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Abstract

Auditory  steady-state  responses  (ASSRs)  are  evoked  brain  responses  to  modulated  or  repetitive
acoustic stimuli. Due to a wide range of clinical and research applications, there is a great (clinical)
interest  to  investigate  the  underlying  neural  generators  of  ASSRs.  The  cortical  sources  of  ASSRs
mostly are  located in  the auditory cortex (AC), although some studies  avoiding prior assumptions
regarding the number and location of the sources have also reported activity of sources outside of the
AC. However, little is known about the number and location of these sources. In this study, we present
a novel extension to minimum-norm imaging (MNI) which facilitates ASSR source reconstruction and
provides  a  comprehensive  and  consistent  picture  of  sources  in  response  to  low-  as  well  as  high
modulation frequencies, monaurally presented to the left and right ears.
Results demonstrate that the proposed MNI approach is successful in reconstructing sources located
both within (primary) and outside (non-primary) of the AC. The locations of the non-primary sources
are consistent with the literature. Primary sources are detected in every experimental condition, thereby
corroborating the robustness of the approach. Moreover, we show that the MNI approach is capable of
reconstructing  the  subcortical  activities  of  ASSRs.  In  summary,  the  results  indicate  that  the  MNI
approach outperforms the previously used method of group-ICA, in terms of detection of sources in the
AC, reconstructing the subcortical activities and reducing computational load.

1. Introduction
The temporal envelope of the speech signal fluctuates from 2 to 50 Hz and transmits both phonetic and
prosodic information (Rosen, 1992). In particular, continuous speech yields pronounced low-frequency
modulations  (between  2  and  20  Hz) in  its  temporal  envelope:  very  low-frequency  amplitude
modulations in sounds signal the occurrence of syllables (± 4 Hz, ± 250 ms), and phonemes (15-20 Hz,
±50 ms),  and drive speech perception (Poeppel,  2003).  These low-frequency modulations are both
necessary and almost sufficient for accurate speech perception (e.g. Drullman et al., 1994; Shannon et
al.,  1995).  Temporal  processing  of  the  amplitude  modulated  (AM) stimuli  can  be  investigated  by
analyzing auditory steady-state responses (ASSRs) in the EEG. In response to AM stimuli, afferent
neurons in the central auditory system synchronize their firing patterns to a particular phase of these
stimuli and generate the phase-locked responses known as ASSRs (Picton et al., 2003). These evoked
potentials reflect the capability of the auditory system to follow the timing patterns of auditory stimuli.
The excellent temporal resolution of EEG is highly suitable  to capture these phase-locked responses.
ASSRs are used clinically to determine hearing thresholds (Lins and Picton, 1995; Luts et al., 2006), to
assess supra threshold hearing across age (Goossens et al., 2016), monitor the state of arousal during
anesthesia (Picton et al., 2003), and open doors to neuroscience research. 

In order to gain more insight into auditory temporal processing it is necessary to reconstruct the cortical
and subcortical sources of ASSR. The technique to map EEG data from sensor space to cortical sources
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is referred to as EEG source modeling. Such source modeling techniques are not straightforward and
yield different numbers and locations of sources, dependent on the applied procedure and its prior
assumptions.  Most  electrophysiological  studies  have  used dipole  source analysis  to  localize  ASSR
sources and reported that cortical sources of ASSR were located bilaterally in the primary auditory
cortex (AC, in the supra temporal plane) (Herdman et al., 2002; Kuriki et al., 2013; Poulsen et al.,
2007; Schoonhoven et al., 2003; Spencer, 2012; Teale et al., 2008). Dipole source analysis employs a
predetermined number of equivalent current dipoles (ECD) and involves restrictions with respect to the
locations of the dipoles.

While the above-mentioned studies involved prior assumptions regarding the number and location of
sources, with minimal prior assumptions, few studies have reported that the ASSR may reflect activity
in even more widely distributed regions of the brain, beyond the auditory cortex (Farahani et al., 2017;
Reyes  et  al.,  2005).  Sources  located  within  the  AC are  considered  primary  sources,  those  located
outside the AC are considered non-primary ones (Farahani et al., 2019). The number and location of the
non-primary sources are still a matter of debate and need to be investigated using the source modeling
techniques with minimal restrictions about the location of the sources.

