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Abstract 

The rapid development of single cell RNA-sequencing (scRNA-seq) technologies is revealing an 
unexpectedly large degree of heterogeneity in gene expression levels across the different cells 
that compose the same tissue sample. However, little is known on the functional 
consequences of this heterogeneity and the contribution of individual cell-fate decisions to the 
collective behavior of the tissues these cells are part of. Mechanistic models of signaling 
pathways have already proven to be useful tools for understanding relevant aspects of cell 
functionality. Here we propose to use this mechanistic modeling strategy to deconvolute the 
complexity of the functional behavior of a tissue by dissecting it into the individual functional 
landscapes of its component cells by using a single-cell RNA-seq experiment of glioblastoma 
cells. This mechanistic modeling analysis revealed a high degree of heterogeneity at the scale 
of signaling circuits, suggesting the existence of a complex functional landscape at single cell 
level. Different clusters of neoplastic glioblastoma cells have been characterized according to 
their differences in signaling circuit activity profiles, which only partly overlap with the 
conventional glioblastoma subtype classification. The activity of signaling circuits that trigger 
cell functionalities which can easily be assimilated to cancer hallmarks reveals different 
functional strategies with different degrees of aggressiveness followed by any of the clusters.  

In addition, mechanistic modeling allows simulating the effect of interventions on the 
components of the signaling circuits, such as drug inhibitions. Thus, effects of drug inhibitions 
at single cell level can be dissected, revealing for the first time the mechanisms that individual 
cells use to avoid the effect of a targeted therapy which explain why and how a small 
proportion of cells display, in fact, different degrees of resistance to the treatment. The results 
presented here strongly suggest that mechanistic modeling at single cell level not only allows 
uncovering the molecular mechanisms of the tumor progression but also can predict the 
success of a treatment and can contribute to a better definition of therapeutic targets in the 
future. 
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Introduction 

Since the beginning of the century, transcriptomic technologies, which evolved from 
microarrays (1) to RNA-seq (2), have provided and increasingly accurate insight into mRNA 
expression (3). The technological advances of RNA-seq technologies have increased the 
resolution in the quantification of transcripts until the unprecedented level of the mRNA 
component of individual single cells. The possibility of studying gene expression at the single 
cell level opens the door to novel biological questions which were not possible using current 
tissue-level RNA sequencing approaches. For example, single-cell RNA-sequencing (scRNA-seq) 
has allowed a high-resolution analysis of developmental trajectories (4,5), the detailed 
characterization of tissues(6,7), the identification of rare cell types (8), or the analysis of 
stochastic gene expression and transcriptional kinetics (9,10), just to cite a few cases.  

The continuous publication of scRNA-seq studies is producing an increasingly large wealth of 
data on cell-level gene activity measurements under countless conditions. However, the 
functional consequences of such gene activity at single cell level remains mostly unknown. 
Among the many methods and applications published for the management of scRNA-seq data 
(11), only a small proportion of them provide some functional insights on the results. For 
example, MetaNeighbor (12), SCDE (13) or PAGODA (14), annotate cell types based on 
conventional gene set enrichment analysis (15,16). Other algorithms, such as SCENIC (17), PIDC 
(18), SCODE (19) or SINCERITIES (20), offer the possibility of inferring regulatory networks as 
well. However, functional profiling methods have evolved from the analysis of simple gene sets 
or inferred regulatory gene networks to more sophisticated computational systems biology 
approaches that allow a mechanistic understanding on how molecular cell signaling networks 
enables cells to make cell-fate decisions that ultimately define a healthy tissue or organ, and 
how deregulation of this signaling network lead to pathologic conditions (21-23). Specifically, 
mechanistic models have helped to understand the disease mechanisms behind different 
cancers (24-27), rare diseases (28,29), the mechanisms of action of drugs (29,30), and other 
physiologically interesting scenarios such as obesity (31) or the post-mortem cell behavior of a 
tissue (32). Although there are several mechanistic modeling algorithms available that model 
different aspects of signaling pathway activity, Hipathia (24) has demonstrated to outperform 
other competing algorithms in terms of sensitivity and specificity (23).  

