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Abstract 14 

Microbial metagenomics utilising next generation sequencing is a powerful experimental approach 15 

enabling detailed and potentially complete descriptions of the microbial world around and within us. 16 

Selecting how to perform feature data normalization, transformation and calculate ß-diversity is a 17 

critical step in the analysis of metagenomic data, but also a step for which a multitude of methods are 18 

available. Researchers need to have a broad overview and understand the many methods that exist in 19 

the field and the consequences from applying them. In this perspectives article, some of the most widely 20 

used metagenomic feature data normalizations, transformations and ß-diversity metrics are discussed 21 

in the context of multivariate visualizations. We provide a framework that other researchers can utilize 22 

to evaluate how robust their test data are when applying different normalizations, transformations and 23 

ß-diversity metrics, and visually compare the results of the methods. We constructed an in silico test 24 

dataset to evaluate the setup and clarify how the theoretical discussion is transferable to this data. We 25 

urge other researchers to implement their own test data, normalization, transformation, ß-diversity 26 

metric and visualization methods, in the hope that it will advance better decision making both in study 27 

design and analysis strategy.        28 

 29 

1 The lack of consensus on how to perform data normalization, transformation and 30 

calculate ß -diversity  31 

Next generation sequencing (NGS) is applied heavily in microbiome research, enabling both 32 

taxonomic and functional descriptions of microbiomes (1,2). Metagenomic data need to be processed 33 
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before analysis to make sample comparisons possible due to the differences in sequencing depth. 34 

Furthermore, there is an increasing awareness that such data are compositional and should be processed 35 

accordingly (3–7).  36 

The choice of how to perform data normalization, transformation and computation of ß-diversity can 37 

have a substantial impact on the results from the subsequent data analysis especially since metagenomic 38 

data typically are sparse, because some features are not present or their abundance are below the limit 39 

of detection. Classically, metagenomic feature data are either relativized to some sample characteristics 40 

such as the number of total reads, bacterial reads etc., or from a compositional, more transparent 41 

measure according to the number of assigned reads that is also known as total sum scaling (TSS). When 42 

relativizing, the precision of measurement is lost, considering that data are heteroscedastic direct 43 

comparison of samples is flawed if methods assume equal variance. (8). Therefore, rarefying can be 44 

performed, but it has been argued against due to the loss of power (8). Relativizing is highly influenced 45 

by the most abundant features, alternatively, the median, quantile normalization or cumulative sum 46 

scaling (CSS) can be used (9,10). Methods developed for normalizing data such as trimmed mean of 47 

M-values (TMM) and relative log expression (RLE), can be relevant if most features are not changing 48 

between samples (11,12). The compositional data analysis framework provides an additional approach 49 

to analyse metagenomic data with a multitude of possibilities for estimating zeroes and visualization 50 

(13–16). There are arguably advantages and disadvantages to applying all of the different methods 51 

described (7,9,17,18).  52 

Several R packages have implemented the techniques described above such as “vegan”, “edgeR”, 53 

“DESeq2”, “phyloseq” and “compositions” (10,13,19–21). From these packages, we have identified 54 

228 combinations of normalizing and transforming data and calculating ß-diversity metrics. This is not 55 

an exhaustive list of possible methods to apply, and therefore processing metagenomic data is a task 56 

where tradition and ease of implementation are important factors governing researchers’ decisions. 57 

Understanding the more advanced methods, for instance, to perform compositional data analysis is 58 

most likely also a reason for these methods to not have become common as observed in other fields 59 

(22).  60 

The aim of the present study is to provide theoretical as well as applied analytical perspectives on 61 

normalization and transformation of metagenomic data in the context of calculating ß-diversity that is 62 

used for statistical inference and multivariate visualizations. We have constructed an in silico dataset 63 

to visualize how data processing affects metagenomic analysis. The dataset was used to investigate if 64 

methods are robust according to sequencing depth and the influence of changes in data structure. 65 