Farahani  et  al.  (2019)  reconstructed  ASSR  sources  using  group-ICA,  an  approach  without  prior
assumptions  about the number and location of the sources.  Although the group-ICA approach was
successful in reconstructing primary and non-primary sources, for some experimental conditions (e.g.
20 Hz AM stimuli  presented to the right  ear)  some expected primary sources in  the AC were not
detected,  presumably because of the large inter-subject variability.  Moreover,  Farahani et al (2019)
detected a  subcortical  source only for  80 Hz ASSR, while  fMRI studies  show that  the activity  of
subcortical sources is expected at other modulation frequencies as well (Langers et al., 2005; Overath
et al., 2012; Steinmann and Gutschalk, 2011). Reconstruction of subcortical sources of ASSR has not
been reported for other electrophysiological studies up to now. The lack of consensus regarding the
generators of ASSR prompted us to carry out an additional study to help define the origins of the ASSR
using a source modeling technique with minimal restrictions about the location of the sources. 

The use of a volume conduction head model for source decomposition can be helpful to detect all the
expected primary sources, and also to further research on non-primary sources. The two major groups
of source reconstruction methods based on head-model information and also with minimal restrictions
about the number and location of the sources are those involving beamforming and minimum-norm
imaging (MNI) (Grech et al., 2008; Michel et al., 2004). Some recent studies have tested beamforming
techniques for ASSR source analysis (Luke et al., 2017; Popescu et al., 2008; Popov et al., 2018; Wong
and  Gordon,  2009).  They  used  beamforming  techniques  with  a  supplementary  preprocessing  to
suppress  the  correlated  source  from  the  other  hemisphere,  because  these  techniques  assume  that
spatially distinct sources are temporally uncorrelated. However, results were variable, as these studies
could only reconstruct the primary sources in the AC, not any of the non-primary ones. We therefore
use minimum-norm imaging (MNI) in the current study to obtain a more comprehensive picture of the
primary and non-primary sources of ASSRs. MNI is a distributed source modeling approach, which
considers a large number of equivalent current dipoles in the brain and estimates the amplitude of all
dipoles to reconstruct a current distribution (a source distribution map) with minimum overall energy
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(Grech et al., 2008; Hämäläinen and Ilmoniemi, 1994; Lin et al., 2006; Stenroos and Hauk, 2013). MNI
estimates the current distributions based on a forward model, which shows the signals generated by the
dipole sources in the location of EEG electrodes. To generate the forward model, a head-model is a
prerequisite.  Based  on  the  generated  forward  model,  MNI  provides  a  linear  inverse  operator  to
calculate the current distribution with minimum overall energy from the EEG data (Lin et al., 2006).  

The main objective of the present study is to propose MNI for the ASSR source reconstruction.  The
novelty of the current study is  to extend the MNI to allow for frequency-specific brain maps. We
investigate  whether  this  approach  is  capable  of  reconstructing  cortical  and  subcortical  sources  of
ASSRs for different experimental conditions. We compare the location of reconstructed sources and
their activity with previous findings from imaging techniques to verify the validity of the results and
the viability of the approach. The robustness of the approach is examined for acoustic modulations at 4,
20, 40, and 80 Hz presented monaurally to the left and right ears. Additionally, subcortical activity is
compared with cortical activity for low and high modulation frequencies to investigate whether the
subcortical activity is physiologically plausible. For low modulation frequencies higher cortical activity
than subcortical activity is expected, while for high modulation frequencies more subcortical activity is
expected (Giraud et al., 2000; Liégeois-Chauvel et al., 2004).

The second objective is to compare the MNI approach with group-ICA (as proposed by Farahani et al.,
2019)  to  determine  which  approach  is  more  effective  for  ASSR source  reconstruction.  The  main
structural difference between MNI and group-ICA is related to the use of head-model information,
which we expect to be beneficial for source reconstruction. The MNI approach is applied on the same
recordings as described in Farahani et al. (2019) and then compared with group-ICA with regard to
detection of sources in the AC, reconstruction of subcortical sources, and reduced computational load. 
2. Methods and Materials

2.1. Participants

The EEG recordings were adopted from Goossens et al., (2016) who included nineteen young adults
(20–30 years of age, 9 men) with clinically normal audiometric thresholds in both ears (≤ 25 dB HL,
125 Hz − 4 kHz). All participants were Dutch native speakers and right handed as assessed by the
Edinburgh  Handedness  Inventory  (Oldfield,  1971).  They  showed  no  indication  of  mild  cognitive
impairment as assessed by the Montreal Cognitive Assessment Task (Nasreddine et al., 2005).