Here, we propose the use of mechanistic models of signaling activities (24,33) that trigger cell 
functionalities related with cancer hallmarks (34), as well as other cancer-related relevant 
cellular functions to understand the consequences of gene expression profiles on cell 
functionality at single cell level. Such mechanistic models use gene expression data to produce 
an estimation of activity profiles of signaling circuits defined within pathways (24,33). An 
additional advantage of mechanistic models is that they can be used not only to understand 
molecular mechanisms of disease or of drug action but also to predict the potential 
consequences of gene perturbations over the circuit activity in a given condition (35). Actually, 
in a recent work, our group has successfully predicted therapeutic targets in cancer cell lines 
with a precision over 60% (25).  

An interesting model to be studied from the viewpoint of mechanistic models is glioblastoma, 
the most common and aggressive of gliomas (36). Glioblastoma current treatment includes 
maximal safe surgical resection followed by radiotherapy and chemotherapy (37), often 
combined with other drugs such as bevacizumab in an attempt of overcoming resistances (38). 
Despite this intense treatment, the mean survival of glioblastoma patients is only 15 months 
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and resistances to the therapy are quite common (39-41). This high rate of treatment 
failure has been attributed to the lack of specific therapies for individual tumor types 
(42,43). Moreover, it is well known that glioblastoma tumors with a common morphologic 
diagnosis display a high heterogeneity at the genomic level (44).  

The availability of glioblastoma single cell gene expression data (45) provides a unique 
opportunity to understand the behavior of a cancer type at the cell level. Here, we show for 
the first time how mechanistic models applied at single-cell level provide an unprecedentedly 
detailed dissection of the tumor into functional profiles at the scale of individual cells that 
throw new light on how cells ultimately determine its behavior. Moreover, since mechanistic 
models allow simulating interventions on the system studied, we show a comprehensive 
simulation of the potential effect of drugs at single cell level that disclose, for the first time, the 
mechanisms and strategies used by subpopulations of cells to evade the effect of the drug.  

Results 

Selection of the optimal imputation method 

Since mechanistic models take into account the topology of signaling circuits to estimate signal 
transduction activity in the cell, the discrimination between genes with missing expression 
values and genes that are not expressed is crucial, given that, depending on the location of the 
gene within the circuit, it can play the role of a switch. Since dropout events (the observation 
of a gene at a moderate expression level in one cell that cannot be detected in another cell) 
are quite common in scRNA-seq experiments (46), and taking them as zero values can cause 
dramatic effects on the inferred activity of the circuit, the use of imputation methods is crucial 
for the application of the mechanistic model. Among the best performer imputation methods 
available (47), three of them were checked to decide which one is optimal in the context of 
signaling pathway activity inference: MAGIC (48), SCimpute (49) and Drimpute(50).   

In order to decide what imputation method produced the most realistic results we used the 
clustering produced in the original single cell glioblastoma study (45) as ground truth. There, 
the authors applied tSNE (51) over the 500 most variable and highly expressed genes and then 
cluster the resulting data with k-means. They found 12 main clusters with a homogeneous cell 
composition that was further experimentally validated, which were: Astrocytes, two Myeloid 
cell clusters, three Neoplastic cell clusters, Neurons, Oligodendrocytes, OPCs and three 
Vascular cell clusters. Then, gene expression values were imputed using the above-mentioned 
methods (MAGIC, SCimpute and Drimpute). Next, gene expression values were used to infer 
signaling circuit activities with the Hipathia algorithm (24) as implemented in the Bioconductor 
application (52). The values of circuit activity were subjected to the same procedure (tSNE 
dimensionality reduction and k-means clustering) and the resulting clusters were compared to 
the original ones obtained in the glioblastoma study using the Rand index (53). Figure 1A 
shows the clustering obtained with the genes following the procedure described above 
(equivalent to the Figure 2 of the original study (45)), which can be compared with the 
clustering of the samples using the circuit activities obtained with the gene expression values 
imputed with SCimpute (Figure 1B), Drimpute (Figure 1C) and MAGIC (Figure 1D) The 
comparison of the clusters obtained with the three imputation methods were SCImpute: 
0.745, DrImpute: 0.852 and MAGIC: 0.858. Although MAGIC rendered a slightly better rand 
coefficient, Drimpute was chosen as imputation method because the dispersion of the clusters 
obtained was very similar to the one observed in the ground truth clustering (Figure 1A). 
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Figure 1. Clustering of the samples based on gene expression and on signaling circuit activities 
obtained with different gene imputation methods. A) shows the clustering obtained with the gene 
expression values following the procedure described in the original glioblastoma study (44), Clustering 
obtained using all the circuit activities inferred using gene expression values imputed with B) SCimpute, 
C) DrImpute and D) and MAGIC. In panel C, label O indicates the oligodendrocyte cluster, label OPC 
indicates the oligodendrocyte precursor cell cluster, label A indicates the astrocyte cluster and label N 
marks a small cluster of neurons. The ellipse approximately delimits the neoplastic cells among which 
three sub-clusters are distinguished, labeled with consecutive numbers. Unlabeled cells are a mixture of 
vascular and myeloid cells. 