Furthermore, a visualization of a dissimilarity matrix containing the Procrustes test results for all 66 

selected methods compared pairwise provides a comparison of how the methods resemble each other. 67 

We provided the code used to generate the analysis in the hope that other researchers can use it as a 68 

tool for assessing the effect and sensitivity of using different transformation, normalization and ß-69 

diversity methods by incorporating their own test data, favourite methods or visualization techniques.          70 

 71 

2 Theoretical perspectives on data normalization, transformation and ß-diversity 72 

calculation in metagenomics 73 

In this section, perspectives are provided on feature data transformation, normalization and ß-diversity 74 

metrics where we, for the latter, have focused on Euclidean distance, Manhattan distance and Bray-75 

Curtis dissimilarity due to their widespread use and acceptance in metagenomics. In terms of between 76 
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sample comparisons, normalization is primarily performed to take sequencing depth into account and, 77 

transformation is performed to weigh how the differences between features should be emphasized.  78 

One of the most common methods to account for sequencing depth is TSS. When calculating ß-79 

diversity, this method is driven by the features with the largest differences between samples that are 80 

typically also the most abundant features because it scales linearly in absolute values. Multivariate 81 

visualisations and statistical tests therefore depend on the differences in the most abundant features. 82 

To deemphasize this effect, log transformations or square root transformations, such as the Hellinger 83 

transformation, are used. Sometimes these transformations are applied post TSS; however, if this is the 84 

case, it should be emphasized that sample values no longer add up to the same total sum anymore. If 85 

detection is the primary focus of analysis, making a presence absence (PA) transformation can be 86 

justified because this removes the effect of abundance. From a practical viewpoint, PA requires high 87 

specificity when mapping reads, commonly at the cost of sensitivity, control of contamination during 88 

sample processing and is not robust according to sequencing depth unless different detection limits are 89 

implemented prior to transformation.  90 

Rarefying (or subsampling) provides data where precision of a measurement is the same across 91 

samples, typically performed by rarefying to the level of the sample with the fewest assigned reads, at 92 

the cost of sensitivity. The loss of precision is usually not a problem if sequencing depth is even, but a 93 

similar argument can be made in this case when relativizing. Data are still heteroscedastic and therefore 94 

should be modelled accordingly, i.e. when performing differential abundance analysis (8,9). Both 95 

relativizing and rarefying do not take the compositionality of data into account, but perform well if the 96 

most abundant features between samples are relatively constant, which is rarely known. If, on the other 97 

hand, most features are not changing between compared groups of samples, the median, RLE and TMM 98 

offer a better solution (9). This is also why RLE and TMM were implemented in DESeq2 and edgeR, 99 

respectively, for the analysis of expression data. In expression data, it is often a good assumption, for 100 

instance in a clinical study, that treatment only changes expression of a few genes (11,21). In 101 

metagenomics, this assumption could be met, but from our experience, working in the field and with 102 

spike-in organisms, this is rarely the case.  103 

When calculating ß-diversity, the length of the straight line between two points can be calculated, this 104 

is also known as the Euclidean distance. This method would be straightforward if the points were in 105 

Euclidean space, but metagenomic data are compositional and points are therefore confined to a 106 

simplex. When calculating Euclidean distances, the differences are squared, consequently, the greatest 107 

differences are further emphasized relative to using Manhattan distance or Bray-Curtis dissimilarity. 108 