2.2. Stimuli and procedures

The stimuli were 100% amplitude modulated (AM) white noise (bandwidth of 1 octave, centered at 1
kHz) at 3.91, 19.53, 40.04, and 80.08 Hz. These values were chosen to have integer number of cycles
in an epoch of 1.024 s (John and Picton, 2000). In response to AM stimuli, the central auditory system
generates phase-locked responses, also known as auditory steady-state responses or ASSRs (Picton et
al., 2003). The stimuli were presented monaurally to the left and right ears at 70 dB SPL through ER-
3A insert phones. Each stimulus type was presented continuously for 300 s. The order of stimulus
presentation was randomized among participants.

The testing procedure was designed to ensure passive listening to the amplitude modulated stimuli
during a wakeful state. In this procedure, participants were lying on a bed and watched a muted movie
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with subtitles. They were encouraged to lie quietly and relaxed during the experiment to avoid muscle
and movement artifacts. The experiment was performed in a double-walled sound-proof booth with
Faraday cage. 

2.3. EEG recording parameters

The EEG signals were picked up by 64 active Ag/AgCl electrodes mounted in head caps based on the
10–10 electrode system. These signals were amplified and recorded using the BioSemi ActiveTwo
system at a sampling rate of 8192 Hz with a gain of 32.25 nV/bit.

2.4. EEG source analysis

Fig.  1 illustrates  the pipeline for  source  reconstruction based on MNI.  In this  pipeline,  MNI was
applied to the preprocessed EEG data and a source distribution map showing the activities of different
cerebral  regions  was  obtained for  each time point.  Subsequently,  the  source  distribution  map was
transformed into the frequency domain and the ASSRs were calculated for each dipole in order to
develop the ASSR map. Lastly, the regions of interest were defined and their activities were extracted
for further analyses. In the following paragraphs, the different steps of the pipeline are explained in
more detail.

Fig.1. Sketch of MNI pipeline for ASSR source reconstruction

2.4.1. Preprocessing

EEG data of each experimental condition (4 modulation frequencies and 2 sides of stimulation; left ear
and  right  ear)  were  preprocessed  separately  in  MATLAB  R2016b  (Mathworks).  To  avoid  low-
frequency distortions caused by skin potentials and/or drift of the amplifier, raw EEG data were filtered
by a zero phase high-pass filter with a cut-off frequency of 2 Hz  (20dB/decade, Butterworth). The
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continuous filtered data were segmented into the epochs of 1.024 s and submitted to an early noise
reduction procedure consisting of the following 3 steps:  

1. Channel rejection: the mean of the maximum absolute amplitude of all epochs was calculated
for each of the 64 channels separately and considered as an index of maximum amplitude. A
channel was rejected if its maximum amplitude index exceeded 100 uV. 

2. Recording rejection:  the blocks of EEG recording with more than 5 rejected channels were
excluded from further analyses. On average, 1.3 (standard deviation of 0.5) recordings were
excluded across all 4 modulation frequencies and 2 sides of stimulation.

3. Epoch rejection: for each epoch, the highest peak to peak (PtoP) amplitude of the signals in the
remaining channels was extracted as an index of PtoP of that epoch. 10% of epochs with the
highest PtoP amplitude was rejected. 