 
Functional characterization of cancer cells 

Once verified that cell types defined by gene expression profiles (45) are supported by 
signaling profiles as well, the obvious comparison is the glioblastoma cell clusters versus the 
clusters composed by the different brain cells (oligodendrocytes, neurons, astrocytes and 
OPCs). Since circuits activity bridges gene expression to signaling activity and ultimately cell 
functionality, an assessment of the differences between cell types from a functional 
perspective can be achieved by means of a differential cell activity statistical contrast. The cell 
functional responses triggered by the circuits differentially activated can be easily retrieved, 
and among them, those related with cancer hallmarks (34) can be identified using the CHAT 
tool (54), as explained in methods.  

In order to detect which circuits display a significant change in activity, the three 
neoplastic cell clusters (1, 2 and 3 in Figure 1C) are compared to the normal cells brain 
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cells (oligodendrocytes,  oligodendrocyte precursor cells, astrocytes and neurons, labeled as 
O, OPC, A and N, respectively, in Figure 1C).  

 

Figure 2.Circuits related to cancer hallmarks observed in the three neoplastic cell clusters. A) absolute 
number of circuits with a significant differential activity in the neoplastic cells; B) percentage of circuits 
with a differential activity with respect to the total number of circuits annotated to any of the cancer 
hallmarks; C) Heatmap with the signaling circuits related to the different cancer hallmarks that have 
been found to be differentially activated in cells of each neopalstic cluster. 

 
The comparison between the neoplastic clusters and the brain normal cells resulted in two 
different patterns of circuit activity: neoplastic clusters 1 and 3 present a higher number of 
signaling circuits differentially activated (309 and 336, respectively) than neoplastic cluster 2 
(only 96 circuits). Figure 2 represents the number of differentially activated signaling circuits 
involved in cancer hallmarks observed in the three neoplastic cell clusters. This representation 
provides a summary of the strategy used by any particular neoplastic cluster in terms of the 
number of signaling circuits that control cell functionalities identifiable as cancer hallmarks. 
Figure 2A depicts the absolute number of circuits with a significant differential activity in the 
neoplastic cells and Figure 2B the same results but as percentages with respect to the total 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 29, 2019. ; https://doi.org/10.1101/858811doi: bioRxiv preprint 

https://doi.org/10.1101/858811
http://creativecommons.org/licenses/by/4.0/


number of circuits annotated to any of the cancer hallmarks. Table 1 summarizes the number 
of signaling circuits related to cancer hallmarks common to the three clusters (first column) 
and specific for each cancer type (subsequent columns). The common functional signature of 
this cancer is clearly driven by circuits related to Resisting cell death, Sustaining proliferative 
signaling and Enabling replicative immortality hallmarks, completed with circuits related to 
Evading growth suppressors, Inducing angiogenesis and Tumor promoting inflammation 
hallmarks.  From Figure 1 it becomes apparent that neoplastic clusters 1 and 3 are using a 
functional strategy different from that used by neoplastic cluster 2. The first two ones display a 
functional signature compatible with a more aggressive behavior: they have many extra 
circuits related to Resisting cell death, Sustaining proliferative signaling hallmarks but, in 
addition, both clusters have circuit activity related to Deregulation of cellular energetic, 
Genome instability and mutation as well as Invasion and metastasis hallmarks (see Table 1 and 
Figure 2C for a detail). Conversely, neoplastic cluster 2 does not seem to have much more 
extra functional activity beyond the common functional signature, which suggests a less 
aggressive character, especially because of the absence of circuit activity related to cell 
energetic or to invasion and metastasis.    

