the scanner effect in
the scores via ξCovBatijk =

ξijk−µ̂ik
ρ̂ik

.

Step 4. Finally, we obtain CovBat-adjusted residuals eCovBatij = (eCovBatij1 , eCovBatij2 , . . . , eCovBatijp )T

by projecting the adjusted scores back into the residual space via

eCovBatij =
K∑
k=1

ξCovBatijk φk +

q∑
l=K+1

ξijlφl (5)

We then add the intercepts and covariates effects estimated in Step 1 to obtain CovBat-
adjusted observations

yCovBatijv = eCovBatijv + α̂v + xTijβ̂v (6)

Harmonization Evaluation

We focus our evaluation framework on removal of scanner effects in covariance rather
than mean and variance which have been shown to be addressed by ComBat in previous
papers Fortin et al. (2017, 2018). Hence, we propose tests that directly assess harmonization
of correlation matrices across scanners. Furthermore, we assess the degree to which residual
scanner effects can affect comparison between scanners and clinically meaningful associations.

To assess scanner effects in covariance, we examine the correlation matrices before and
after harmonization. Additionally, we quantify the similarity of correlation matrices between
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scanners by looking at the pairwise Frobenius norms. For this measure, lower values indicate
greater harmonization in covariance.

We also evaluate if the harmonization procedures affect the results of MVPA. Similar
to the earlier experiments in Section 4 for classifying scanner, we i) randomly split the
subjects into 50% training set and 50% validation set; ii) train a random forests algorithm
to detect a binary clinical covariate, and iii) assess predictive performance on the validation
set via AUC. We train separate models for unharmonized, ComBat-harmonized, and CovBat-
harmonized data where both harmonization methods are performed including age, sex, and
diagnosis status as covariates. We perform these steps (i)-(iii) 100 times and again report the
AUC values. For these experiments, higher AUC would indicate greater ability to recover
biologically meaningful associations.

Material and Methods

Here, we provide an overview of the materials and methods used in this paper. More
details can be found in SI Appendix, and the code for executing the analyses described here
is available at (https://github.com/andy1764/CovBat Harmonization).

ADNI Data

All data for this paper are obtained from ADNI (http://adni.loni.usc.edu/ and processed
using the ANTs longitudinal cortical thickness pipeline Tustison et al. (2018) with code avail-
able on GitHub (https://github.com/ntustison/CrossLong). We briefly summarize the steps
involved. First, raw MP-RAGE or the equivalent sequence for GE scanners are downloaded
from the ADNI-1 database. The images are first processed using the ANTs cross-sectional
cortical thickness pipeline Tustison et al. (2014), which involves N4 bias correction, brain
extraction, Atropos n-tissue segmentation, and registration-based cortical thickness estima-
tion. Then, a single-subject template is created for each individual using all of their repeated
scans, and the template is subsequently used in rigid registration of the subject’s images.
For our analyses, we only use the cortical thickness values of the baseline scans.

We define scanner based on information contained within the Digital Imaging and Com-
munications in Medicine (DICOM) files for each scan. Specifically, subjects are considered
to be acquired on the same scanner if they share the same location of scan, scanner man-
ufacturer, scanner model, head coil, and magnetic field strength. In total, this definition
yields 142 distinct scanners of which 78 had less than three subjects and were removed from
analyses.

Simulation Design

Let yij, i = 1, 2, 3, j = 1, 2, . . . , 100 be vectors of length 62 representing the simulated
outcome for cortical thickness values in 62 regions. The yij are generated using the following
model:

yij = α+ xijβ + γi + δTi eij
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where xij is a single binary covariate drawn from a Bernoulli random variable with probability
0.5, α is the vector of intercepts, β is the vector of coefficients, γi = (γi1, γi2, . . . , γi62)

T are
vectors of region-specific mean shift drawn from independently and identically distributed
(i.i.d.) standard normal distributions and δi = (δi1, δi2, . . . , δi62)

T are vectors of region-
specific scale shifts drawn from i.i.d. scanner-specific inverse gamma distributions with cho-
sen parameters. For our simulations, we chose to sufficiently distinguish the scanner-specific
scaling factors by assuming δ1v ∼ Inverse Gamma(2, 0.5), δ2v ∼ Inverse Gamma(3, 1), and
δ3v ∼ Inverse Gamma(4, 2) for v = 1, 2, . . . , 62. The error terms eij ∼ N(0,Σ + Ωi + xijΨ)
where Σ is the sample covariance matrix of Scanner B in the ADNI analyses, xij is a single
binary covariate, Ωi are scanner-specific covariance shift matrices, and Ψ is a chosen co-
variance shift matrix which can be similar to any of the Ωi. To ensure that the covariance
matrices are positive semi-definite, we set the negative eigenvalues equal to a small constant,
10−12. This method for inducing covariance scanner effects ensures flexibility in the direction,
complexity, and confounding of the effect. For additional details and results of the specific
simulation settings considered in this papers, see SI Appendix.