After early noise reduction, the EEG data were re-referenced to a common average over all remaining
EEG channels. To eliminate artifacts such as eye blinks, eye movements and heartbeats, independent
component analysis (ICA) was applied to the re-referenced data using Infomax in the Fieldtrip toolbox
(Oostenveld et al.,  2011). Noisy independent components were recognized by visual inspection and
removed.  The  remaining components  were  used  to  reconstruct  the  clean  EEG data.  Subsequently,
missing channels, which had been rejected by the early noise reduction procedure, were interpolated
using the spherical spline method (Perrin et al., 1989) implemented in the Fieldtrip toolbox (Oostenveld
et  al.,  2011).  The  regularization  parameter  and  the  order  of  interpolation  were  set  to  10-8 and  3,
respectively,  because  these  values  lead  to  fewer  distortions  in  temporal  features  of  interpolated
channels (Kang et al., 2015).
Lastly,  to  avoid  residual  artifacts  not  accounted  for  by  ICA,  the  epochs  with  maximum absolute
amplitude higher than 70uV in any channel were removed. To have the same number of epochs across
participants, the first 192 artifact free epochs (6 sweeps of 32 epochs) were selected for subsequent
analyses. If less than 192 epochs could be retained, the amplitude threshold was gradually increased (in
steps of 5 μV and up to maximally 110 μV) to find at least 192 artifact-free epochs.

2.4.2. Mixed head-model

It is very common to use a cortical surface head-model for brain mapping. Restricting the source space
to the cortex is mainly based on the assumption that most of the electrical activity recorded by EEG
comes from the cerebral cortex. However, this assumption is not always valid. Recent studies showed
that, although the expected signal-to-noise ratios of subcortical activities are poor, the activity of deep
brain structures (deep sources) can be reconstructed from EEG (Attal et al., 2009; Attal and Schwartz,
2013; Seeber et al., 2019). The use of steady-state paradigms or the high number of trials is beneficial
to accumulate data samples and then to reconstruct subcortical activities (Attal et al., 2009).

fMRI studies showed that ASSRs also have some generators at the subcortical level (Coffey et al.,
2016; Langers et al., 2005; Overath et al., 2012; Steinmann and Gutschalk, 2011). In the current study,
to be able to investigate the subcortical  sources as well  as cortical ones, a mixed head-model was
generated consisting of cortical (cortex) and subcortical regions (thalamus and brainstem). This head-
model was generated based on the template anatomy ICBM152 (non-linear average of 152 individual
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magnetic resonance scans, Fonov et al., 2011) and the default channel location file in the Brainstorm
application (Tadel et  al.,  2019, 2011).  The realistic head-model was developed using the boundary
element  method  (BEM)  as  implemented  in  OpenMEEG  (Gramfort  Alexandre  et  al.,  2010),  and
consisted of 3 compartments i.e., brain (cortical and subcortical), skull, and scalp with conductivity
values of 0.33, 0.0041, and 0.33 S/m, respectively. Using the Brainstorm application (Tadel et al., 2019,
2011), the surface model of the cortex (triangulation of the cortical surface) was combined with the
volume model (three-dimensional dipole grid) of the thalamus and brainstem. For the surface model, a
dipole orthogonal to the surface was used at each grid point, while for the volume model, three dipoles
with orthogonal orientations were considered at each grid point.

2.4.3. Noise covariance

The noise covariance required for source reconstruction was estimated on the basis of the silence EEG
data, i.e., EEG recorded in the absence of auditory stimulation, while the participants were watching a
movie. For each participant, the silence data were recorded in two blocks of 150 s, before and after the
main ASSR recordings.
For each modulation frequency, the noise covariance was calculated separately. First, the preprocessed
silence data were filtered using a zero phase band-pass filter with a bandwidth of 4 Hz and modulation
frequency as center frequency. Then, the filtered silence data of all subjects were concatenated and used
to calculate the covariance matrix.

2.4.4. Reconstruction of the source distribution map
The brain source activities were reconstructed using dynamic statistical parametric mapping (dSPM,
Dale  et  al.,  2000)  implemented in  Brainstorm.  dSPM provides  a  noise-normalized minimum-norm
solution  through  normalization  with  the  estimated  noise  at  each  source  (Lin  et  al.,  2006).  This
normalization reduces the bias toward superficial sources, which occurs with the standard minimum
norm solution (Hauk et al., 2011; Lin et al., 2006). The matrix of reconstructed sources Ŝwas calculated
as: 

Ŝ=K [18 k∗64 ]
dSPM X [64∗time ]   (Eq. 1)

where  KdSPM is the imaging kernel of dSPM obtained from Brainstorm and  X is the 64-channel EEG
data. 