Table 1. Summary of the different functional strategies followed by the different cells in the three 
neoplastic clusters in terms of the circuits differentially activated with respect to the normal tissue.  

Cancer hallmark 
Common 

circuits 
Neoplastic 

cluster 1 
Neopnatic 
cluster  3 

Neoplastic 
cluster  2 

Resisting cell death 4 13 14 2 
Sustaining proliferative signaling 8 14 14 2 
Deregulating celular energetics 

 
4 8 

 Genome instability and mutation 
 

5 6 
 Inducing angiogenesis 2 2 5 
 Enabling replicative immortality 5 1 3 
 Activating invasion and metastasis 

 
2 3 

 Evading growth suppressors 3 3 2 
 Tumor promoting inflammation 1 1 1 
 Avoiding immune destruction 

  
1 

  

Functional based stratification of glioblastoma cells 

Neoplastic clusters have been defined according to the individual profiles of signaling circuit 
activities observed for each cell. The advantage of this way of cell stratification is that the 
functional profiles of each group are well defined.  Current glioblastoma classification stratifies 
tumors into three subtypes, classical, proneural, and mesenchymal, from less to more 
aggressive, based on the signature of 50 genes (55). The SubtypeME tool from the GlioVis data 
portal (56) was used to assign subtype to each individual cell.  Interestingly, when cells of the 
three neoplastic clusters are typed, the distribution of markers is very coherent with their 
functional activity profiles. Thus, Neoplastic cluster 2 is mainly composed by cells belonging to 
the classical subtype (see Table 2), in coincidence with its functional profile less aggressive. On 
the other hand, Neoplastic cluster 2 has an important component of proneural cells, as well as 
a smaller proportion of mesenchymal cells, which is coherent with its more aggressive 
functionality triggered by its signaling activity, which includes modifications in circuits related 
to cell metabolism, genomic instability and metastasis. Moreover, the functional profile of 
Neoplastic cluster 3 seems to be even more aggressive than that of Neoplastic cluster 1. This 
group of glioblastoma cells not only has more circuits related to the same hallmarks that 
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Neoplastic cluster 1 but also has circuits that trigger functionalities for Avoiding immune 
destruction (Table 2 and Figure 1). It is interesting noticing that, although the conventional 
stratification in Classical, Mesenchymal and Proneural classes is illustrative of the behavior of 
the cells it does not completely fit with the stratification based on whole cell functional 
profiles. 

Table 2. Distribution of the different glioblastoma subtypes across the three neoplastic cell clusters. 

 Classical Mesenchymal Proneural 
Neoplastic cells 1 92 44 135 
Neoplastic cells 2 107 3 15 
Neoplastic cells 3 540 141 14 
 

Effect of a drug at single cell level 

Mechanistic models can be used to simulate the effect of an intervention over the system 
studied (25,35). Specifically, single cell transcriptomic data offers, for the first time, the 
possibility of modeling the effects of a targeted drug at the level of individual cells.  

 

Figure 3.Impact of the inhibition of VEGFA by bevacizumab over the different neoplastic cells in terms of 
changes in the activities of signaling circuits in which this protein participates. The Y axis depicts the 
magnitude of this change in the activities of signaling circuits. 

 
The current indication for glioblastoma patients treatment is temozolomide which induces 
DNA damage, that can be combined with other drugs such as bevacizumab to overcome 
resistances (38). Moreover, bevacizumab, which is indicated for several advanced cancer 
types, has recently been suggested for glioblastoma targeted treatment (57-59). Actually, the 
effect of bevacizumab, a humanized murine monoclonal antibody targeting the vascular 
endothelial growth factor ligand (VEGFA), can easily be simulated in the mechanistic model.  
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VEGFA gene participates in 6 pathways (VEGF signaling pathway, Ras signaling pathway, Rap1 
signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway and Focal adhesion) 
and is part of 81 circuits, 39 of them directly related to cancer hallmarks (18 to Resisting cell 
death, 9 to Sustaining proliferative signaling, 4 to Genomic instability and mutation, 3 to 
Evading growth suppressors, 2 to Enabling replicative immortality, 2 to Inducing angiogenesis 
and 1 to Deregulation of cellular energetic). As described in methods, the inhibition of VEGFA 
can be simulated by taking the gene expression profile of a single cell, creating a simulated 
profile by setting the inhibited gene to a low value and comparing two profiles (24,35). 

