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 48 

ABSTRACT 49 

Earth is home to over 350,000 vascular plant species1 that differ in their traits in 50 

innumerable ways. Yet, a handful of functional traits can help explaining major differences 51 

among species in photosynthetic rate, growth rate, reproductive output and other aspects of plant 52 

performance2-6. A key challenge, coined “the Holy Grail” in ecology, is to upscale this 53 

understanding in order to predict how natural or anthropogenically driven changes in the identity 54 

and diversity of co-occurring plant species drive the functioning of ecosystems7,8. Here, we 55 

analyze the extent to which 42 different ecosystem functions can be predicted by 41 plant traits 56 

in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented 57 

number of traits analyzed, the average percentage of variation in ecosystem functioning that they 58 

jointly explained was only moderate (32.6%) within individual years, and even much lower 59 

(12.7%) across years. Most other studies linking ecosystem functioning to plant traits analyzed 60 

no more than six traits, and when including either only six random or the six most frequently 61 

studied traits in our analysis, the average percentage of explained variation in across-year 62 

ecosystem functioning dropped to 4.8%. Furthermore, different ecosystem functions were driven 63 

by different traits, with on average only 12.2% overlap in significant predictors. Thus, we did not 64 

find evidence for the existence of a small set of key traits able to explain variation in multiple 65 

ecosystem functions across years. Our results therefore suggest that there are strong limits in the 66 
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extent to which we can predict the long-term functional consequences of the ongoing, rapid 67 

changes in the composition and diversity of plant communities that humanity is currently facing. 68 

 69 

BODY 70 

Worldwide, ecological communities are rapidly changing due to various anthropogenic 71 

activities9-12. This biodiversity change is non-random, and the functional traits of organisms 72 

driving their growth, survival and reproduction are key in determining which species thrive and 73 

which perish under global change13-15. This may have important implications, as traits not only 74 

affect individual plant performance, but they may also drive various ecosystem functions such as 75 

biomass production, and the services these functions provide to human well-being7,8,15. 76 

Predicting rates of ecosystem functioning, such as biomass production or carbon 77 

sequestration, from the composition or diversity of traits in plant communities has been coined 78 

the “Holy Grail” in ecology7,8. Various studies have shown links between plant traits and 79 

species-level variation in photosynthetic rate, growth, and reproductive output present in the 80 

plant kingdom3-5. However, in natural communities, plants occur in various abiotic 81 

environments, and they interact with individuals from other species, so that both the identity and 82 

diversity of traits may matter for ecosystem-level functioning. Despite this, so far various field 83 

studies only found relatively weak links between the identity and diversity of plant traits and 84 

ecosystem-level functioning8,16-18. Furthermore, those studies that did find strong links between 85 

traits and ecosystem functions19,20 were typically carried out within a single year, but if links 86 

between traits and ecosystem functioning are highly context-dependent, the capacity of traits to 87 

predict the long-term consequences of global change, thereby attaining the “Holy Grail”, may 88 

still be limited. Alternatively, strong and consistent links between plant traits and ecosystem 89 
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functioning exist, but higher numbers and more appropriate traits than assessed in previous 90 

studies are needed to demonstrate those links.  91 

To test these ideas, we first performed a systematic literature review to investigate which and 92 

how many traits 100 recent studies measured when attempting to link the diversity or 93 

composition of traits within terrestrial plant communities to ecosystem functioning. We found 94 

that most studies analyzed six traits, and only two studies assessed more than 15 traits (Fig. 1B). 95 

Nine of the ten most frequently studied traits (Fig. 1A) described aboveground plant properties, 96 

of which six described leaf properties. Only one frequently measured trait was related to plant 97 

roots, even though roots provide important plant functions (e.g. anchoring, resource uptake) and 98 

represent approximately 50% of total plant biomass21. Thus, most previous studies assessed a 99 

sparse set of traits, with a strong bias towards leaf traits. 100 

  101 
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 102 

Figure 1. Overview of which and how many traits are typically analyzed in other ecosystem 103 

functioning-related studies. A: Percentage of studies in which the 10 most frequently measured traits 104 

were investigated, according to the review of 100 recently published articles. The lighter blue bar shows 105 

the only two functions not measured in this study. B: Number of measured traits among studies. 106 

 107 

We then investigated to what extent a much higher number of traits can explain variation in 108 

ecosystem functioning. We did this using a dataset containing 10 years of measurements of 42 109 

ecosystem functions, assessed in 78 experimentally established grassland communities in 110 

Germany. The 42 ecosystem functions described various above- and belowground stocks and 111 

rates of plant, faunal, and abiotic properties driving grassland functioning (Supplementary 112 

Methods). Both the diversity and composition of the studied plant communities were 113 

experimentally manipulated, by sowing different combinations of species22,23. For each species, 114 

we measured 41 traits (more than any of the studies assessed in our review) related to structural, 115 

morphological, chemical and physiological properties of all main plant parts, including leaves, 116 
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stems, flowers, seeds, and roots. By combining these trait data with plant community data, we 117 

quantified both the Functional Identity and the Functional Diversity for each plot in each year. 118 

Functional Identity was calculated as the abundance-weighted mean of a trait within a 119 

community, and drives ecosystem functioning if the contributions of species to ecosystem 120 

functioning are proportional to their relative abundance15,24. Functional Diversity was calculated 121 

as Rao’s Quadratic Entropy25, and can drive ecosystem functioning if species contribute 122 

differently to functioning when co-occurring with plants with different traits, e.g. due to trait-123 

driven resource complementarity23,25,26.  124 

We used linear mixed models to analyze how much of the variation of each of the 42 125 

ecosystem functions was explained by Functional Identity and Diversity metrics of all 41 traits, 126 

as well as by random year and plot differences. We used a forward model selection procedure, in 127 

which during each step a trait was added, if it significantly improved model fit and did not 128 

strongly correlate with the traits already present in the model. Despite the high number of traits 129 

included in our analysis, and even though each ecosystem function was on average driven by 4.8 130 

traits (Fig. 2B), the average marginal R2 of final models was 0.127, indicating that traits 131 

explained on average only 12.7% (ranging from 0.0% to 40.0%) of the variation in ecosystem 132 

functioning (Fig. 2C). Marginal R2 values were even lower (mean of 0.078) when we used a 133 

more conservative model selection procedure correcting for False Discovery Rates. Conditional 134 

R2 values, which also account for the variance explained by random factors, including year 135 

differences, were much higher, with an average value of 0.632. Our finding that traits explained 136 

a very low proportion of variance may seem surprising, as other studies explained more variance 137 

with fewer predictors19. However, other studies typically used data for single years only, and it is 138 

possible that links between traits and ecosystem functions are only strong within years. To test 139 
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this, we also analyzed links between ecosystem functions and traits for each year separately. This 140 

showed that within years marginal R2 values were much higher, with an average value of 0.326. 141 

Thus, while traits were poorly linked to ecosystem functioning across years (possibly due to 142 

strong shifts in species’ abundances75), they explained much more variation within years, 143 

indicating that links between traits and ecosystem functions are strongly context-dependent. 144 

 145 

Figure 2. The relative importance of different and multiple traits for ecosystem functioning across years. 146 

A: the number of analyzed functions that was significantly driven by each trait, according to final models. 147 

The traits analyzed in over 10% of the papers included in the review are shown in yellow. B: Number of 148 

significant predictors in final models of each ecosystem function. C: Marginal R2 values for final models 149 

of each ecosystem function.  150 
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151 

Figure 3. R2 values of models in which only six traits were analyzed to explain ecosystem functions 152 

across years. A: Distribution of marginal R2 values of final models for each trait, when only the six most 153 

frequently investigated traits (see review) were included in the analysis. B: Distribution of mean marginal 154 

R2 values (across final models for each trait), when based on 100 random draws, six randomly selected 155 

investigated traits were included in the analysis. The vertical dashed bars show the 95% confidence 156 

interval, while the vertical red bar shows the mean marginal R2 across all functions when only the six 157 

most frequently investigated traits were included in the analysis. 158 

 159 

We then assessed how our ability to explain rates of ecosystem functions across years 160 

depends on how many and which traits are included in analyses. Those traits most frequently 161 

assessed in other studies did not drive more functions than traits less frequently studied. One trait 162 

(specific leaf area) only significantly drove a single ecosystem function, while others (e.g. leaf 163 

area) drove many more, but an overall pattern was not detectable (Fig. 2A). We investigated 164 

more formally how our ability to explain variation in ecosystem functioning would change, if we 165 

had measured either a) a random subset of six (corresponding to the number of traits assessed in 166 

most other studies) out of the 41 traits (based on 100 random draws), or b) only the six traits 167 

most frequently assessed in other studies, or if c) we analysed species richness (the most 168 
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commonly used biodiversity indicator) instead as a predictor of ecosystem functioning. 169 

Irrespective of whether six random traits or those most frequently investigated in other studies 170 

were analysed, on average only 4.8% (95 percentile: 3.8-6.5%) of ecosystem functioning 171 

variation could be explained (Fig. 3A,B), while species richness could explain only 1.7% of 172 

variation in ecosystem functioning. This represents a strong decrease compared to the 12.7% of 173 

variation explained when all 41 traits were assessed (Fig. 2B). We also assessed to which extent 174 

analyzing subsets of fewer or more than six traits influenced the proportion of explained variance 175 

in ecosystem functioning. This showed that there was an asymptotic relationship between the 176 

number of traits analyzed and the average proportion of explained variation in ecosystem 177 

functioning, and that at least 9, or 24 traits are required to explain 5%, and 10% of the variation 178 

in ecosystem functioning, respectively (Fig. 4A).  179 

  180 

Figure 4. The average proportion of variation in ecosystem functions across years explained by plant 181 

traits increases asymptotically with the number of traits included in the analysis. The red dot shows the 182 

proportion of explained variation when only the six traits most commonly assessed in other studies are 183 

included. A: the marginal R2 – number of traits relationship based on analysis of actual data. B: an 184 
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additional extrapolated (based on a fitted Michaelis – Menten equation) marginal R2 – number of traits 185 

relationship (red, dashed line). 186 

 187 

Thus, while each ecosystem function alone was on average explained by fewer than 5 traits 188 

(Fig. 2B), many more traits are needed to explain multiple ecosystem functions (Fig. 4). While 189 

seemingly a paradox, this happens if different ecosystem functions are driven by different traits. 190 