This could be counterbalanced by performing a log or Hellinger transformation. Manhattan distance is 109 

the sum of absolute differences. Manhattan distance is also the numerator of Bray-Curtis dissimilarity 110 

that is then scaled to the sum of total features in the two samples. The Manhattan distance also does 111 

not account for the compositionality of data.       112 

 113 

3 Another approach to data normalization in metagenomics 114 

A solution to the challenges described above is to use a compositional analysis framework. Using 115 

centered log ratio (CLR) transformation, where the log of each feature is compared relative to the 116 

geometric mean, or the isometric log ratio (ILR) transformation, where orthogonal basis functions are 117 

used to span the simplex space somewhat analogous to the CLR transformation, in the context of 118 

calculating ß-diversity (23,24). Performing both methods enables real-space calculations and 119 
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consequently Euclidean distances when calculating ß-diversity. The methods are simple in principle, 120 

but zeroes have to be imputed and this represents a major challenge when dealing with metagenomic 121 

data that are typically sparse (4,25,26). One often-used solution is to detect features with a zero and 122 

then remove the features from all samples. This option is recommended when features are low abundant 123 

in the others samples, but in metagenomic studies, a feature might be relatively highly abundant in one 124 

sample and not present in another. Another approach is to add a pseudo-count, multiplicative simple 125 

replacement or a Bayesian approach (15,27,28). Nonetheless, in all imputations of zeroes, there is no 126 

way of knowing the difference between a “true” zero representing a feature that is not present and a 127 

zero that is below the detection limit. Imputation in this situation is therefore limited to assigning a 128 

value below the detection limit, even though the feature might not be present (27,28). 129 

From a mathematical perspective, we expect the compositional methods to offer a desirable 130 

characteristic in that data are not constrained to the simplex, but considering sparsity, which is 131 

commonly an artefact of metagenomic data, zeroes have to be imputed.  132 

 133 

4 Seeing is believing - In silico comparison of data normalization, transformation and ß-134 

diversity calculation in metagenomics 135 

To provide applied analytical perspectives, an in silico dataset was constructed to reflect typical 136 

challenges in metagenomic data including sparsity and differences in sequencing depth. A reference 137 

(Ref), equivalent to a sample, was created consisting of abundance profiles of 70 different organisms 138 

(i.e. number of sequence reads mapping to a given organism). The sample consisted of counts from the 139 

following abundance levels:  140 

 High (1 random sampling between 1000-5000),  141 

 Medium high (3 random samplings between 100-999 with replacement),  142 

 Medium (9 random samplings between 5-99 with replacement),  143 

 Low (27 random samplings between 0-4 with replacement), and  144 

 Not present (30 zeroes).  145 

The test data contained 70 different features (i.e. organisms), but this was a trade-off to make the 146 

analysis run on a desktop computer. 147 

Eleven other samples were created, all variations of the reference: 148 

 Multiplying counts with 2 (SF2) and 10 (SF10), 149 

 Changing counts to zeroes in each of the different abundance levels (SwHato0, SwMHato0, 150 

SwMato0, SwLato0),  151 

 Switching the highly abundant feature with one in each of the other abundance groups 152 

(SwHaMHa, SwHaMa, SwHaLa, SwHaNP), and 153 

 Reversing the reference (RevRef) to create a very dissimilar sample only sharing a few low 154 

abundant features. 155 

These artificial samples represent potential differences that are of interest to assess the effect of 156 

sequencing depth and structural differences in data. The full computer code documents the exact 157 

construction of the samples and their variations 158 

(https://github.com/csapou/DataProcessinginMetagenomics). 159 
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To limit the number of combinations of normalization, transformation and ß-diversity metrics in 160 

figures, we selected 36 methods. We included Euclidean distance, Manhattan distance and Bray-Curtis 161 

dissimilarity as ß-diversity metrics, since these metrics are popular in metagenomics. The selected 162 

transformation and normalization steps were based on tradition in the field of microbial ecology (TSS, 163 

rarefying, PA and CSS). We also included Hellinger and log transformation both before and after TSS. 164 

Some methods are implemented to normalize RNA-expression data (TMM and DESeq (poscount 165 

argument in estimating SizeFactors)). For methods that adhere to the compositional data analysis 166 

framework, we included six methods that use Euclidean distances. Zeroes were estimated with 167 

multiplicative simple replacement or adding a pseudo-count of one prior to TSS, then performing both 168 