 

Figure 4. Distribution of the values of normalized gene expression in the genes located within the 
effector node of the different signaling circuits affected by the bevacizumab inhibition. The 
distribution of observed expression levels in responder cells appears in red and in the low-responders in 
blue. A) in the receptor node of the circuits within Ras signaling pathway, Rap1 signaling pathway and 
PI3K-Akt signaling pathway, the VEGFA protein potentially share the role of signal transducer with other 
40 proteins (CSF1, EFNA1, PDGFA, FGF1, HGF, FGF12, VEGFB, FGF11, PDGFC, FGF14, KITLG, FGF2, 
ANGPT1, EGF, PDGFD, EFNA5, ANGPT2, PGF, VEGFC, FGF18, EFNA3, FGF5, EFNA4, IGF1, EFNA2, FGF9, 
FGF13, FGF17, PDGFB, NGF, ANGPT4, FGF7, FGF22, FGF16, FGF23, FGF19, FGF20, FGF8 and VEGFD). B) in 
the receptor node of the circuits within Focal adhesion pathway the VEGFA potentially shares the signal 
transduction role with other 12 proteins (PDGFA, HGF, VEGFB, PDGFC, EGF, PDGFD, PGF, VEGFC, IGF1, 
PDGFB and VEGFD). C) in the 6 signaling circuits belonging to the HIF signaling pathway and VEGF 
signaling pathway the protein VEGFA is the only signal transducer in the node. 
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Table 3. The eight drugs whose effect on the neoplastic population cell has been simulated. The hallmarks affected are displayed in the columns of the right of the table. 
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Bevacizumab VEGFA inhibitor 81   1 2 3 4 2 18 9  
Imiquimod TLR7 agonist 11  1     1 1  4 
Sulfasalazine PTGS2 inhibitor 5      1     
Sulfasalazine PTGS1 inhibitor 2      1     
Sulfasalazine PPARG agonist 21   2    1    
Pentoxifylline PDE4B inhibitor 1           
Pentoxifylline ADORA1 antagonist 59      7  6 4  
Pentoxifylline PDE4A inhibitor 1           
Pentoxifylline ADORA2A antagonist 50      6 1 3 5  
Fenofibrate PPARA agonist 32   1   1 1    
Doxepin HRH1 antagonist 4           
Doxepin HRH2 antagonist 0           
Quetiapine HTR2A antagonist 13           
Quetiapine DRD2 antagonist 52      5  3 4  
Nilotinib ABL1 inhibitor 14        2   
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Figure 3 shows the impact of the inhibition of VEGFA on the different cells in terms of changes 
in the activities of signaling circuits in which this protein participates. The Y axis depicts the 
magnitude of this change in the activities of signaling circuits. There are clearly two different 
behaviors in the response: most of the cells present a drastic change in many signaling circuit 
activities (responders) while a smaller number of them present a much lower affectation on 
them (low-responders). Interestingly, most of the cells with a low-response to bevacizumab 
are typed as Mesenchimal. 