We demonstrated this by calculating the overlap (�) in the traits significantly driving each pair of 191 

ecosystem functions, using Sørenson’s index27. The average overlap indicated that pairs of 192 

ecosystem functions had on average only 12.2% significant trait drivers in common. Thus, while 193 

traits are commonly advertised as conveying more general information than a species’ identity 194 

does7,14,26, a small set of key traits able to explain variation in multiple ecosystem functions does 195 

not exist in Central European grasslands, just like ‘superspecies’ providing multiple functions 196 

don’t exist28. 197 

While many ecosystem functions were relatively poorly explained by traits, we could 198 

nevertheless identify traits that predicted many ecosystem functions, and ecosystem functions 199 

that were better predicted by traits than others. All traits explained at least one ecosystem 200 

function, and some (e.g. leaf area) drove many more (Fig. 2A). We also found that ecosystem 201 

functions related to aboveground stocks or processes were much better predicted (average 202 

marginal R2 = 0.21) than those related to belowground stocks or processes (average marginal R2 203 

= 0.07) (Table S2.1), even though 14 root traits were included in our analysis. It is possible that 204 

unmeasured traits related to litter quality or mycorrhizal associations have stronger links to 205 

functions such as soil respiration or soil nutrient availability. However, extrapolation of the 206 

observed relationships between model R2 and the number of analysed traits suggests that 87 traits 207 

are needed to increase the proportion of variance explained to 15%, and that there is an upper 208 
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limit of around 18% in the proportion of variance explained, even if an unlimited number of 209 

traits is analyzed (Fig. 4B). Hence, the inclusion of more trait data would only yield limited gains 210 

in our ability to explain ecosystem functioning. Instead, it is possible that the inclusion of 211 

intraspecific variation (not considered in this study) would improve links with ecosystem 212 

functions29. In addition, there were small spatial mismatches between within-plot locations of 213 

ecosystem function measurements and vegetation surveys, which could have weakened links 214 

between traits and ecosystem functioning. Lastly, it is possible that traits are more strongly 215 

linked to ecosystem functioning within other systems such as forests, or across ecosystem types. 216 

Using one of the most comprehensive studies so far, we showed that while traits can be 217 

strongly linked to ecosystem functions within years, our capacity to predict levels of multiple 218 

ecosystem functions across years (differing in e.g. weather conditions) is strongly limited. Thus, 219 

finding ecology’s Holy Grail is extremely challenging at best, and at worst a ‘mission 220 

impossible’. This may have strong implications. The functional composition and diversity of 221 

plant communities are rapidly changing9-12, and researchers are employing increasingly complex 222 

models to predict the consequences of these changes for worldwide biogeochemical and 223 

hydrological cycles30,31. While we encourage the use of such models and their inclusion of 224 

increasingly accurate trait information, our work also raises concerns about limits in their 225 

predictive capacity, suggesting that the consequences of ongoing biodiversity change are largely 226 

unpredictable. Human well-being relies on ecosystem services that are underpinned by various 227 

ecosystem functions32,33, and insuring that these functions are provided at high levels is 228 

extremely challenging if future environments are dominated by plant communities differing from 229 

those observed today. Hence, policies halting the current-day, rapid changes in biodiversity are 230 

the safest bet to guarantee nature’s contributions to future generations of people.  231 
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METHODS 247 

Review 248 

We performed a review to investigate which traits were most often analyzed as predictors 249 

of ecosystem functioning in recent years. We did this on the Clarivate Analytics Web of Science 250 

website in July 2018, using the search terms (functional-diversity or community-weighted-mean 251 

or CWM or trait-diversit*) and ecosystem function* and (plant or vegetation). This initially 252 

yielded 654 results. Among these, we searched for papers that analyzed an ecosystem function 253 

(broadly defined as energy or trophic fluxes and biomass stocks, measured at the ecosystem or 254 

community level) as the response of the Functional Diversity or Functional Identity (e.g. 255 

(abundance-weighted) trait mean values) of one or more terrestrial plant traits. We only focused 256 

on the 100 most recently published articles that met these criteria. The main objective of this 257 

mini-review was to get an overview of a representative sample of recent studies linking 258 

terrestrial plant traits to ecosystem functioning, rather than to get an exhaustive overview of all 259 

published literature. 260 

Among the 100 selected papers (see Appendix A), we screened which plant traits were 261 

analyzed as predictors of ecosystem functioning. Some traits had different labels among different 262 

publications (e.g. specific leaf area versus leaf mass per area34,35. In those cases, we used our 263 

expert judgement and a plant trait thesaurus (http://www.top-thesaurus.org/home)36 to relabel 264 

traits in order to obtain a common terminology. We then counted and ranked the frequencies 265 

(number of papers) by which each trait was analyzed as a predictor of ecosystem functioning, 266 

and we identified the top ten of traits analyzed in most papers, and the five most commonly 267 

analyzed traits. 268 

 269 
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Experimental design 270 

We studied relationships between various ecosystem functions and plant traits using data 271 

from the Jena Main Biodiversity Experiment22,23, which is one of the biggest and longest running 272 

biodiversity experiments worldwide. This  grassland biodiversity experiment was set up in spring 273 

2002 in the floodplain of the Saale river close to the city of Jena (Germany, 50°55`N, 11°35`E, 274 

130 m a.s.l.), at a field that was previously managed as a fertilized agricultural field for at least 275 

four decades. The experiment was designed to study the effects of species and functional group 276 

richness on various ecosystem functions.  277 

In short, 78 plots were established, each measuring 20×20 m. In these plots, different 278 

subsets of a species pool of 60 species were sown in spring 2002. The different species were 279 

selected to be representative of a Molinio-Arrhenatheretea  grasslands37 and were classified in 280 

four functional groups as ‘grass’ (including Poaceae and one Juncaceae species), small herb, tall 281 

herb or legume, with 16, 12, 20 and 12 species in the species pool, respectively. In each plot, 1, 282 

2, 4, 8 or 16 species were sown, with each richness level replicated 16 times. The 16 species 283 

mixture plots formed an exception, and were replicated only 14 times. Total sowing density was 284 

1000 seeds per m2, irrespective of the richness level. Each plot contained a unique species 285 

composition. In addition to a species richness gradient, a functional group richness gradient was 286 

established, in such a way that sown species and functional group richness were as orthogonal as 287 

possible. Functional group richness ranged from 1, 2, 3 and 4, with 34, 20, 12 and 12 replicates, 288 

respectively. Plots were assigned to four blocks in parallel to the riverside to account for 289 

differences in soil properties with increasing distance from the river (with e.g. sand content being 290 

higher in plots closer to the Saale river). Each block had a similar number of plots, and each 291 

block had all levels of species and functional group richness approximately equally represented. 292 
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Twice per growing season, plots were weeded in order to avoid species that were not 293 

sown in the plots upon establishment. We refer to two other publications22,23 for more details on 294 

the design of the Jena main experiment.  295 

 296 

Plant community assessments 297 

During the period between 2003 and 2012, twice per year, during spring (May) and 298 

summer (August), cover of all target plant species was estimated in each plot, within a 3×3 m 299 

subplot. For more details, we refer to Roscher et al. (2013)38. 300 

 301 

Ecosystem function measurements 302 

During the years 2002 till 2012, 42 different ecosystem variables (‘ecosystem functions’ 303 

hereafter) were measured, describing plant, faunal and abiotic pools and process rates, some of 304 

which were measured aboveground, and some of which were measured belowground. Some 305 

ecosystem functions were measured in multiple seasons or years, always using standardized 306 

protocols. The ecosystem functions measured were: plant biomass consumed by herbivores, 307 

herbivory rate, frequency of pollinator visits, abundance of soil surface fauna, richness of soil 308 

surface fauna, abundance of vegetation layer fauna, richness of vegetation layer fauna, number of 309 

pollinator species, drought resilience, drought resistance, leaf area index, bare ground cover, 310 

aboveground plant biomass, dead plant biomass, cover of invasive plant species, richness of 311 

invasive plant species, rain throughfall, basal soil respiration, soil respiratory quotient, 312 

earthworm biomass, soil larvae abundance, soil mesofauna abundance, soil macrofauna 313 

abundance, biomass of soil microbes, biomass of plant roots, downward flux water in upper soil, 314 

downward flux water in deeper soil, upward flux water in upper soil, upward flux water in 315 
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deeper soil, evapotranspiration in upper soil, evapotranspiration in deeper soil, upper soil water 316 

content, deep soil water content, inorganic carbon content, organic carbon content, soil bulk 317 

density, soil nitrogen content, soil δ15N values, soil NH4 content, soil NO3 content, nitrate 318 

leaching and soil phosphorus content (see Table S1.1 for a more detailed overview). When 319 

ecosystem functions were measured multiple times within a year (e.g. both in spring and 320 

summer) within the same plot, we used averages of those repeated measurements in further 321 

analyses. For detailed descriptions on the methodology of all ecosystem function measurements, 322 

we refer to the Supplementary Materials.  323 

 324 

Trait measurements 325 

In total, 41 plant traits were measured. These traits described whole plant, leaf, stem, 326 

flower, seed, (fine) root characteristics, and were structural, morphological, chemical, 327 

physiological, phenological. The measured traits included all terrestrial plant traits identified as 328 

‘most commonly assessed’ in our mini-review, except for leaf phosphorus content. For a 329 

complete overview of all measured traits, we refer to Table S1.2. The majority of the traits, 330 

including most leaf and root traits, were measured in mesocosms filled with Jena field soil mixed 331 

with sand in the Botanical Garden of Leipzig (Saxony, Germany), in 2011 and 2012. Mass 332 

fraction and number of inflorescences and seedling density were measured in monocultures at 333 

the Jena Experiment. Rooting depth and flower duration could not be reliably estimated in the 80 334 

cm high mesocosms and was therefore derived from earlier published measurements20. Detailed 335 

information on the individual trait measurements is provided in Supplementary Material. 336 

 337 

Quantifying Functional Diversity and Functional Identity 338 
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We combined the species-level abundance assessments for each plot with the trait 339 

measurements to quantify Functional Diversity and Identity in each plot, separately for each 340 

combination of year and season. Functional Diversity was calculated for each trait (thus yielding 341 

42 Functional Diversity measures in total) separately using Rao’s Quadratic Entropy metric24 (or 342 

Q), which measures the sum of pairwise trait distances of co-occurring species, whereby 343 

pairwise distances are weighted by the relative abundance of the species: 344 

Q �  ∑ ∑ ��� ����
�
�����

���
��� , where i and j are the two species forming a species pair, S is the 345 

species richness within a community, ���  is the Euclidean trait distance and ��  and ��  are the 346 

relative abundance of species i and j, respectively. Here, relative abundances are measured as the 347 

species’ cover (estimated in subplots of 3 x 3 m, see above) within a plot divided by the total 348 

community cover. Functional Identity was measured for each trait (thus also yielding 41 349 

measures in total) using the Community Weighted Mean (CWM) metric15, which measures the 350 

abundance-weighted average of trait values among species within a community as: �	
 �351 

