Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Implicit bias is strongest when assessing top candidates

View ORCID ProfileEmma R Andersson, Carolina Hagberg, Sara Hägg
doi: https://doi.org/10.1101/859298
Emma R Andersson
1Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
2Department of Cell and Molecular Biology, Karolinska Institutet, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Emma R Andersson
  • For correspondence: emma.andersson@ki.se sara.hagg@ki.se
Carolina Hagberg
3Department of Medicine, Solna, Karolinska Institutet, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sara Hägg
4Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: emma.andersson@ki.se sara.hagg@ki.se
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/859298
History 
  • December 3, 2019.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Author Information

  1. Emma R Andersson1,2,*,
  2. Carolina Hagberg3 and
  3. Sara Hägg4,*
  1. 1Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
  2. 2Department of Cell and Molecular Biology, Karolinska Institutet, Sweden
  3. 3Department of Medicine, Solna, Karolinska Institutet, Sweden
  4. 4Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden
  1. ↵*Correspondence to emma.andersson{at}ki.se or sara.hagg{at}ki.se
Back to top
PreviousNext
Posted December 03, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Implicit bias is strongest when assessing top candidates
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Implicit bias is strongest when assessing top candidates
Emma R Andersson, Carolina Hagberg, Sara Hägg
bioRxiv 859298; doi: https://doi.org/10.1101/859298
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Implicit bias is strongest when assessing top candidates
Emma R Andersson, Carolina Hagberg, Sara Hägg
bioRxiv 859298; doi: https://doi.org/10.1101/859298

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Scientific Communication and Education
Subject Areas
All Articles
  • Animal Behavior and Cognition (4654)
  • Biochemistry (10299)
  • Bioengineering (7614)
  • Bioinformatics (26191)
  • Biophysics (13446)
  • Cancer Biology (10620)
  • Cell Biology (15335)
  • Clinical Trials (138)
  • Developmental Biology (8452)
  • Ecology (12755)
  • Epidemiology (2067)
  • Evolutionary Biology (16764)
  • Genetics (11356)
  • Genomics (15400)
  • Immunology (10548)
  • Microbiology (25041)
  • Molecular Biology (10152)
  • Neuroscience (54097)
  • Paleontology (398)
  • Pathology (1655)
  • Pharmacology and Toxicology (2877)
  • Physiology (4314)
  • Plant Biology (9197)
  • Scientific Communication and Education (1581)
  • Synthetic Biology (2541)
  • Systems Biology (6752)
  • Zoology (1452)