A close look at the consequences of the inhibition of VEGFA in different cells provides an 
interesting explanation for the observed differences. VEGFA is upstream in the chain of signal 
transduction in several circuits of different pathways. In the circuits within Ras signaling 
pathway, Rap1 signaling pathway and PI3K-Akt signaling pathway, the VEGFA protein 
potentially share the role of signal transducer with other 40 proteins. Figure 4A clearly depicts 
how the balance between the expression level of VEGFA in the responsive cells and KITLG and 
FGF2 proteins, that can take a similar signaling role, changes. The inhibition of VEGFA in the 
responsive cells will radically inhibit the signal. However, the low-responsive cells have already 
VEGFA at low expression levels and the signal is transmitted by KITLG and FGF2 instead, which 
ultimately compromises the success of the drug. A similar scenario occurs with the Focal 
adhesion pathway, in which VEGFA shares the signal transduction role with other 12 proteins. 
In this case, the low-responder cells are characterized by a low level of VEGFA compensated 
with a high level of PDGFD, which makes these signaling circuits in the low-responding cells 
virtually insensitive to the inhibition of VEGFA (see Figure 4B). Only in the case of 6 signaling 
circuits belonging to the HIF signaling pathway and VEGF signaling pathway the protein VEGFA 
is the only signal transducer in the node. In this case, low-responder cells have this circuit 
constitutively down and, consequently, are not affected by the inhibition (Figure 4C).  

The same modeling strategy used with bevacizumab can be applied to simulate the effect of 
other drugs. Recently, a drug repurposing in silico experiment which combines human genomic 
data with mouse phenotypes has suggested the possible utility of a number of drugs with 
different indications (see Table 3) for potential glioblastoma treatment (60). The intensity and 
the degree of heterogeneity in the response are very variable across the 8 drugs tested here. 
At the scale we tested the drugs, there are no correlations neither between the number of 
genes targeted by the drug and the intensity of the effect nor between the number of circuits 
potentially affected and the intensity of the effect. For example, Pentoxifylline targets 4 genes 
(PDE4B, ADORA1, PDE4A and ADORA2A) which participate in  a total of 111 circuits and the 
fold change caused in the circuit activity after simulating its effect is comparatively low (log 
fold change < 0.05 for all the cell types; see Supplementary Figure 1), while the simulation of 
the effect of Fenofibrate, which targets only one gene PPARA that participates in only 32 
circuits renders a comparatively high effect (log fold change > 2 for all the cell types; see 
Supplementary Figure 1). It is interesting to note that, depending on the case, the different 
drug effects simulated can affect to a larger or to a smaller number of cells with distinct 
intensity in their impacts on the activity of the signaling circuits affected, but always, no matter 
what drug is simulated, there are some cells that manage to escape to the inhibitory effect of 
the drug.  

Discussion 

The goal of most scRNA-seq publications revolves around the characterization of cell 
populations, which can be accurately achieved using only a subset of the total number of 
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genes (those displaying the highest variability across cells). However, the use of mechanistic 
models to estimate global signaling circuit activity profiles for individual cells requires of 
reasonably accurate measures of the expression levels of all the genes involved in the signaling 
circuits. Dropout events, quite common in scRNA-seq experiments (46), are particularly 
problematic given that taking by mistake a missing value by a real zero value can cause 
erroneous determinations of the inferred activity of the circuits. Thus, we explored the 
performance of three different imputation methods in producing cell-specific profiles of 
signaling circuit activity whose clustering resulted in a grouping similar to that observed and 
validated in the original glioblastoma study. Here, two machine learning based methods, 
DRImpute and  MAGIC, produced a clustering compatible with the original validated clustering, 
and specifically, Drimpute, the method of choice, rendered clusters with a similar shape as well 
(see Figure 1). 

Focusing on neoplastic cells, the existence of three different clusters is also apparent at the 
level of functional profiles, which suggests the existence of different functional behaviors. 
Several attempts to stratify glioblastoma patients have been proposed by discriminating 
different subtypes according to different properties, such as patient survival (61) mutational 
status of some genes (62) or the tumor microenvironment (63). In the most used classification, 
glioblastoma tumors were divided into three subtypes (from less to more aggressive: classical, 
proneural, and mesenchymal) based on the signature of 50 genes (55). Although this 
conventional subtyping provides an approximate descriptor of tumor aggressiveness, 
subtyping based on functional profiles related to cancer hallmarks provides an interesting 
alternative for the stratification of glioblastoma that offers, in addition, a mechanistic 
description on the functional activity of the tumor. Actually, it has been reported in 
neuroblastoma that signaling pathway models used as biomarkers outperform traditional 
biomarkers as predictors of patient survival (26).  