∑ ����
�
��� , where �� indicates the trait value of species i. We also recalculated FD and CWMs 352 

based on presence-absence data (thus ignoring differences in relative abundance of species 353 

present in a plot) for sensitivity analyses. 354 

In addition to calculating CWM and FD values, we also calculated the realized species 355 

richness for each plot and each year, based on the species-level abundance assessments. 356 

 357 

Statistical analyses 358 

 We first analyzed how each ecosystem function was related to all 41 measured traits. 359 

This was done using a separate Linear Mixed Model (LMM) for each function, in which the 360 

CWM and Rao’s Q values for each trait were treated as fixed factors (thus yielding 2 × 41 = 82 361 
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fixed factors), and year and plot were treated as random factors. We used a forward model 362 

selection procedure, in which first ‘empty’ models only containing random factors were fitted, 363 

and then significant fixed factors were added step-by-step. We chose a forward model selection 364 

procedure to overcome problems related to multicollinearity (many traits, and hence FD and FI 365 

metrics, were correlated, see Table S2.2). During each step in our selection procedure, we first 366 

tested for the significance of all n fixed factors (where n = the total number of 82 fixed factors 367 

minus the number of fixed factors already included at earlier steps of the model selection 368 

procedure) that could be added to the previous, less complex model, using log-likelihood tests. 369 

We then investigated which factor was most significant, and added this factor to the previous 370 

model if it did not lead to any Variance Inflation Factor (VIF) exceeding 5. In case the most 371 

significant fixed factor did cause multicollinearity (maximum VIF > 5), we investigated if the 372 

next-most significant factor could be added. This procedure was repeated until we ended up with 373 

a model only containing significant fixed factors with VIF values ≤ 5, to which no significant (P 374 

≤ 0.05) fixed factors could be added. LMM fitting was done using a Restricted Maximum 375 

Likelihood procedure, using the lmer function of the lme4 package39 in R-3.5.140. We calculated 376 

the marginal (proportion of variance exclusively explained by fixed factors, i.e. traits) and 377 

conditional (proportion of variance explained by fixed factors and random factors combined) R2 378 

values41 using the r.squaredGLMM function of the MuMIn package42 in R-3.5.140. We also 379 

performed some sensitivity analyses, in which we repeated the above analyses, with i) as the 380 

only difference that we corrected for False Discovery Rates43, to reduce the risk of type I errors, 381 

ii) as the only difference that FD and CWM values based on presence-absence data were used as 382 

predictors and iii) where we replaced FD and CWM predictor variables by realized species 383 

richness.  384 
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 We also investigated to which extent links between the Functional Diversity and Identity 385 

of traits and ecosystem functions changed, if we analysed ecosystem functions for each year in 386 

which they were measured separately. We did this by running the same models and model 387 

selection procedure as described above, except that the random factor ‘year’ was omitted from 388 

the models (as functions were analyzed for each year separately, this random factor had become 389 

obsolete). In addition, the random factor ‘plot’ was omitted from the models, as we only had one 390 

measurement per plot within each year. 391 

 To quantify the overlap in significant predictors among different ecosystem functions, we 392 

created a 42 (number of ecosystem functions) × 41 (number of traits) binary matrix, with cells 393 

containing values of 1 when either the FD and/or the FI of the corresponding trait significantly 394 

drove the ecosystem function, and a value of 0 when neither the FD nor the FI significantly 395 

drove the ecosystem function. We then calculated the overlap (�) in the sets of traits significantly 396 

driving each pair of ecosystem functions, using Sørenson’s index28 as:  � �  
	
��
�	

�.��|
�|�	
�	�
 where 397 

|��| and |��| are the numbers of traits significantly driving respectively ecosystem function i and 398 

j, and ��� � ��� is the number of traits significantly driving both ecosystem function i and j and 399 

we then calculated the average overlap. Importantly, these overlap estimates could be 400 

conservative (i.e. underestimated) due to strong correlations between traits. Therefore, we 401 

repeated the above described linear mixed models (originally with 82 fixed factors, 402 

corresponding to the FD and FI values of 41 traits), but then using Principal Component Analysis 403 

(PCA) axis values based on the FD and FI values as explanatory variables. To this end, we first 404 

performed a PCA, and we selected the 13 PCA axes that explained more than 100/82 (the 405 

number of input variables) = 1.22% of all FD and FI variation. Together, these 13 PCA axes 406 

explained 92% of all FD and FI variation. The selection procedure of models linking ecosystem 407 
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functions with PCA axes was the same as for the main analyses linking ecosystem functions with 408 

FD and FI variables. We then repeated the overlap analysis in the same way as described above, 409 

and found that for FD and FI metrics based on PCA variables, the average overlap of 25.7% was 410 

somewhat, but not much, higher than the overlap based on FD and FI metrics of raw traits.  411 

We then analyzed to what extent a subset of the six traits most commonly assessed in 412 

other studies, i.e. specific leaf area, plant height, leaf N concentration, leaf dry matter content, 413 

stem tissue density and leaf area, could explain variance in ecosystem functioning. To this end, 414 

we repeated the modeling procedure described above, except that only the above mentioned six 415 

traits were assessed in the model selection procedure, rather than the full set of 41 traits. In 416 

addition, we also assessed how random subsets of n traits, with n ranging from 1 to 40, could 417 

explain ecosystem functioning. To this end, we ran 100 simulations for each level of n. In each 418 

of these simulations, we first randomly selected a subset of n traits out of the total of 41 traits. 419 

For these random subsets of n traits, we again ran the same model selection procedure as 420 

described above for each ecosystem function, to assess which of the traits significantly drove the 421 

levels of each function, and in order to assess the marginal R2 values of final models. For each 422 

simulation, we then calculated the mean (across all functions) marginal R2 value, and for each n, 423 

we calculated the mode and 95% percentiles for the mean marginal R2 value across the 100 424 

simulations (as reported in Fig. 4). Only for n = 1 and n = 40 traits this procedure was slightly 425 

different, as for both of these levels of n, there were only 41 traits or trait combinations possible. 426 

Thus, in those cases, we did not take 100 random draws of traits, but instead systematically 427 

analysed at all possible combinations. Based on the resulting relationship between the number of 428 

traits analyzed and the marginal R2 values, we fitted a non-linear model using the nls function in 429 

R3.5.3, of the form: 
� �
����
� ·�.�����

���.�����
 in which R2 is the marginal R2 value, 
���

�  is the 430 
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asymptote in marginal R2 value, n.trait the number of traits analysed, and K describes the slope 431 

by which the 
���
�  is reached. The resulting 
���

�  and K values were 0.184 and 19.21 432 

respectively, and these were used to extrapolate the observed relationship between the number of 433 

traits analyzed and the marginal R2 values, in order to calculate how many traits were required to 434 

obtain marginal R2 values of 0.150 and higher. 435 

  436 
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SUPPLEMENTARY MATERIALS 576 

 577 

S1. SUPPLEMENTARY METHODS 578 

 579 

S1.1. Ecosystem function measurements 580 

During the years 2002 until 2012, 42 different ecosystem functions were measured. Some 581 

ecosystem functions were measured in multiple seasons or years, although always using 582 

standardized protocols. An overview of the different ecosystem functions can be seen in Table 583 

S1.1. 584 

 585 

  586 
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Table S1.1. List of all ecosystem functions analyzed in this study. 587 

Ecosystem function unit Summary description Years measured 
    
    

Consumed plant biomass g m-2 Biomass consumed by herbivores 2010-2012 
Herbivory rate % % of leaves damaged 2003-2005, 2010-2012 
Frequency pollinator visits nr Number of observed pollinator visits 2005, 2006, 2008 
Abundance soil surface fauna nr Abundance of invertebrates caught in pitfall 

traps 
2003, 2005, 2010 

Richness soil surface fauna nr Species richness of invertebrates caught in 
pitfall traps 

2003, 2005, 2010 

Abundance vegetation layer fauna nr Abundance of invertebrates caught via 
suction sampling 

2003, 2005, 2010 

Richness vegetation layer fauna nr Species richness of invertebrates caught via 
suction sampling 

2003, 2005, 2010 

Number of pollinator species nr Number of observed pollinator species 2005, 2006, 2008 
Drought resilience g m-2 Resistance biomass production after drought 2009-2012 
Drought resistance g m-2 Resistance biomass production to drought 2008-2012 
Leaf Area Index unitless Leaf area index (measure of light 

interception) 
2003-2012 

Bare ground cover % Cover of bare ground 2002-2011 
Target plant biomass g m-2 Aboveground dry mass of target species 2002-2012 
Dead plant biomass g m-2 Aboveground dry mass of dead target species 2003-2008 
Cover invasive species % Cover of non-target plant species 2003-2007 
Richness invasive species nr Number of non-target plant species 2003-2007 
Rain throughfall mm Amount of rainwater reaching lower 

vegetation layers 
2008-2012 

Basal soil respiration µL g-1 h-1 Basal soil respiration (proxy of 
decomposition) 

2003-2008, 2010-2012 

Soil respiratory quotient µL g-1 h-1 Respiration per biomass soil microbes 2008, 2010-2012 
Earthworm biomass g Biomass of earthworms 2003-2008 
Soil larvae abundance nr Number of larvae in soil 2004, 2006, 2008 
Soil mesofauna abundance nr Count of mesofauna individuals in soil 2004, 2006, 2008 
Soil macrofauna abundance nr Count of macrofauna individuals in soil 2004, 2006, 2008 
Biomass soil microbes µg C g-1 Biomass of microbes in soil 2003, 2004, 2006-2008, 

2010-2012 
Biomass plant roots g Belowground plant biomass in soil  2003, 2004, 2006-2008, 

2011 
Downward flux water upper soil L m-2 Downward flux of water in upper soil 2003-2007 
Downward flux water deep soil L m-2 Downward flux of water in deeper soil 2003-2007 
Upward flux water upper soil L m-2 Upward flux of water in upper soil 2003-2007 
Upward flux water deep soil L m-2 Upward flux of water in deeper soil 2003-2007 
Evapotranspiration upper soil L m-2 Evapotranspiration in upper soil 2003-2007 
Evapotranspiration deep soil L m-2 Evapotranspiration in deeper soil 2003-2007 
Upper soil water content L m-2 Water content in upper soil 2003-2007 
Deep soil water content L m-2 Water content in deeper soil 2003-2007 
Inorganic soil carbon % Concentration of inorganic carbon in soil 2002, 2004, 2006 
Organic soil carbon % Concentration of organic carbon in soil 2002, 2004, 2006 
Bulk density soil g m-3 Bulk density soil (proxy for compaction) 2002, 2004, 2006 
Nitrogen content soil % Soil total nitrogen content 2002, 2004, 2006 
Soil 15N ‰ Soil nitrogen isotope ratios 2002, 2004, 2006 
Soil NH4 content μg g-1 Soil ammonium concentration 2002-2008 
Soil NO3 content μg g-1 Soil nitrate concentration 2002-2008 
Nitrate leaching mg m-2 Nitrate leaching 2002-2006 
Soil phosphate content mg L-1 Soil phosphate content 2003-2007, 2009, 2011, 