The regularization parameter (λ2) required for dSPM is related to the level of the noise present in the
recorded data (Ghumare et al., 2018) and can be calculated as λ2 = 1/SNR2, where SNR is the signal to
noise ratio (S/N, based on the amplitude) of the whitened EEG data (Bradley et al., 2016; Ghumare et
al., 2018; Hincapié et al., 2016). The aim of whitening is to remove the underlying correlation in a
multi-variable data to set the variances of each variable to 1. The required whitening operator was
calculated based on the noise covariance matrix in  Brainstorm. In order to calculate the SNR, the
whitened EEG data were transformed to the frequency domain using a Fast Fourier Transform (FFT).
The spectral amplitudes at the respective modulation frequencies were extracted for all channels and
considered as response amplitudes. Since the response amplitude varies across channels due to the
relative position of the channel to the brain sources of ASSRs, the maximum response amplitude was
considered the signal of interest (S). The noise level at each EEG channel was estimated based on the
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average of 30 neighboring frequency bins on each side of the response frequency bin. The median of
the noise level of the EEG channels was considered the noise level of measurements (N). 

When we use a template MRI and a template channel location for source localization, the use of a
group-wise framework for source analysis can lead to a higher localization accuracy than individual-
level analyses (Farahani et al.,  2019). To obtain a group-wise framework for the current study, the
epochs of each participant were divided into the sweeps of 32 concatenated epochs and averaged across
participants for a grand-averaged sweep before applying the imaging kernel of dSPM. Since calculating
source  activities  based  on imaging  kernel  (Eq.  1)  is  a  linear  transformation,  multiplication  of  the
imaging kernel to the grand-averaged sweep is equal to first applying imaging kernel to the sweep of
each subject and then averaging the outcome maps across all participants.

2.4.5. Developing the ASSR map

The aim of this analysis is to generate a frequency-specific brain map that shows the activity of dipoles
for  a  certain  modulation  frequency,  i.e.,  ASSRs  of  each  dipole. To  accomplish  this  aim,  the
reconstructed time-series of each dipole (Eq. 1) was transformed into the frequency domain by means
of a Fast Fourier Transform (FFT). The SNR of the ASSR for each dipole was calculated based on Eq.
2.

SNR (dB )=10 × log10(
PS+N

PN
)

                                                (Eq.2)

where PS+N is the power of the frequency spectrum at the modulation frequency bin (i.e., 4, 20, 40, and
80 Hz) and includes the power of the response plus neural background noise (and relatively small
measurement noise). PN refers to the power of the neural background noise, which was estimated using
the average power of 30 neighboring frequency bins (corresponding to 0.92 Hz) on each side of the
response frequency bin.

To recognize the dipoles with significant responses at the respective modulation frequencies, the one
sample F-test was performed with the SNR (i.e., PS+N / PN) as F ratio statistic. A dipole was recognized
as an ASSR source when the F-test showed a significant difference (α=0.05) between the power of the
response plus noise and the power of the noise (Dobie and Wilson, 1996; John and Picton, 2000; Picton
et al., 2005). The correction for multiple comparison was performed using the FDR (false discovery
rate) method (Benjamini and Hochberg, 1995). Subsequently, the ASSR map was generated based on
the  ASSR  amplitudes  of  the  dipoles  with  significant  responses  and  zero  for  the  dipoles  without
significant response. The ASSR amplitude was calculated according to Eq.3. 

Biasedresponseamplitude=√PS+N

Neuralbackgroundnoise=√PN                                        (Eq.3)

ASSRamp=√PS+N−√PN

For subcortical  regions with three orthogonal  dipoles at  each grid point,  the ASSR amplitude was
calculated using the norm of the vectorial sum of the three orientations at each grid point (Eq.4). 
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SubcorticalASSRamp=√ ASSRampx
2
+ASSRamp y

2
+ ASSRamp z

2          (Eq.4)

Similarly, the SNR map was generated based on the SNR (in dB, Eq. 3) of each dipole. The SNR can
be considered as an index that shows the quality of the response for each dipole.