Among pathways that are commonly altered in all three clusters we find well known factors 
contributing to carcinogenesis, such as those related to hypoxia (HIF-1, SOD2), cancer stem 
cells (CSCs), cell cycle proteins, like CDK family, signal transduction pathways and hormone 
signaling (64-66). Moreover, these are mainly related to Sustaining proliferative signaling, 
Enabling replicative immortality and Resisting cell death hallmarks that can be defined as the 
core cell functions involved in glioblastoma initiation and proliferation.  

Each cluster exhibits a characteristic deregulation of pathways, however, cluster 2 barely has 
four unique sub-pathways, all related to common hallmarks Resisting cell death and Sustaining 
proliferative signaling. Neoplastic clusters 1 and 3, but no cluster 2, exhibit Genome instability, 
a hallmark observed in almost all sporadic human cancers, including glioblastoma (67,68). 
Besides, cluster 1 and 3, show deregulated Cellular energetics, a process that has been 
suggested as a suitable target for tumor cell elimination (69). Furthermore, both clusters show 
pathways associated with matrix metalloproteins and Snail family that have been linked to 
cancer invasion and metastasis also in glioblastoma (70-72). Interestingly, only cluster 3 may 
be avoiding immune destruction due to the deregulation of Toll-like receptor signaling 
pathway. Glioblastoma is known to have a strongly immunosuppressive microenvironment, 
thus blocking these cells by activating downstream TLR signaling pathways can reduce tumor 
growth and disrupt CSC self-renewal (73,74). 

We have demonstrated that not all the cells in a tumor are driven by the same cancer 
processes, and that those alterations can define subpopulations that may confer tumors 
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different aggressiveness and invasion abilities, highlighting the relevance of heterogeneity, 
beyond the widely accepted stratification of glioblastoma in three/four subtypes (75,76). 

The emergence of mechanisms of resistance in targeted therapies has been attributed to 
either the selection of rare pre-existing genetic alterations upon drug treatment (77) or the 
transient acquisition of a drug-refractory phenotype by a small proportion of cancer cells 
through epigenetic modifications (78). In both cases, these alterations would be detectable in 
the expression of the corresponding genes. An interesting property of mechanistic models is 
that they can be used to model the effect of an intervention over the system studied (25,35). 
Thus, the use of mechanistic models on single cell transcriptomic data offers for the first time 
the possibility of modeling the effects of a targeted drug in individual cells. From Figure 4 it 
becomes apparent that low-responder cells have a constitutive level of VEGFA lower than 
highly-responder cells, either with the relevant role of signal transduction taken by other 
proteins to keep the circuit active or simply with the circuit already inactive. Thus, the 
mechanistic model provides a simple explanation of the molecular mechanisms behind the 
differential effect of drugs over cells with different signaling profiles that ultimately cause 
different functional strategies. 

Supplementary Figure 1 depicts the simulated response of individual cells to the treatment 
with different targeted drugs. Despite the variety of effects that cause in the cells, It is worth 
noticing that there is always a group of cells that manage to escape to the inhibition of the 
drug. The heterogeneity observed in the cell population in terms of use of different strategies 
to activate the essential cancer hallmark through different signaling circuits, produces a 
consequent diversity in the response to drugs. Although the number of drugs simulated is 
relatively low, given that drug repurposing was beyond the scope of this paper, the results 
obtained here suggest that the escape of a relatively small number of cells to the effect of the 
drug could be a relatively frequent event that occurs as a natural consequence of the 
heterogeneity in the signaling strategies followed by the cell population. When this 
subpopulation becomes dominant some time later, it results to be resistant to the drug.  

Conclusions 

The use of mechanistic models provides a detailed insight into the functional strategies used 
by tumors to proliferate and open new avenues for the design of interventions a la carte. The 
extension of this analytic approach to single cell transcriptomic data allows an unprecedented 
detail on how cancer cells display different functional strategies to proliferate that have 
consequences in their respective vulnerabilities to targeted therapies.  