2012 
    

  588 

 589 
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S1.1.1. Consumed plant biomass 590 

Herbivory rates were converted into estimates of consumed plant biomass in three steps. First, 591 

the total leaf biomass of a species in a plot was estimated from the species-specific aboveground 592 

biomass that included the biomass of leaves, stems, and inflorescences, using the ratio of leaf 593 

biomass to total aboveground biomass. Second, the leaf biomass of each species in each mixture 594 

was multiplied by the respective herbivory rate to obtain the leaf biomass consumed from this 595 

species in gram dry weight per square meter. Third, the total biomass removed from a particular 596 

plant community was calculated by summing the consumed leaf biomass over all plant species in 597 

the community44,45. 598 

 599 

S1.1.2. Herbivory rate 600 

Large vertebrates were excluded from the experimental site by a fence such that 601 

herbivory was only caused by invertebrates (though there was occasional grazing by voles). 602 

Herbivory was measured during the biomass harvest twice a year – typically at the end of May 603 

and the end of August. Herbivory was measured in five years (2012 to 2014)44,45. For each target 604 

species present in the sorted biomass samples, usually, 30 fully developed leaves (only 20 in 605 

2012 and 2013) were sampled randomly for herbivory measurements. For species with fewer 606 

than the target number of leaves in the sample, all available leaves were measured. The leaf area 607 

of all sampled leaves (i.e. the area left after feeding of the herbivores including petioles) was 608 

measured with a leaf area meter (LI-3000C Area Meter, LI-COR Biosciences, Lincoln (NE), 609 

USA). Herbivore damage (i.e., the leaf area damaged by herbivores in mm2) was estimated 610 

visually by comparing the damaged leaf area to a series of circular and square templates ranging 611 

in size from 1 mm2 to 500 mm2. Herbivory damage included four different herbivory damage 612 
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types: chewing, sap sucking, leaf mining and rasping damage. For each leaf, a single value of the 613 

total area damaged by all types of herbivory was estimated.  Herbivory rates (the proportion of 614 

leaf area damage) for each plant species in a mixture was calculated by dividing the estimated 615 

area damaged by herbivores by the original leaf area without damage. To obtain the total leaf 616 

area before herbivore feeding, we summed the leaf area remaining after feeding by herbivores 617 

that was measured with a leaf-area meter and the leaf area removed by chewing herbivores using 618 

plant species-specific ratios of herbivory damage types. A community level herbivory rate was 619 

calculated by summing the species-specific herbivory rates weighted by their respective relative 620 

leaf biomass for each biomass sample. For a detailed description of the methodology used see 621 

Meyer et al. 201745. 622 

 623 

S1.1.3. Frequency of pollinator visits 624 

We observed flower-pollinator interactions within a quadrat of 80x80cm three times during the 625 

vegetation period in 2005, 2006 and 200846,47. During the six-minute observation period every 626 

interaction was counted as a flower visitation. Observations were only conducted on sunny days 627 

between 09:00 and 17:00 h. 628 

 629 

S1.1.4. Fauna soil surface abundance 630 

For recording the activity abundance of ground-dwelling arthropods, we installed two pitfall 631 

traps of 4.5 cm diameter per plot in 2003, 2005, and 201048,49. Traps were replaced six times in 632 

2003 and 2005 between May and October, and every two weeks between May and September in 633 

2010. In the field we filled traps with 3% formalin, and stored them later in 70% ethanol. 634 

 635 
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S1.1.5. Fauna soil surface species richness 636 

For recording the activity abundance of ground-dwelling arthropods, we installed two pitfall 637 

traps of 4.5 cm diameter per plot in 2003, 2005, and 201048,49. Traps were replaced six times in 638 

2003 and 2005 between May and October, and every two weeks between May and September in 639 

2010. In the field we filled traps with 3% formalin, and stored them later in 70% ethanol. 640 

 641 

S1.1.6. Fauna vegetation abundance 642 

For recording the abundance of vegetation-associated arthropods we used suction sampling in 643 

2003, 2005, 201048,49.  Five (2003 and 2005) and nine (2010) times during the vegetation period 644 

we randomly placed cages of 0.75 m3, cleared them from arthropods, and stored all sampled 645 

animals in 70% ethanol. 646 

 647 

S1.1.7. Fauna vegetation species richness 648 

For recording the species richness of vegetation-associated arthropods we used suction sampling 649 

in 2003, 2005, 201048,49.  Five (2003 and 2005) and nine (2010) times during the vegetation 650 

period, we randomly placed cages of 0.75 m3 and cleared them from arthropods. We stored all 651 

sampled animals in 70% ethanol and sent them to external taxonomists for species-level 652 

identification. 653 

 654 

S1.1.8. Pollinator species richness 655 

We observed flower-pollinator interactions within a quadrat of 80x80cm three times per year in 656 

2005, 2006 and 200846,47. During the six-minute observation period we identified every flower-657 
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visiting insects to species or morphospecies. Unknown species were captured for later 658 

identification. Observations were only conducted on sunny days between 09:00 and 17:00 h. 659 

 660 

S1.1.9. Drought resilience 661 

We used data from the drought experiment established as 1x1 m subplots on 76 plots of the Jena 662 

Main Experiment in 2008. The two subplots per plot were designated as either drought or 663 

ambient control using rainout shelters constructed using wooden frames and transparent PVC 664 

roofs50 (see Vogel et al. 2013 for details). Rainwater was collected in rain barrels and used to 665 

water ambient subplots following rainfall events50,51. Shelters were set up mid-summer and 666 

excluded natural rainfall from mid-July to the end of August (six weeks). Standing biomass was 667 

harvested in May and August (before removal of the shelters) as described for standing 668 

aboveground biomass.  669 

We calculated resilience from our biomass data according to van Ruijven and Berendse52. 670 

Resilience determines the change in biomass production after perturbation and was calculated as 671 

difference of post-drought biomass and the corresponding ambient treatment from the first 672 

harvest after drought (May the following year). 673 

 674 

S1.1.10. Drought resistance 675 

Drought resistance was calculated based on the same data as drought resilience (S1.1.9). We 676 

calculated resistance from our biomass data according to van Ruijven and Berendse52 as the 677 

difference of biomass under perturbed and unperturbed conditions (drought - ambient) at the end 678 

of the drought period in August. 679 

 680 
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S1.1.11. Leaf area index 681 

Community leaf area index (LAI) was measured twice a year just before biomass harvest (see 682 

S1.1.13) with a LAI-2000 plant canopy analyzer (LI-COR) using high resolution and a view cap 683 

masking 45° of the azimuth towards the operator. In 2003 and 2004, 10 randomly allocated 684 

measurements were taken at 5 cm height within an area of 3 x 3 m in the center of the core area. 685 

From 2005 onwards all measurements were taken along a 10 m transect in the core area of each 686 

experimental plot. One above reading was taken at the first transect point, followed by 10 below 687 

readings taken with 1 m distance from each other. We used the mean over the 10 calculated LAI 688 

values from the below readings as mean community LAI per plot. 689 

 690 

S1.1.12. Bare ground cover 691 

Bare ground cover was visually estimated together with sown species cover in September 2002 692 

and twice a year just before biomass harvest. Bare ground cover was estimated directly as 693 

percentage of area. From 2002 to 2004, measurements were taken in two extra carefully weeded 694 

sub-areas of 2 x 2.25 m. We report the average value based on these two estimates for 695 

community cover. From 2005 onwards all measurements were taken in one 3 x 3 m area in the 696 

core area of each experimental plot.  697 

 698 

S1.1.13. Target aboveground plant biomass 699 

Aboveground community biomass was harvested twice a year just prior to mowing (during peak 700 

standing biomass in late May and in late August) on all experimental plots. This was done by 701 

clipping the vegetation at 3 cm above ground in two to four randomly selected rectangles of 0.2 x 702 

0.5 m per plot. The harvested biomass was sorted into sown species, total weeds and detached 703 
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dead organic material and dried to constant weight (70°C, ≥ 48 h). Target aboveground plant 704 

biomass was calculated as the sum of biomass for all sown species from all rectangles per plot.  705 

 706 

S1.1.14. Dead plant biomass 707 

Sum of biomass of detached dead organic material from all rectangles per plot as described in 708 

target aboveground plant biomass. 709 

 710 

S1.1.15. Cover invasive species 711 

Cover of invader species was visually estimated to the nearest percentage before weeding (spring 712 

= April, summer = July) on the same subplot size as used for the quantification of invader 713 

species richness (S1.1.16) in each large plot from 2003 to 2007. In the field, invader species 714 

cover was separately recorded for internal invader species (i.e. species belonging to the 715 

experimental species pool, but not to the sown species composition of the respective plot) and 716 

external invader species (i.e. species not belonging to the experimental species pool). Cover of 717 

internal and external invader species was summed to get the total cover of invader species53. 718 

 719 

S1.1.16. Richness invasive species 720 

Within each large plot one subplot of 2.00 × 2.25 m was permanently marked to quantify 721 

invasion resistance from 2003 to 2007. All invader species present in this subplot were recorded 722 

before weeding (spring = April, summer = July) to assess invader species richness53. 723 

 724 

S1.1.17. Rain throughfall 725 
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In biweekly intervals from 2008 to 2012, throughfall volume was collected with rain collectors 726 

(2-L sampling bottles connected to funnels [diameter of 0.12 m], both polyethylene). The 727 

sampling bottles were protected against larger particles and small animals with a polyethylene 728 

net (0.005 m mesh width). The collectors were cleaned with deionized water before installation 729 

and replaced by clean collectors in 2- to 3-month intervals.  730 

 731 

S1.1.19. Basal soil respiration 732 

In each year, five randomly located soil samples were taken per plot with a soil corer (5 cm 733 

diameter, 5 cm deep) and pooled plot-wise. Before measuring, all samples were homogenized, 734 

sieved (2 mm), larger roots and soil animals were picked by hand, and samples were stored in 735 

plastic bags at 5°C. Microbial respiration was measured using an electrolytic O2-736 

microcompensation apparatus54. O2 consumption of soil microorganisms in ~5 g of fresh soil 737 

(equivalent to c. 3.5 g soil dry weight) was measured at 22°C over a period of 24 h. Basal 738 

respiration [µL O2 g
-1 dry soil h-1] was calculated as mean of the O2 consumption rates of hours 739 