CLR and ILR. We also included TSS and then added a pseudo-count of the minimum divided by ten 169 

before performing CLR and ILR.     170 

All statistical analysis and visualization of data were performed in R version 3.4.4, and data 171 

transformation, normalization and calculation of ß-diversity were performed using the packages 172 

described above. To visualize the dissimilarities and distances between the different samples, we 173 

created a heatmap with accompanying dendrograms using complete linkage clustering of Euclidean 174 

distances based on the full-scale distance and dissimilarity matrices. Heatmaps were generated using 175 

the ‘pheatmap’ package by extracting the ß-diversity to the reference sample. ß-diversity values were 176 

made comparable in each of the methods by scaling to the max value. To compare all the distance and 177 

dissimilarity matrices pairwise, a Procrustes approach was used based on randomization tests (29,30). 178 

A dissimilarity matrix of the processing methods was created by subtracting the Procrustes correlations 179 

from one. Metric multidimensional scaling of the dissimilarity matrix was performed by running the 180 

capscale function unconstrained from ‘vegan’. The generation of the principal coordinates analysis 181 

(PCoA) plot of the first two dimensions, density plot of the correlations, stress plot containing a 182 

scatterplot of the distance observed in the PCoA as a function of the “true” ß-diversity calculated and 183 

the scree plot showing the variance in the principal components were performed with ‘ggplot2’ (31). 184 

The code to generate test data and perform data processing is provided at 185 

https://github.com/csapou/DataProcessinginMetagenomics with additional principal component 186 

analysis (PCA) plots and PCoA plots of all individual methods and randomly generated samples.  187 

From Figure 1 we find that samples scaled by a factor of 2 or 10 had a low ß-diversity relative to the 188 

reference sample, indicating that the methods we selected were able to control the effect of sequencing 189 

depth, which is a bare minimum for applying them to this type of data. Some inconsistency was 190 

observed when performing log or log-ratio transformations. This effect can be reduced in this case by 191 

estimating zeroes at a lower level. The reverse sample representing a dissimilar community was also 192 

generally the one with the highest ß-diversity relative to the reference. ß-diversity metrics generally 193 

cluster containing either Euclidean distances or Bray-Curtis dissimilarity together with Manhattan 194 

distance. Bray-Curtis dissimilarity and Manhattan distance cluster when performing TSS, because the 195 

denominator evaluates to 2 when calculating the  Bray-Curtis dissimilarity and is therefore just a factor 196 

of two scaling of the Manhattan distance. Transformation and normalization methods also cluster to 197 

some extent. 198 

In Figure 2, where the processing methods are compared pairwise in full scale, the classical methods 199 

show a spectrum between abundance-driven processing exemplified by TSS and PA (Fig. 2A). In 200 

between these extremes, variations of Hellinger and log transformations are plotted as we expected 201 

from the theoretical discussion. The methods adhering to the compositional data analysis framework 202 

do not cluster, emphasizing the need for further investigations into the effect of estimating zeroes. The 203 

methods developed for normalization of gene expression data to perform differential abundance 204 

analysis are likely to perform badly with this in silico data because they assume that large proportions 205 
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of features are constant between samples. Comparing communities that are highly different, for 206 

example, the reverse sample in this dataset makes these methods inappropriate. The validation plots in 207 

the form of stress plot and scree plot show that the observed dissimilarity correlates with the ordination 208 

distance, and a large proportion of the variance is explained in the first two axes, respectively (Fig. 2C-209 