CovBat Reduces Covariance Scanner Effect

We apply CovBat to observations acquired on the three scanners with the largest number
of subjects. Scanner A was a Siemens Symphony 1.5T scanner while scanners B and C are
GE Signa Excite 1.5T scanners. See SI Appendix for demographic details. We observe
that demographic variables differ across scanner so we residualize each cortical thickness
measure on age, sex, and diagnosis status to obtain the correlation structure independent
of these clinical covariates. Figure 2 shows the correlation matrices for each scanner using
the residualized cortical measures both before and after CovBat. The differences between
the unharmonized correlation matrices are striking. Especially notable are the increased
positive correlations across most pairs of cortical regions in Scanner A and the weakened
right-left correlations in Scanner C visible as the diagonal line in the top-left and bottom-right
quadrants. Visually, the correlation structures are considerably more similar across scanners
after CovBat; the correlation structures of Scanners A and B are almost indistinguishable
after this adjustment.

We also compare with harmonization via ComBat, and report our quantitative results
for ComBat-adjusted as well as CovBat-adjusted correlation matrices in Table 1. A tuning
parameter of the CovBat model is the desired proportion of variance explained in the di-
mension reduction space, which we selected at 80% (26 PCs). To ensure that our results
do not depend strongly on the choice of tuning parameter, we also report the minimum and
maximum of the pairwise Frobenius norms after applying CovBat with percent variation ex-
plained ranging from 50% (10 PCs) to 99% (53 PCs). We report the results of this sensitivity
analysis in parentheses. We find that ComBat adjustment does not harmonize the corre-
lation matrices whereas CovBat adjustment shows large reductions in the between-scanner
distances across a range of tuning parameter choices.
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Figure 2: Correlation matrices for measurements acquired on each scanner before and af-
ter CovBat harmonization. ComBat-adjusted matrices are visually indistinguishable from
unharmonized

Original ComBat CovBat
A,B 507.3 507.3 221.0 (218.4 - 224.7)
A,C 760.9 760.9 268.3 (267.3 - 277.6)
B,C 308.6 308.6 258.2 (256.6 - 259.8)

Table 1: Pairwise Frobenius norms between scanner-specific correlation matrices. Results
from adjusting the number of PCs employed ranging from those required to explain 50%
to 99% of variation are reported in parentheses as the minimum and maximum pairwise
Frobenius norms across the range.
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Figure 3: Results from MVPA experiments for detection of Alzheimer’s disease status and
male sex using cortical thickness data. The data is randomly split into 50% training and 50%
validation then used to train a random forests algorithm to predict either trait. AUC values
over 100 repetitions of this experiment are reported for unharmonized, ComBat-adjusted,
and CovBat-adjusted data. Results for detection of Alzheimer’s disease status are shown in
(A) and results for detection of male are shown in (B).

CovBat Recovers Biological Associations

It is well-known that cortical thickness differs substantially by sex and Alzheimer’s disease
status Lerch et al. (2005); Sowell et al. (2007). To assess whether CovBat maintains bio-
logical associations of interest, we perform two MVPA experiments using random forests to
classify healthy versus Alzheimer’s disease (AD) and to differentiate patients by sex. Figure 3
shows that detection of these biological differences is considerably improved by either har-
monization method, but the proposed CovBat approach shows an even greater performance
improvement. For detection of AD, the mean AUC increases from 0.74 (±0.03) in raw data
to 0.78 (±0.03) in ComBat-harmonized data to 0.79 (±0.03) in CovBat-harmonized data.
Similarly, the mean AUC for detection of sex increased from 0.66 (±0.03) to 0.69 (±0.03)
to 0.70 (±0.04). These findings suggest that CovBat not only provides thorough removal of
scanner effects, but also helps to recover clinical associations.
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Findings Replicated in Simulations

To test our harmonization method, we create simulated datasets based on a modified
version of the ComBat model which includes scanner effects in covariance. We impose
mean and variance scanner effects on a ground truth multivariate normal distribution and
additionally modify the covariance matrix of this distribution by scanner. To achieve the
latter, we add high-rank scanner-specific matrices to the underlying true covariance matrix
to ensure that the scanner effect can be corrected through adjustment in PC scores, but
also requires harmonization of a sufficiently high number of PCs. To test detection of a
simulated covariate, we impose that distribution of the outcome measures depends on the
presence of a binary covariate drawn from a Bernoulli distribution. Our simulations consisted
of three scanners each with 100 simulated subjects with a binary covariate drawn from a
Bernoulli(0.25) distribution. We further simulate a covariate associated with a decrease in
the mean of the cortical thickness values for 15 ROIs in both hemispheres. Additional details
are available in SI Appendix.