14 to 24 after the start of the measurements. 740 

 741 

S1.1.19. Soil respiratory quotient 742 

In each year, five randomly located soil samples were taken per plot with a soil corer (5 cm 743 

diameter, 5 cm deep) and pooled plot-wise. Before measuring, all samples were homogenized, 744 

sieved (2 mm), larger roots and soil animals were picked by hand, and samples were stored in 745 

plastic bags at 5°C. Microbial respiration was measured using an electrolytic O2-746 

microcompensation apparatus54. O2 consumption of soil microorganisms in ~5 g of fresh soil 747 

(equivalent to c. 3.5 g soil dry weight) was measured at 22°C over a period of 24 h. Basal 748 
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respiration [µL O2 g
-1 dry soil h-1] was calculated as mean of the O2 consumption rates of hours 749 

14 to 24 after the start of the measurements. Substrate-induced respiration (SIR) was determined 750 

by adding D-glucose to saturate catabolic enzymes of the microorganisms according to 751 

preliminary studies (4 mg D-glucose g-1 dry soil solved in 400 µL deionized water55. The 752 

maximum initial respiratory response (MIRR; [µL O2 g
-1 dry soil h-1]) was calculated as mean of 753 

the lowest three O2-consumption values within the first 10 h after glucose addition. Microbial 754 

biomass carbon [µg C g-1 dry soil] was calculated as 38 × MIRR56. The soil respiratory quotient 755 

was calculated by dividing basal respiration by microbial biomass57. 756 

 757 

S1.1.20. Earthworm biomass 758 

Earthworm extractions were performed on one subplot of 1 x 1 m per plot that was established to 759 

extract earthworms repeatedly. Subplots were enclosed with PVC shields aboveground (20 cm) 760 

and belowground (15 cm). Two earthworm extraction campaigns were performed twice per year 761 

in spring and autumn of 2005, 2006, and 2008 by electro-shocking58. Therefore, a combination 762 

of four octet devices (DEKA 4000, Deka Gera¨ tebau, Marsberg, Germany; Thielemann59) was 763 

used which were powered by two 12 V car batteries. Eight steel rods (length 60 cm) were 764 

inserted into the soil (to a depth of w55 cm) per octet device forming four circles of six rods 765 

(each 50 cm in diameter) with two rods in the center of each 766 

circle. An electrical voltage was applied in pulses to the moist soil (earthworm extractions were 767 

always performed during humid and mild weather conditions) sequentially to pairs of rods in 768 

the circle (negative pole) and in the center of the circle (positive pole). In each subplot 769 

earthworm extraction was performed for 35 min, increasing the voltage from 250 V (10 min) to 770 

300 V (5 min), 400 V (5 min), 500 V (5 min), and 600 V (10 min). Despite the PVC shields, 771 
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earthworms re-colonized earthworm subplots until the next extraction campaign58. Extracted 772 

earthworms were identified, counted and weighed in the laboratory.  773 

 774 

S1.1.21. Soil larvae abundance 775 

Soil macrofauna was collected from soil cores taken to a depth of 10 cm in autumn 2004 776 

(October), 2006 (November) and 2008 (October). Soil cores were taken using a steel corer (22 777 

cm diameter). One soil core per plot was taken, and soil animals were extracted by heat60, 778 

collected in diluted glycerol, and transferred into ethanol (70%) for storage. Soil animals were 779 

identified61-63 and counted. A detailed list of soil animal taxa and their trophic assignment is 780 

given in Eisenhauer et al. (2011)64. 781 

  782 

S1.1.22. Soil mesofauna abundance 783 

Soil mesofauna was collected from soil cores taken to a depth of 10 cm in autumn 2004 784 

(October), 2006 (November) and 2008 (October). Soil cores were taken using a steel corer (5 cm 785 

diameter). One soil core per plot was taken, and soil animals were extracted by heat60, collected 786 

in diluted glycerol, and transferred into ethanol (70%) for storage. Soil animals were identified65-
787 

67 and counted. A detailed list of soil animal taxa and their trophic assignment is given in 788 

Eisenhauer et al. (2011)64. 789 

 790 

S1.1.23. Soil macrofauna abundance 791 

Soil macrofauna was collected from soil cores taken to a depth of 10 cm in autumn 2004 792 

(October), 2006 (November) and 2008 (October). Soil cores were taken using a steel corer (22 793 

cm diameter). One soil core per plot was taken, and soil animals were extracted by heat60, 794 
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collected in diluted glycerol, and transferred into ethanol (70%) for storage. Soil animals were 795 

identified65-67 and counted. A detailed list of soil animal taxa and their trophic assignment is 796 

given in Eisenhauer et al. (2011)64. 797 

 798 

S1.1.24. Soil microbial biomass 799 

In each year, five randomly located soil samples were taken per plot with a soil corer (5 cm 800 

diameter, 5 cm deep) and pooled plot-wise. Before measuring, all samples were homogenized, 801 

sieved (2 mm), larger roots and soil animals were picked by hand, and samples were stored in 802 

plastic bags at 5°C. Soil microbial biomass respiration was measured using an electrolytic O2-803 

microcompensation apparatus54. O2 consumption of soil microorganisms in ~5 g of fresh soil 804 

(equivalent to c. 3.5 g soil dry weight) was measured at 22°C over a period of 24 h. Substrate-805 

induced respiration (SIR) was determined by adding D-glucose to saturate catabolic enzymes of 806 

the microorganisms according to preliminary studies (4 mg D-glucose g-1 dry soil solved in 400 807 

µL deionized water55). The maximum initial respiratory response (MIRR; [µL O2 g
-1 dry soil h-

808 

1]) was calculated as mean of the lowest three O2-consumption values within the first 10 h after 809 

glucose addition. Microbial biomass carbon [µg C g-1 dry soil] was calculated as 38 × MIRR56. 810 

The soil respiratory quotient was calculated by dividing basal respiration by microbial biomass57. 811 

 812 

S1.1.25. Plant root biomass 813 

Standing root biomass was sampled down to 30 cm depth in all plots in June 2003, September 814 

2004, and June 2006, 2008 and 2011. Two monoculture plots were excluded because of poor 815 

establishment. In all years we took several soil cores per plot and processed the pooled samples 816 

(2003: 5 cores with 4.8 cm diameter; 2004: 3 cores with 4.8 cm diameter; 2006: 5 cores with 8.7 817 
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cm diameter; 2008: 3 cores with 4.8 cm diameter; 2011: 3 cores with 3.5 cm diameter). The 818 

cores were cooled (4 °C; frozen in 2006) until further handling. The bulk material of the pooled 819 

cores was weighed and cut to 1 cm pieces before subsampling. For root washing, a 50 g 820 

subsample was soaked in water and then repeatedly rinsed with tap water over a 0.5 mm sieve. In 821 

2011, the full bulk sample was washed for root material. Roots were dried at 60 – 70 °C and 822 

weighed subsequently. 823 

 824 

S1.1.26. Upper (0-30 cm) and deep (0-70 cm) soil water content  825 

Volumetric soil water contents were measured with frequency domain reflectometry (FDR) 826 

using a mobile manual FDR probe (PR1/6 and PR2/6, Delta-T-Devices, Cambridge, UK) on all 827 

plots in 1–2 weekly resolution in the 0.1, 0.2, 0.3, 0.4, and 0.6 m soil depths68,69. 828 

Soil water contents per plot were aggregated to depth-weighted means for the 0-0.3 m (“upper 829 

soil”) and 0.3-0.7 m (“deep soil”) soil layers. At a central automatic meteorological station on the 830 

field site, soil water contents in the 0.08, 0.16, 0.32, and 0.64 m soil depths were measured with 831 

Theta Probe soil moisture sensors – ML2x (Delta-T Devices, Cambridge, UK) in 10-min 832 

resolution between 1 July 2002 and 31 December 2007 and aggregated to daily depth-weighted 833 

means for the 0.0-0.3 and 0.3-0.7 m soil layers. To obtain a complete soil water contents data set 834 

for the 0.0-0.3 and 0.3-0.7 m soil layer per plot for the years 2003-2007, data gaps were filled 835 

with Bayesian hierarchical models using the soil water contents from the central meteorological 836 

station as explanatory variable70. 837 

 838 

S1.1.27. Downward and upward flux and evapotranspiration of soil water, in upper and deep 839 

soil 840 
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A water balance model was used to simulate downward and upward water fluxes and actual 841 

evapotranspiration from the 0-0.3 m (“upper soil”) and the 0.3-0.7 m (“deep soil”) soil layers per 842 

plot for the years 2003-2007 in weekly resolution70. The model uses the input variables 843 

precipitation (measured at the central meteorological station in 10-min resolution), potential 844 

evapotranspiration (calculated from meteorological data from the central station using the 845 

Penman-Wendling equation), and volumetric soil water contents (see S1.1.26). The model is 846 

based on the water balance equation: precipitation + upward flux = downward flux + actual 847 

evapotranspiration - change in volumetric soil water content between two subsequent 848 

observation dates. The percentage of roots in each soil layer was used as a proxy for the 849 

percentage of potential evapotranspiration that could be evaporated from the respective soil 850 

layer. Together with using the net flux (downward flux - upward flux) from the upper soil layer 851 

as input into the deep soil layer, this allowed for modeling of the water fluxes for the two soil 852 

layers 0-0.3 m and 0.3-0.7 m separately70.  853 

 854 

S1.1.28. Inorganic and organic soil carbon 855 

Total carbon concentration was analyzed biannually on ball-milled sub-samples by an elemental 856 

analyzer at 1150 °C (Elementaranalysator vario Max CN, Elementar Analysensysteme GmbH, 857 

Hanau, Germany). To determine the organic carbon concentration we measured inorganic carbon 858 

concentration by elemental analysis at 1150 °C after removal of organic carbon for 16 h at 450 859 

°C in a muffle furnace. Organic carbon concentration was then calculated from the difference 860 

between both measurements71,72.  861 

 862 

S1.1.29. Soil bulk density 863 
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In 2002, soil bulk density in the plough horizon was determined on 27 plots from undisturbed 864 

soil samples with a depth resolution of 10 cm. The respective samples were taken with a metal 865 

bulk density ring of 10 cm height, passed through a sieve with 2 mm mesh size, dried to constant 866 

weight at 105 °C and were subsequently weighed to calculate the density. The chosen plots 867 

represented a spatial gradient across the field site and resulted in average soil bulk density 868 

estimations at the beginning of the experiment. Starting in 2004 all bi-annually soil samples were 869 

taken with the split tube sampler, dried and weighed to detect changes in the bulk density. The 870 

inner diameter of the soil corer was used for volume calculation71.  871 

 872 

S1.1.30. Total soil nitrogen 873 

Total nitrogen concentration was analyzed bi annually on ball-milled sub-samples by an 874 

elemental analyzer at 1150 °C (Elementaranalysator vario Max CN, Elementar Analysensysteme 875 