D).  210 

 211 

5 Multivariate visualization in metagenomics - a step forward   212 

We hope that the theoretical perspectives together with the visualizations provided demonstrate that 213 

data normalization, transformation and calculation of ß-diversity have a substantial impact on the 214 

analysis and multivariate visualization of metagenomic data. We consider the public source code as a 215 

resource that other researchers can utilize to implement their own favourite methods for processing 216 

metagenomic data (https://github.com/csapou/DataProcessinginMetagenomics). Here, we also provide 217 

all of the 228 methods that we have identified with additional randomly generated samples. To perform 218 

a sensitivity analysis of the effect of using different data normalization and transformation strategies 219 

in the context of calculating ß-diversity, a density plot is provided for all of the Procrustes test 220 

correlations. From the analysis on our test dataset we see that there are two peaks with approximately 221 

the same height and the lower one is centred around a correlation of 0.5, indicating that data processing 222 

is important for this test data (Fig. 2B). On the other hand, performing this analysis on another test 223 

dataset might reveal high correlations between all methods. This would indicate that the conclusions 224 

derived from the data are robust to withstand applying different normalizations, transformations and 225 

ß-diversity metrics.  226 

Other relevant modifications include the removal of the reversed sample from the analysis to look at 227 

the subtle differences between similar samples. With the large number of combinations of 228 

normalizations, transformations and ß-diversity metrics to select from, we discourage other researchers 229 

from implementing their real data to circumvent pipeline-hacking analogous to p-hacking (32). A better 230 

option for the users would be to implement their own relevant test dataset, and from this analysis, and 231 

together with theoretical considerations, select one or a few processing methods before analysing their 232 

real data. We hope that the code provided also eases the implementation of new methods. Generation 233 

of dendograms in the heatmap and the PCoA of Procrustes test results were run using default settings, 234 

and an investigation could also be initiated to assess how this might influence the results. Again, we 235 

urge others to implement their own favourite methods.  236 

We would like to highlight other aspects of good scientific practice in metagenomics and refer readers 237 

to articles on study design (33–35), sample processing (36–39) and other aspects of metagenomic data 238 

analysis primarily focusing on differential abundance analysis of features (3,7–9,40–42).   239 

 240 
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 365 

11 Figure legends 366 

Figure 1: Heatmap visualizing the ß-diversity to the reference sample using different strategies 367 
to normalize and transform data. The ß-diversity relative to the reference for each method was 368 

normalized according to the max value. Dendograms were created using complete linkage clustering 369 

of Euclidean distances. The rows in the heatmap represent different modifications to the reference, 370 

where RevRef represents reversing the reference, Sw represents switching, Ha represents high 371 

abundance, MHa represents medium high abundance, Ma represents medium abundance, La represents 372 

low abundance, NP represents not present, and SF represents scaling factor. The column labels in the 373 

heatmap contain extended explanations of zero estimation, where TSS represents total sum scaling, 374 

Rar represents rarefying, pa represents presence absence, CSS represents cumulative sum scaling, off 375 

represents an offset of zeroes, est represents a zero estimate using multiplicative simple replacement, 376 

ilr represents isometric log ratio transformation, clr represents centred log ratio transformation, and 377 

TMM represents trimmed mean of M-values.    378 

Figure 2: A: Principal coordinates analysis (PCoA) of the dissimilarity matrix containing 379 

pairwise comparisons of 1 - Procrustes correlations between methods, B: Density plot of 380 

correlations, C: Stress plot comparing observed dissimilarity to ordination distance in the 381 
PCoA and D: Scree plot of the percent of variation explained by the axes. A dissimilarity matrix 382 

was created from all of the pairwise comparisons of metagenomics data analysis pipelines 383 

represented by one minus the Procrustes correlation. Redundancy analyses were performed 384 

unconstrained using the capscale function in vegan creating PCoA-, density, stress- and scree plot 385 

with ggplot2. Ellipses where added manually highlighting presence absence (pa), total sum scaling 386 

(TSS), and the compositional methods centred log ratio transformation (clr) and isometric log ratio 387 

transformation (ilr). In the processing (transformations and normalizations) legend, CSS represents 388 

cumulative sum scaling, and TMM represents trimmed mean of M-values. A small amount of jitter 389 

was added to distinguish clr and ilr.  390 

 391 

1 Data Availability Statement 392 

The datasets generated and analyzed for this study can be found at: 393 

https://github.com/csapou/DataProcessinginMetagenomics 394 
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