Although the existence of resistant clones in a tumoral cell population is well known, the 
specific mechanisms used by resistant cells to escape from the inhibitory effects of targeted 
therapies remain unknown yet. Mechanistic models offer for the first time a plausible and 
contrastable hypothesis on how and why some cells are insensitive to treatments, illustrated 
here  with bevacizumab in the case of glioblastoma. The use of this modeling strategy offers a 
systematic way for detecting tumoral cells that may be resistant to specific targeted 
treatments. Conversely, the same models could be used to find an alternative treatment for 
resistant drugs. In fact our results suggests that the search for new, more efficient therapeutic 
targets would be very benefited of the use of mechanistic models that guide to the 
intervention points with more likelihood of success in inhibiting the proliferation of the largest 
possible part of the spectrum of functional strategies in the tumor cell ecosystem.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 29, 2019. ; https://doi.org/10.1101/858811doi: bioRxiv preprint 

https://doi.org/10.1101/858811
http://creativecommons.org/licenses/by/4.0/


 

Material and methods 

Data and primary processing 

A large scRNA-seq dataset containing 3589 cells of different types obtained in four patients 
from a glioblastoma study (45) was downloaded from GEO (GSE84465). Cells corresponded to 
the tumor, and to the periphery of the tumor.  

Count values for the scRNA-seq were downloaded from GEO and subjected to the three 
imputation methods, MAGIC (48),  SCimpute (49) and Drimpute (50), as implemented in the 
corresponding software packages. Each method has its own preprocessing pipeline explained 
in the corresponding publication.  

Once imputed, samples were log-transformed and a truncation by quantile 0.99 was applied. 
Finally, the values were normalized between 0 and 1, as required by the downstream 
functional analysis with Hipathia.  

Hipathia mechanistic model 

The Hipathia method uses KEGG pathways (79) to define circuits that connect any possible 
receptor protein to specific effector proteins. Gene expression values are used in the context 
of these circuits to model signaling activity, that ultimately trigger specific cell activities, are as 
described in (24). A total of 98 KEGG pathways involving a total of 3057 genes that form part of 
4726 nodes were used to define a total of 1287 signaling circuits. The intensity value of signal 
transduced to the effector is estimated by the following recursive formula: 

 

𝑆𝑆𝑛𝑛 = 𝜐𝜐𝑛𝑛 ∙ �1 −�(1 − 𝑠𝑠𝑎𝑎)
𝑠𝑠𝑎𝑎∈𝐴𝐴

� ⋅�(1 − 𝑠𝑠𝑖𝑖)
𝑠𝑠𝑖𝑖∈𝐼𝐼

 (1) 

 

where Sn is the signal intensity for the current node n, vn is its normalized gene expression 
value, A is the set of activation signals (sa), arriving to the current node from activation edges, I 
is the set of inhibitory signals (si) arriving to the node from inhibition edges (24). 

The Hipathia algorithm (27) is implemented as an R package available in Bioconductor (52) as 
well as in a web server (80) and as a Cytoscape application (81).  

Differential signaling activity 

Two groups of circuit activity profiles can be compared and the differences in activity of any 
circuit can be tested by means of different tests, among which limma (82) has demonstrated to 
be very efficient.   

Signaling circuits associated to cancer hallmarks 

Each effector is known to be associated to one or several cell functions. This information is 
extracted both from the Uniprot (83) and Gene Ontology (84) annotations corresponding to 
the effector gene (24). However, in some cases the annotations are too ambiguous or make 
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reference to roles of the gene in many different conditions, tissues, developmental stages, 
etc., making thus difficult to understand its ultimate functional role. In addition, in this study 
the activity of signaling circuits relevant in cancer is particularly interesting. Since a number of 
these effector genes has been related specifically with one or several cancer hallmarks (34) in 
the scientific literature, the CHAT tool (54), a text mining based application to organize and 
evaluate scientific literature on cancer that allows linking gene names with cancer hallmarks.  

Subtyping of cancer cells 

The SubtypeME tool from the GlioVis data portal (56) was used to obtain the subtype of cancer 
(classical, proneural or mesenchymal), based on the signature of 50 genes (55). This tool 
provides three methods to assign subtype: Single sample Gene Set Enrichment Analysis 
(ssGSEA), K-nearest neighbors (k-NN) and Supported vector machine (SVM). Subtype was 
assigned when at least two of the methods made an identical subtype prediction. 
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