GmbH, Hanau, Germany)71,72. 876 

 877 

S1.1.31 Soil δ15N values 878 

Soil nitrogen isotope ratios (i.e. bulk soil δ15N values) were measured every two years from 50 879 

mg of dried soil (after grinding with a ball-mill) with an IRMS (Delta C prototype IRMS, 880 

Finnigan MAT)73. 881 

 882 

S1.1.32. Soil NH4 and soil NO3 883 

Each autumn from 2002 to 2008, five soil cores (diameter 0.01 m) were taken at a depth of 0 884 

to 0.15 m of the mineral soil from each of the experimental plots and pooled. As an estimate of 885 

plant�available N, NO3�N and NH4�N concentrations were determined by extraction of 886 
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soil samples with 1 M KCl solution71. Nitrate�N and NH4�N concentrations were measured in 887 

the soil extract with a Continuous Flow Analyzer (CFA, 2003–2005: Skalar, Breda, Netherlands; 888 

2006–2008: AutoAnalyzer, Seal, Burgess Hill, United Kingdom).  889 

 890 

S1.1.33. Nitrate leaching 891 

Nitrate leaching was calculated by multiplying soil NO3 concentrations (see S1.1.32) with 892 

downward fluxes of soil water (0-30 cm depth) (S1.1.27). 893 

 894 

S1.1.34. Soil Phosphate 895 

Concentrations of soil phosphate were determined in soil solution, which was collected every 896 

two weeks (cumulative sample) between 2003 and 2007, 2009, 2011 and 2012 using suction 897 

plates with permanent vacuum at 30cm soil depth. Soil solution samples were then analysed 898 

photometrically with Continuous Flow Analysis (CFA; see 1.1.32). From these biweekly 899 

measurements, an annual average was calculated for each plot. 900 

 901 

  902 
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S1.2. Trait measurements 903 

Table S1.2: Overview of traits 904 

Trait Unit Description 
   

   

shoot:root ratio g g-1 Shoot mass per root mass 
shoot:root N ratio unitless Leaf nitrogen uptake / root nitrogen uptake 
plant height cm Standing height of the shoot 
leaf biomass production rate g day-1 Maximum daily leaf dry mass production 
total leaf area cm2 Total area of all leaves of plant 
leaf area mm2 Average area of a single leaf 
leaf thickness mm Leaf thickness 
specific leaf area mm2 g-1 Fresh leaf area per leaf dry mass 
leaf specific density g cm-3 Leaf dry weight per leaf fresh volume 
leaf area ratio cm2 g-1 Leaf area per shoot mass 
leaf form coefficient mm2 mm Leaf area divided by leaf perimeter 
leaf dry matter content g g-1 Leaf dry weight per leaf fresh weight 
leaf C content % Leaf carbon content 
leaf N content % Leaf nitrogen Content 
leaf conductance μM s-1 A-1 Stomatal conductance per leaf area 
leaf toughness N Leaf resistance to penetration 
stem diameter mm Diameter of stem 
stem specific density g cm-3 Stem dry weight per stem fresh volume 
erectness cm cm-1 Stretched height per standing height 
biomass fraction inflorescence mg mg-1 Inflorescence:shoot biomass fraction 
inflorescences per shoot nr Number of inflorescences per shoot 
duration flowering ordinal Duration of flowering period 
seeds projected area mm2 Total area of individual seed 
nr seedlings nr Number of plant seedlings within subplot 
seed weight g Weight of 1000 seeds 
seed width length ratio mm mm-1 Ratio of seed width to seed length 
seed dry matter content g g-1 Seed dry weight per seed fresh weight 
root area cm2 Root area 
rooting depth ordinal Depth of the root system 
root area distribution unitless Evenness of vertical root area distribution 
specific root area cm2 g-1 Root surface area per root mass 
specific root length cm g-1 Root length per root mass 
root tissue density g cm-3 Root dry weight per root volume 
root nitrogen uptake mg day-1 Nitrogen uptake into roots 
root CN ratio unitless Root total carbon:nitrogen content 
root P content ‰ P content per root dry biomass 
root K content ‰ K content per root dry biomass 
root S content ‰ S content per root dry biomass 
root Ca content ‰ Ca content per root dry biomass 
root Na content ‰ Na content per root dry biomass 
nutrient uptake efficiency mg g-1 Root nitrogen uptake:root biomass 
   

 905 
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Most of the functional traits listed in Table S1.2 (except for the seed traits and biomass fraction 906 

of inflorescences, number of inflorescences per shoot and number of seedlings) were measured 907 

in mesocosms. To this end, we obtained seeds of all 60 plant species used in the Jena 908 

Biodiversity Experiment from a seed supplier (Rieger Hoffmann GmbH, Blaufelden-909 

Raboldshausen, Germany and Saaten Zeller e.K., Riedern, Germany). In April 2011 and 2012 we 910 

germinated the seeds in petri dishes and we planted seedlings of 1-3 weeks old into mesocosms, 911 

with for each species five replicates. Seedlings that dead within 4 weeks after transplanting were 912 

replaced. Mesocosms were made of PVC pipes (height = 60 cm, diameter = 15 cm). Mesocosms 913 

were placed outside in the Botanical Garden of Leipzig (Germany), in randomized blocks. Traits 914 

were measured after 12 weeks. For more details of the mesocosm design, we refer to Schroeder-915 

Georgi et al.6. 916 

For detailed methods on the trait measurements of shoot:root ratio, plant height, leaf biomass 917 

production rate, total leaf area, leaf area, leaf thickness, specific leaf area, leaf specific density, 918 

leaf area ratio, leaf dry matter content, leaf C content, leaf N content, leaf conductance, leaf 919 

toughness, stem specific density, erectness, root area distribution, specific root area, specific root 920 

length, root tissue density, root nitrogen uptake, root C:N ratio, we refer to Schroeder-Georgi et 921 

al.6. Shoot:root N ratio was calculated as the leaf nitrogen uptake divided by the root nitrogen 922 

uptake, based on measurements of Schroeder-Georgi et al.6. Leaf form coefficient was calculated 923 

as the leaf area (see above) divided by the leaf perimeter. Leaf perimeter was measured on the 924 

same picture from samples as leaf area, using the software WinFolia (Regent Instruments Inc., 925 

Canada). Stem diameter was measured on the same stems as those used for stem specific density6 926 

and defined as the diameter of a stem in mm. Nitrogen uptake efficiency was calculated as the 927 

root nitrogen uptake divided by the root dry biomass (measurements from Schroeder-Georgi et 928 
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al.6). Root area was based on the root area measurements of Schroeder-Georgi et al.6. Duration 929 

of flowering was defined as the duration of the flowering period, and expressed using an ordinal 930 

scale: 1 (1 month), 2 (2 months), 3 (3 months) and 4 (more than three months). Root element 931 

contents (P, K, S, Ca, Na) were analyzed using a subsample of dried fine root material of each 932 

mesocosm. A microwave digestion system (Berghof Speedwave SW-2) was used to digest 0.2 g 933 

ground material for 50 min at 190° using 8ml HNO3, 3ml H2O2. The method was tested using 934 

standard reference material. Samples were analyzed using ICP-OES (Spectro Acros, Spectro 935 

Analytical Instrument). Seed traits were measured on a subsample of the seeds purchased for the 936 

mesocosm experiment (see above). Seeds were cleaned from all attached tissue (e.g. bracts from 937 

grass spikelets), placed in batches of 30 - 200 well apart in glass petri dishes and scanned using a 938 

flatbad scanner (resolution 800 dpi) and analyzed using WinSeedle (Reg. 2009a, Regent 939 

Instruments Inc., Canada). WinSeedle output provided data on seed length, seed width and seed 940 

projected area for individual seeds from each image. Seed projected area and seed width to 941 

length ratio were calculated as mean over individual seed measures per species. Seed batches 942 

were weighed fresh, dried (70°, 48 h), and weight again to calculate seed dry matter content as 943 

dry weight per fresh weight for the total seed batch and the weight of 1000 seeds per species 944 

using the seed number measured with WinSeedle and seed dry weight. Data on duration of 945 

flowering was obtained from Roscher et al. 201420. Rooting depth was also obtained from 946 

Roscher et al. 201420. It was measured on an ordinal scale: 1 (up to 20 cm), 2 (up to 40 cm), 3 947 

(up to 60 cm), 4 (up to 100 cm) and 5 (> 100 cm). Biomass fraction of inflorescence 948 

(mginflorescence mg-1
shoot) and number of inflorescences per shoot were recorded in the small-area 949 

monocultures of the field experiment (between 2006 and 2009) or in a low-diversity mixture for 950 

three species not abundant enough in the monocultures. Five to seven shoot per species were 951 
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sampled. In the laboratory, the number of inflorescences per shoot was counted. Afterwards 952 

shoots were separated into compartments (stems, leaves and reproductive parts), the 953 

compartments were dried (48 h, 70°C) and weighed. The mass of reproductive parts was divided 954 

by summed biomass of all compartments per shoot to derive inflorescence mass fraction74. 955 

The number of seedlings (i.e. plant individuals with cotyledons) was counted in all small-area 956 

monocultures three times (April, July, October) in 2007 to account for species-specific 957 

differences of seedling emergence. Three quadrats of 0.3 × 0.3 m size per subplot were randomly 958 

placed for each census. Total numbers of emerged seedlings per m2 were calculated for each 959 

monoculture based on pooled data from all census dates74. 960 

 961 

  962 
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Table S1.3. Pearson correlation coefficients between traits. 963 