Covariate Effect on Mean

In a first scenario where the covariate does not influence the covariance, we anticipate
that harmonization of mean and variance is sufficient to remove any confounding of scanner
effect with the association of interest. We also anticipate that detection of scanner via
MVPA should be improved by harmonization of covariance. We perform experiments to test
these hypotheses under the same paradigm as the MVPA experiments implemented on the
ADNI dataset and report the results in Figure 4. The results show that both ComBat (AUC
0.59±0.04) and CovBat (0.54±0.04) underperform compared with the raw data (0.63±0.05)
for detection of the simulated covariate. This result could be attributable to covariate effects
remaining after the ComBat residualization step, which would then be removed through the
harmonization of mean across scanners. As for detection of scanner, we find that scanner 1
is almost perfectly detected in the raw data (AUC 0.999 ± 0.001), obscured after ComBat
(0.58± 0.05) and nearly impossible to detect after CovBat (0.53± 0.03).

Covariate Effect on Covariance

In a second simulation scenario, we study the impact of an additional covariate effect
on variance and covariance that is confounded with the scanner effects. To achieve this, we
allowed the covariate effect on covariance to be proportional to a chosen scanner’s covariance
shift (see SI Appendix for details). This scenario represents a situation where detection of the
covariate using MVPA would be highly influenced by the presence of scanner effects. Without
harmonization of covariance, observations from the chosen scanner resemble observations
obtained from subjects with the covariate. Consequently, we expect that ComBat alone
would be insufficient to recover the covariate association and that CovBat would outperform
on this metric. Since we made no changes to the scanner effects, we again anticipate that
detection of scanner should become less accurate after CovBat. The results of the MVPA
experiments are shown in Figure 4. As anticipated, we observe that the mean AUC using the
raw data is the lowest (0.82±0.03), ComBat shows some performance increase, (0.85±0.03),
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and CovBat performs the best (0.88±0.02). Detection of scanner also follows our observations
in ADNI data with Scanner 1 almost perfectly detected in the raw data (AUC 0.999±0.001),
difficult to detect after ComBat (0.58± 0.04) and nearly impossible to detect after CovBat
(0.53± 0.03).

Discussion

The growing number of multi-site studies across diverse fields has spurred the develop-
ment of harmonization methods that are general, but also account for field-specific challenges.
In neuroimaging research, the rise of MVPA has established an unmet need for harmonization
of covariance. We demonstrated that strong scanner effects in covariance exist and could in-
fluence downstream MVPA experiments, which remain after performing the state-of-the-art
harmonization. We then proposed a novel method demonstrated to be effective in removing
scanner differences in covariance and improving the detection of biological associations via
MVPA. Simulation studies further replicated these observations, and suggest that the im-
provement in covariate detection could be linked to confounding between scanner effect and
covariate effect on the covariance between multivariate measurements. This finding suggests
that future work could aim to control for covariate effects on variance and covariance so
that harmonization does not remove desired properties of the data. While our study focused
on structural neuroimaging data, our findings extend directly to functional, metabolic, and
other imaging modalities. Further studies should also determine the extent to which multi-
variate statistical and machine learning studies of genomic data are susceptible to the biases
documented.
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tutes of Health (www.fnih.org). The grantee organization is the Northern California Institute
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Figure 4: Simulation MVPA experiment results for detection of scanner and for detection
of a binary covariate. The data is randomly split into 50% training and 50% validation
then used to train a random forests algorithm to predict either Scanner 1 or the presence
of the binary covariate. AUC values over 100 repetitions of this experiment are reported
for unharmonized, ComBat-adjusted, and CovBat-adjusted data. AUC values are shown
for detection of scanner and covariate under covariate effect on mean only (A) and mean,
variance, and covariance (B)
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for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic
Research Institute at the University of Southern California. ADNI data are disseminated by
the Laboratory for Neuro Imaging at the University of Southern California.
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Supporting Information Appendix (SI)

ADNI Dataset Demographics

The subsample of 505 subjects included in the study have a mean age of 75.3 (SD 6.70)
and is comprised of 278 (55%) males, 115 (22.8%) Alzheimer’s disease (AD) patients, 239
(47.3%) late mild cognitive impairment (LMCI), and 151 (29.9%) cognitively normal (CN)
individuals. For the subsample comprised of the three largest sites in the dataset, their
demographics are listed in Table 3. Since the correlations between cortical thickness values
are of primary interest in our study, we display the correlation matrices annotated with the
62 regions of interest (ROIs) in Figure 6.