 964 

  965 
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shoot root ratio 1 0.17 0.07 -0.3 0.01 -0.3 0.09 0.33 -0.2 -0.3 0.36 -0.2 -0 0.32 0.04 -0.3 -0.3 0.28 -0.3 -0.2 -0.1 0.25 -0.2 -0 -0.2 0.15 0.21 -0.3 -0.2 -0.2 0.2 0.14 -0.2 -0.5 -0.4 0.24 -0 0.39 0.03 0.43 0.38

shoot:root N ratio 0.17 1 -0.1 -0.2 -0.1 -0 0.24 0.15 0.21 0.24 0.03 -0.2 -0.5 -0.1 -0.1 0.14 -0.1 -0 0.34 0.18 -0.3 -0.1 0 -0.1 -0.4 -0.3 -0.2 -0.3 -0.3 -0.2 0.51 0.51 -0.3 -0.3 0.19 -0.2 0.41 -0.1 -0 -0.1 0.42

plant height 0.07 -0.1 1 0.37 0.27 -0.1 -0.2 -0.2 -0 -0.5 -0.3 0.47 0.2 -0.2 0.07 0.27 -0.1 0.3 0.46 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.45 0.27 0.4 0.25 -0.2 -0.2 0.09 0.04 0.39 -0.4 -0.3 -0.4 -0.1 -0.2 -0.2

leaf biomass production rate -0.3 -0.2 0.37 1 0.53 0.03 -0.1 -0.2 0.12 -0.3 -0.3 0.38 0.03 -0.5 -0.1 0.46 0.07 0.21 0.18 -0 -0.1 -0.2 -0.1 -0 -0.1 -0.4 0.27 0.63 0.34 0.23 -0.2 -0.1 0.22 0.46 0.58 -0.6 -0.3 -0.5 -0.1 -0.3 -0.4

total leaf area 0.01 -0.1 0.27 0.53 1 -0.1 -0.2 0.03 -0.1 -0 0.25 0.17 0.32 -0.1 0.04 0.16 0 0.02 -0 -0 -0.1 0.12 -0.1 0.08 -0.2 -0.2 0.14 0.29 0.21 0.23 -0.1 -0.1 0.09 0.42 0.19 -0.2 -0.3 -0 -0.1 -0 -0.2

leaf area -0.3 -0 -0.1 0.03 -0.1 1 0.15 -0.4 0.19 0.15 -0.1 -0.2 -0.4 -0.3 0.1 -0.3 0.74 -0.4 0.03 0.36 0.23 0.15 0.45 0.03 0.09 -0.1 -0.4 0 0.4 0.31 -0.4 -0.4 0.4 0.16 0.27 -0 0.02 -0.2 0.09 -0.2 -0.2

leaf thickness 0.09 0.24 -0.2 -0.1 -0.2 0.15 1 -0.2 0.23 0.06 0.18 -0.4 -0.4 -0.1 -0.1 -0.1 0.22 -0.2 0 0.25 -0.1 0.05 -0.1 -0.1 -0.1 0.03 -0.2 -0.1 -0.1 -0.4 -0 -0 0.14 -0.1 -0.1 0.11 0.25 0.08 0.04 0.16 0.04

specific leaf area 0.33 0.15 -0.2 -0.2 0.03 -0.4 -0.2 1 -0.2 0.31 0.27 -0 0.15 0.37 0.07 -0.2 -0.5 0.2 -0.1 -0.3 -0 -0 -0.2 0.14 -0.2 0.06 0.14 -0.2 -0.6 -0.4 0.44 0.42 -0.3 -0.4 -0.3 0.06 0.05 0.25 -0.2 0.14 0.3

leaf specific density -0.2 0.21 -0 0.12 -0.1 0.19 0.23 -0.2 1 0.1 -0.2 0 -0.4 -0.1 -0.2 0.46 0.15 -0.2 0.19 0.23 0.06 -0.1 0.19 -0.1 -0.1 -0 -0.3 0.29 0.02 0.02 0.12 -0 -0.1 0.36 0.2 -0.2 0.09 -0.2 -0.1 -0.2 -0.1

leaf area ratio -0.3 0.24 -0.5 -0.3 -0 0.15 0.06 0.31 0.1 1 0.17 -0.3 -0.1 0.21 -0.1 -0.2 0.13 -0.4 0.12 0.18 0.26 0.09 0.1 0.25 0.1 0.04 -0.5 -0.2 -0.3 -0.2 0.17 0.07 -0 0.1 -0.2 0.28 0.35 0.23 0.01 -0.1 0.31

leaf form coefficient 0.36 0.03 -0.3 -0.3 0.25 -0.1 0.18 0.27 -0.2 0.17 1 -0.3 0.12 0.38 0.1 -0.4 -0.1 -0 -0.3 -0.1 0.04 0.37 -0.2 0.09 -0.3 0.28 -0 -0.3 -0.3 -0.1 0.08 -0 -0.1 -0.1 -0.4 0.5 0.21 0.48 -0 0.37 0.18

leaf dry matter content -0.2 -0.2 0.47 0.38 0.17 -0.2 -0.4 -0 0 -0.3 -0.3 1 0.39 -0.1 -0 0.54 -0.4 0.28 0.08 0.04 -0.1 -0.4 0.03 -0.1 0.08 -0.1 0.32 0.42 0.16 0.05 -0 0.12 0.05 0.18 0.35 -0.5 -0.2 -0.4 -0.1 -0.6 -0.3

leaf C content -0 -0.5 0.2 0.03 0.32 -0.4 -0.4 0.15 -0.4 -0.1 0.12 0.39 1 0.47 0.18 -0.1 -0.4 0.15 -0.1 -0.3 -0 -0.1 0.1 0.06 0.4 0.3 0.3 -0.1 0.12 -0 -0.2 -0.2 -0.1 -0 -0.3 0.25 -0.2 0.31 0.14 0.11 -0.1

leaf N content 0.32 -0.1 -0.2 -0.5 -0.1 -0.3 -0.1 0.37 -0.1 0.21 0.38 -0.1 0.47 1 0.18 -0.3 -0.3 -0.1 -0.2 -0.2 0.12 0.15 0.03 -0 0.23 0.49 -0 -0.4 -0.1 -0.2 0.06 -0 -0.2 -0.2 -0.8 0.6 -0.2 0.59 0.1 0.36 0.28

conductance 0.04 -0.1 0.07 -0.1 0.04 0.1 -0.1 0.07 -0.2 -0.1 0.1 -0 0.18 0.18 1 -0.3 -0 0.06 -0.2 -0.1 0.32 0.11 0.05 0.02 0.01 0.27 0.08 -0.3 0.15 0.13 -0.3 -0.3 0.14 -0.3 0 0.13 -0.1 0.04 -0.1 0.06 0

toughness -0.3 0.14 0.27 0.46 0.16 -0.3 -0.1 -0.2 0.46 -0.2 -0.4 0.54 -0.1 -0.3 -0.3 1 -0.2 0.06 0.21 0.06 -0.3 -0.4 -0.1 -0.1 -0.2 -0.4 0.06 0.58 0.04 0.01 0.28 0.28 -0.2 0.32 0.48 -0.6 -0.1 -0.5 -0.2 -0.4 -0.2

stem diameter -0.3 -0.1 -0.1 0.07 0 0.74 0.22 -0.5 0.15 0.13 -0.1 -0.4 -0.4 -0.3 -0 -0.2 1 -0.4 0.08 0.24 0.4 0.28 0.18 0.11 0.11 -0.1 -0.3 0.02 0.37 0.25 -0.4 -0.4 0.32 0.32 0.23 0 -0.1 -0.1 0.12 -0 -0.3

stem specific density 0.28 -0 0.3 0.21 0.02 -0.4 -0.2 0.2 -0.2 -0.4 -0 0.28 0.15 -0.1 0.06 0.06 -0.4 1 -0.1 -0.3 -0.2 -0.3 -0.3 0 -0.2 -0.1 0.78 0.03 0.05 -0.1 0.05 0.19 -0 -0.1 0.16 -0.3 -0.1 -0.1 -0.1 -0.2 0.13

erectedness -0.3 0.34 0.46 0.18 -0 0.03 0 -0.1 0.19 0.12 -0.3 0.08 -0.1 -0.2 -0.2 0.21 0.08 -0.1 1 0.08 -0.2 -0.1 0.07 0.09 -0.1 -0.4 -0.1 0.19 0.09 0.07 0.07 0 -0 0.09 0.38 -0.4 -0 -0.3 -0 -0.1 -0.1

biomass inflorescence -0.2 0.18 -0.1 -0 -0 0.36 0.25 -0.3 0.23 0.18 -0.1 0.04 -0.3 -0.2 -0.1 0.06 0.24 -0.3 0.08 1 -0.1 -0 0.23 -0.2 -0.1 -0.2 -0.3 -0.1 -0.1 -0 0.05 0.16 0.29 0.19 0.12 0.05 0.24 -0 -0.1 -0.3 -0.1

inflorences per shoot -0.1 -0.3 -0.1 -0.1 -0.1 0.23 -0.1 -0 0.06 0.26 0.04 -0.1 -0 0.12 0.32 -0.3 0.4 -0.2 -0.2 -0.1 1 0.28 0.05 0.23 0.19 0.26 -0.1 -0.1 0.16 0.11 -0.3 -0.4 0.18 0.2 -0.1 0.21 -0.1 0.13 0.09 0.06 -0.1

duration flowering 0.25 -0.1 -0.1 -0.2 0.12 0.15 0.05 -0 -0.1 0.09 0.37 -0.4 -0.1 0.15 0.11 -0.4 0.28 -0.3 -0.1 -0 0.28 1 0.03 0.23 -0.1 0.12 -0.2 -0.3 -0.1 0.25 -0.2 -0.4 -0.1 -0.1 -0.3 0.34 -0.1 0.39 0.07 0.42 0.18

seeds projected area -0.2 0 -0.1 -0.1 -0.1 0.45 -0.1 -0.2 0.19 0.1 -0.2 0.03 0.1 0.03 0.05 -0.1 0.18 -0.3 0.07 0.23 0.05 0.03 1 -0 0.53 0.02 -0.3 -0.1 0.19 0.15 -0.3 -0.3 0.15 0.08 -0 0.13 0 0.16 0.47 0.06 0.07

nr seedlings -0 -0.1 -0.1 -0 0.08 0.03 -0.1 0.14 -0.1 0.25 0.09 -0.1 0.06 -0 0.02 -0.1 0.11 0 0.09 -0.2 0.23 0.23 -0 1 -0.1 -0.1 0 0.11 -0.2 0.05 -0 -0.1 -0.1 0.03 0.03 -0 -0.1 0.15 -0.1 -0 -0.1

seed weight -0.2 -0.4 -0.1 -0.1 -0.2 0.09 -0.1 -0.2 -0.1 0.1 -0.3 0.08 0.4 0.23 0.01 -0.2 0.11 -0.2 -0.1 -0.1 0.19 -0.1 0.53 -0.1 1 0.34 -0.1 -0.2 0.23 -0.1 -0.4 -0.3 0.05 0.09 -0.3 0.33 -0.1 0.18 0.64 0.2 -0.1

seed width length ratio 0.15 -0.3 -0.1 -0.4 -0.2 -0.1 0.03 0.06 -0 0.04 0.28 -0.1 0.3 0.49 0.27 -0.4 -0.1 -0.1 -0.4 -0.2 0.26 0.12 0.02 -0.1 0.34 1 0 -0.3 0.05 -0.1 -0.1 -0.2 0.02 -0.1 -0.5 0.58 0.1 0.25 0.21 0.21 0.1

seed dry matter content 0.21 -0.2 0.45 0.27 0.14 -0.4 -0.2 0.14 -0.3 -0.5 -0 0.32 0.3 -0 0.08 0.06 -0.3 0.78 -0.1 -0.3 -0.1 -0.2 -0.3 0 -0.1 0 1 0.09 0.09 -0.1 -0.1 0.12 0.11 0 0.14 -0.3 -0.3 -0.1 -0.1 -0.2 -0.1

root area -0.3 -0.3 0.27 0.63 0.29 0 -0.1 -0.2 0.29 -0.2 -0.3 0.42 -0.1 -0.4 -0.3 0.58 0.02 0.03 0.19 -0.1 -0.1 -0.3 -0.1 0.11 -0.2 -0.3 0.09 1 0.19 0.2 0.04 0.04 -0 0.51 0.54 -0.6 -0.2 -0.5 -0.2 -0.4 -0.3

rooting depth -0.2 -0.3 0.4 0.34 0.21 0.4 -0.1 -0.6 0.02 -0.3 -0.3 0.16 0.12 -0.1 0.15 0.04 0.37 0.05 0.09 -0.1 0.16 -0.1 0.19 -0.2 0.23 0.05 0.09 0.19 1 0.47 -0.6 -0.5 0.43 0.27 0.3 -0.2 -0.4 -0.4 0.11 -0.2 -0.2

root area distribution -0.2 -0.2 0.25 0.23 0.23 0.31 -0.4 -0.4 0.02 -0.2 -0.1 0.05 -0 -0.2 0.13 0.01 0.25 -0.1 0.07 -0 0.11 0.25 0.15 0.05 -0.1 -0.1 -0.1 0.2 0.47 1 -0.3 -0.4 0.11 0.16 0.21 -0.1 -0.2 -0.1 -0.2 -0.1 -0.2

specific root area 0.2 0.51 -0.2 -0.2 -0.1 -0.4 -0 0.44 0.12 0.17 0.08 -0 -0.2 0.06 -0.3 0.28 -0.4 0.05 0.07 0.05 -0.3 -0.2 -0.3 -0 -0.4 -0.1 -0.1 0.04 -0.6 -0.3 1 0.89 -0.6 -0.3 -0.1 -0.1 0.35 0.08 -0.1 0.06 0.24

specific root length 0.14 0.51 -0.2 -0.1 -0.1 -0.4 -0 0.42 -0 0.07 -0 0.12 -0.2 -0 -0.3 0.28 -0.4 0.19 0 0.16 -0.4 -0.4 -0.3 -0.1 -0.3 -0.2 0.12 0.04 -0.5 -0.4 0.89 1 -0.4 -0.2 0.06 -0.2 0.32 -0 -0.1 -0.2 0.22

root t issue density -0.2 -0.3 0.09 0.22 0.09 0.4 0.14 -0.3 -0.1 -0 -0.1 0.05 -0.1 -0.2 0.14 -0.2 0.32 -0 -0 0.29 0.18 -0.1 0.15 -0.1 0.05 0.02 0.11 -0 0.43 0.11 -0.6 -0.4 1 0.35 0.22 -0.1 -0.2 -0.3 -0.2 -0.4 -0.2

root nitrogen uptake -0.5 -0.3 0.04 0.46 0.42 0.16 -0.1 -0.4 0.36 0.1 -0.1 0.18 -0 -0.2 -0.3 0.32 0.32 -0.1 0.09 0.19 0.2 -0.1 0.08 0.03 0.09 -0.1 0 0.51 0.27 0.16 -0.3 -0.2 0.35 1 0.27 -0.2 -0.2 -0.3 0.06 -0.3 -0.3

root CN ratio -0.4 0.19 0.39 0.58 0.19 0.27 -0.1 -0.3 0.2 -0.2 -0.4 0.35 -0.3 -0.8 0 0.48 0.23 0.16 0.38 0.12 -0.1 -0.3 -0 0.03 -0.3 -0.5 0.14 0.54 0.3 0.21 -0.1 0.06 0.22 0.27 1 -0.8 -0.1 -0.7 -0.3 -0.6 -0.4

root P content 0.24 -0.2 -0.4 -0.6 -0.2 -0 0.11 0.06 -0.2 0.28 0.5 -0.5 0.25 0.6 0.13 -0.6 0 -0.3 -0.4 0.05 0.21 0.34 0.13 -0 0.33 0.58 -0.3 -0.6 -0.2 -0.1 -0.1 -0.2 -0.1 -0.2 -0.8 1 0.28 0.65 0.28 0.57 0.28

root K content -0 0.41 -0.3 -0.3 -0.3 0.02 0.25 0.05 0.09 0.35 0.21 -0.2 -0.2 -0.2 -0.1 -0.1 -0.1 -0.1 -0 0.24 -0.1 -0.1 0 -0.1 -0.1 0.1 -0.3 -0.2 -0.4 -0.2 0.35 0.32 -0.2 -0.2 -0.1 0.28 1 0.06 0.04 -0.1 0.34

root S content 0.39 -0.1 -0.4 -0.5 -0 -0.2 0.08 0.25 -0.2 0.23 0.48 -0.4 0.31 0.59 0.04 -0.5 -0.1 -0.1 -0.3 -0 0.13 0.39 0.16 0.15 0.18 0.25 -0.1 -0.5 -0.4 -0.1 0.08 -0 -0.3 -0.3 -0.7 0.65 0.06 1 0.27 0.58 0.37

root Ca content 0.03 -0 -0.1 -0.1 -0.1 0.09 0.04 -0.2 -0.1 0.01 -0 -0.1 0.14 0.1 -0.1 -0.2 0.12 -0.1 -0 -0.1 0.09 0.07 0.47 -0.1 0.64 0.21 -0.1 -0.2 0.11 -0.2 -0.1 -0.1 -0.2 0.06 -0.3 0.28 0.04 0.27 1 0.37 0.11

root Na content 0.43 -0.1 -0.2 -0.3 -0 -0.2 0.16 0.14 -0.2 -0.1 0.37 -0.6 0.11 0.36 0.06 -0.4 -0 -0.2 -0.1 -0.3 0.06 0.42 0.06 -0 0.2 0.21 -0.2 -0.4 -0.2 -0.1 0.06 -0.2 -0.4 -0.3 -0.6 0.57 -0.1 0.58 0.37 1 0.08

nutrient uptake efficiency 0.38 0.42 -0.2 -0.4 -0.2 -0.2 0.04 0.3 -0.1 0.31 0.18 -0.3 -0.1 0.28 0 -0.2 -0.3 0.13 -0.1 -0.1 -0.1 0.18 0.07 -0.1 -0.1 0.1 -0.1 -0.3 -0.2 -0.2 0.24 0.22 -0.2 -0.3 -0.4 0.28 0.34 0.37 0.11 0.08 1
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S2. SUPPLEMENTARY RESULTS 966 

 967 

S2.2. Overview of final model outcomes 968 

On average, each trait significantly affected 4.9 out of the 42 ecosystem functions in the final 969 

models, and each ecosystem function was driven by 4.8 different traits. However, traits varied in 970 

the identity and number of ecosystem functions they drove, and vice versa, ecosystem functions 971 

varied in the identity and number of traits by which they were driven. Table S.2.1 gives an 972 

overview of which traits (their functional identity and/or their functional diversity) were 973 

significantly driving which functions in final models. Average marginal R2 values of models 974 

were 0.127. This was slightly lower (0.121) when FI and FD metrics based on presence-absence 975 

data (instead of abundance data) were used as predictors. 976 

 977 

Table S2.1 Ecosystem functions and their relationships with plant traits. Colored squares 978 

indicate whether the Functional Diversity and/or Community Weighted Mean of a given trait 979 

was present in the final model explaining the corresponding ecosystem function, and whether the 980 

effect was strongly negative (dark red, r < -0.5), moderately negative (normal red, -0.5 ≤ r < -981 

0.3), weakly negative (light red, -0.3 ≤ r < -0.1), neutral (yellowish, -0.1 ≤ r < 0.1), weakly 982 

positive (light blue, 0.1 ≤ r < 0.3), moderately positive (normal blue, 0.3 ≤ r < 0.5) or strongly 983 

positive (dark blue, r < 0.5). When the Functional Diversity of the trait was the strongest 984 

predictor, FD is written in the cell; in all other cases, Functional Identity of the trait was the 985 

strongest predictor. The ecosystem functions analyzed in over 10% of the papers included in the 986 

mini-review are shown in bold. At the end of each row, a number is given indicating how many 987 

traits were significantly related to the corresponding ecosystem function. Similarly, at the bottom 988 
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of each column, a number is given indicating how ecosystem functions were significantly related 989 

to the corresponding trait. 990 

 991 

 992 

 993 
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2

Consumed biomass FD FD FD FD FD FD 7 0.40

Herbivory rate 6 0.13

Frequency pollinators FD FD FD FD 7 0.38

Abundance soil surface fauna FD FD 5 0.05

Richness soil surface fauna FD 2 0.03

Abundance vegetation layer fauna FD FD FD 6 0.19

Richness vegetation layer fauna FD FD 2 0.18

Number of pollinators FD FD 4 0.26

Drought resilience FD FD FD FD FD FD FD 7 0.14

Drought resistance FD FD 3 0.07

Leaf area index FD FD FD FD FD FD 11 0.38

Bareground cover FD FD FD 6 0.27

Target plant biomass FD FD FD FD FD FD 14 0.34

Dead biomass FD FD FD FD 7 0.11

Cover invasive species FD FD FD 13 0.36

Richness invasive species FD FD FD 6 0.29

Rain throughfall 1 0.01

Basal soil respiration FD FD FD 4 0.06

Soil respiratory quotients FD FD 4 0.08

Earthworm biomass FD FD 5 0.10

Soil larvae abundance FD 3 0.07

Soil mesofauna abundance 6 0.17

Soil macrofauna abundance FD FD FD FD FD FD FD 8 0.31

Biomass soil microbes FD 3 0.08

Biomass plant roots FD FD 6 0.12

Downflow water upper soil FD 4 0.01

Downflow water deeper soil FD 3 0.00

Upflow upper soil 2 0.04

Upflow deeper soil 3 0.03

Evapotranspiration upper soil FD 8 0.10

Evapotranspiration deeper soil 0 0.00

Upper soil water content 1 0.01

Deeper soil water content FD 4 0.03

Inorganic soil carbon FD FD 3 0.01

Organic soil carbon 1 0.00

Bulk density soil 2 0.03

Nitrogen content soil FD FD FD 4 0.06

Soil 15N 3 0.07

Soil NH4 4 0.03

Soil NO3 FD FD 7 0.08

Nitrate leaching 5 0.16

Phosphorous content soil FD 2 0.07
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