Harmonization using Subset

Both ComBat and CovBat estimate and residualize out the covariate effects using the full
data; however, there are cases were only a subset of the data is available when performing
harmonization. For instance, if a group of subjects has already been acquired, prediction
on subjects subsequently acquired on the same scanners could only leverage data from the
original sample. In this scenario, the new sample can be harmonized using ComBat or
CovBat by estimating the covariate effect using the original sample, then proceeding with
subsequent steps as usual.

We evaluate this modification by repeating our main MVPA analyses using ADNI data
with different subsampling of the patients. Specifically, we replace step (i) in both analyses
by instead splitting the sample into 270 training subjects and 235 testing subjects such
that both the train and test sets contain at least one subject acquired on each scanner.
We then apply ComBat and CovBat by estimating the βv, v = 1, 2, . . . , 62 using only the
training subjects. We report the results in Figure 7. The results appear quite similar to
harmonization using the full dataset, except with additional variance in the AUC values
for detection of male. Detection of site still worsens after ComBat (AUC 0.67 ± 0.03) and
is almost at chance after CovBat (AUC 0.54 ± 0.03). For detection of AD, improvements
are demonstrated after ComBat adjustment (AUC 0.76 ± 0.03) and greater improvements
after CovBat (AUC 0.77±0.03). For detection of male, lesser improvement is observed from
ComBat (AUC 0.68± 0.03) to CovBat (AUC 0.68± 0.03).

Simulation Settings

In the first simulation setting, we assume that the covariate only affects the mean of
the measurements. We choose βv = −0.5 for 15 regions of interest in both the left and
right hemispheres to impose that about half of the ROIs are negatively associated with the
covariate. We also choose Ψ = 0 where 0 is a 62 × 62 zero matrix to ensure that each
site-specific covariance matrix only depends on the underlying true covariance matrix Σ and
the chosen Ωi matrices. The covariance matrices across sites are shown in Figure 5 with
associated pairwise Frobenius norms listed in Table 2.

In the second simulation setting, we assume that the covariate affects not only mean,
but also variance and covariance. To achieve this, we use the same β value as above but
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Original ComBat CovBat
A,B 365.73 369.88 153.58
A,C 185.33 183.38 115.95
B,C 168.79 173.39 127.10

Table 2: Pairwise Frobenius norms between site-specific correlation matrices for simulations
with no effect of covariate on covariance.

A (Siemens) B (GE) C (GE) p
Number of Subjects 23 20 20
Age (mean (SD)) 74.48 (5.13) 76.90 (8.18) 78.78 (6.19) 0.11
Diagnosis (%) 0.57

AD 7 (30.4) 6 (30.0) 5 (25.0)
CN 6 (26.1) 5 (25.0) 2 (10.0)
LMCI 10 (43.5) 9 (45.0) 13 (65.0)

Male (%) 10 (43.5) 13 (65.0) 16 (80.0) 0.05

Table 3: ADNI demographics by scanner for the three scanners with the largest number of
acquired subjects. ANOVA p-values for testing for a difference in mean across groups are
reported in the rightmost column.

choose Ψ to be related to Ω2 to force confounding of site and covariate effects on covariance.
To achieve this, we have Ψi,i = Ωi,i and Ψi,j = −Ωi,j/2 for i 6= j and i = 1, 2, . . . , 62,
j = 1, 2, . . . , 62. The simulation findings are shown in the main paper be consistent with
findings from the ADNI data application. To better illustrate the effects of harmonization,
we plot the stratified covariance matrices for subjects whose binary covariate equals 0 or 1,
before and after CovBat in Figure 8. We observe that CovBat harmonization leads to better
differentiation between the two subject groups. Meanwhile the differences across sites are
much smaller after CovBat as evident in Figure 9 and Table 4.

Original ComBat CovBat
A,B 297.25 297.79 126.79
A,C 122.26 121.31 127.91
B,C 263.50 266.10 128.67

Table 4: Pairwise Frobenius norms between site-specific correlation matrices for simulations
with effect of covariate on covariance.
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Figure 5: Correlation matrices following harmonization for simulations with no effect of
covariate on covariance.
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Figure 6: Correlation matrices for each scanner. (A) shows a scanner manufactured by
Siemens while (B) and (C) were manufactured by General Electric.

Figure 7: MVPA experiment results for harmonization using only training data. The data
is randomly split into 270 training subjects and 235 testing subjects such that every site is
represented in each group. The training set is then used to train a random forests algorithm
to predict scanner or patient characteristics. (A) shows the AUC values for detection of site.
AUC values for detection of AD are displayed in (B) and detection of male in (C).
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Figure 8: Correlation matrices across levels of covariate before and after CovBat harmoniza-
tion in simulations with effect of covariate on covariance.
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Figure 9: Correlation matrices following harmonization for simulations with effect of covari-
ate on covariance.
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