2.4.6. Defining region of interests (ROIs)

The  ROIs  were  defined  based  on  the  average  SNR  map  across  all  experimental  conditions  (4
modulation frequencies and 2 sides of stimulation). Since the dynamic range of the SNR varies across
modulation frequency, first we applied normalization as follows:

SNRIndex (s )=
SNR (s )−SNRmin

SNRmax−SNRmin
    (Eq. 5)

where s is the dipole number and the SNR index has a range of [0,1]. Afterwards, the maps of the SNR
index were generated and were averaged across modulation frequencies (4, 20, 40, and 80Hz) and
across sides of stimulation (left  and right),  yielding a grand-averaged map of SNR index that was
independent from the acoustic stimulation type. Subsequently, the regions with a SNR index more than
50% of the maximum value of SNR index were selected as ROIs. 

Additionally,  8  ROIs  along  the  primary  auditory  pathway  were  defined  guided by the  anatomical
locations of the cochlear nucleus (CN), the inferior colliculus (IC), the medial geniculate body (MGB),
and the auditory cortex (AC), bilaterally. These regions are known to play a key role in generating
ASSRs (Coffey et  al.,  2016; Langers et  al.,  2005; Overath et  al.,  2012; Steinmann and Gutschalk,
2011). The ROI for the auditory cortex (AC, Left AC: 5.49 cm2; Right AC: 5.58 cm2) was defined in the
Heschl’s  gyrus  with  reference  to  the  transverse  temporal  gyrus  in  the  Desikan-Killiany  atlas
implemented in Brainstorm (Desikan et al., 2006; Tadel et al., 2011). At the sub-cortical level, a semi-
spherical ROI was defined in the CN (identified with reference to the medullary pontine junction; left
CN: 0.49 cm3; right CN: 0.47 cm3) and in the IC (estimated with reference to the thalamus; left IC: 0.50
cm3; right IC: 0.55 cm3) (Coffey et al., 2016). The ROIs for the MGB were defined in the left and right
posterior thalamus (roughly the posterior third of the thalamus, left MGB: 1.24 cm3; right MGB: 1.45
cm3) (Coffey et al., 2016). The sub-cortical ROIs were defined with a bigger size than their related
anatomical regions to maximize the chance of capturing signals.

2.4.7. Time-series of ROIs
Each ROI depends on its size and includes several dipoles. In order to extract a time-series per ROI, we
need to find a representative dipole inside each ROI.  This is because when the ROIs are broad and
show heterogeneous patterns of activities,  the extraction of a time-series on the basis of averaging
between all dipoles can impose extra smoothing to the final time-series and lead to an underestimated
response (Ghumare et al., 2018). On the other hand, the extraction of a time-series based on the highest
activity can lead to an overestimated response. 
To find a representative dipole inside each ROI, we first considered the dipoles with maximum ASSR
amplitude and its  neighboring dipoles as the response patches.  Then, the patch with highest  mean
ASSR amplitude was chosen as response patch. Finally, a dipole showing the highest similarity to the
mean time-series of the response patch was chosen as the representative dipole. The detailed algorithm
of choosing a representative dipole is as follows:
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a) find a response patch inside each ROI

1. sort the dipoles based on ASSR amplitude and choose the first 3 dipoles with highest amplitude
2. extract a patch around each selected dipole based on the first layer of neighboring dipoles  in

cortical surface (see Figure 2) 
3. calculate the mean ASSR amplitude of each patch
4. sort 3 patches and choose the patch with highest mean ASSR amplitude

b) find the representative dipole from the response patch
5. calculate the mean ASSR of the selected patch in complex form, daverage

Note:  complex representation  of  ASSR of  each dipole was obtained from FFT output  at  a
modulation frequency.

6. find the dipole with most similar ASSR (in complex form) to the mean response (in complex
form) using vectorial subtraction as:
argmin

d
‖d−daverage‖(Eq. 6)

Fig. 2. Schematic diagram of the patch around a selected dipole with maximum activity.

It should be noted that, in the sub-cortical ROIs, the ASSR amplitude of each dipole was very close to
its neighboring dipoles in sub-cortical volume. Therefore, to diminish the computational load, the time-
series directly was extracted from the dipole with the highest ASSR amplitude.

2.5. Variance estimation

The variation of the ASSR amplitude was estimated by applying the Jackknife re-sampling method to 
the EEG data of participants (Efron and Stein, 1981). For each re-sampling, the dSPM imaging kernel 
of the main MNI (Eq.1) was applied to the averaged EEG data of re-sampling.

3. Results

3.1. The ASSR maps

Brain  sources  of  ASSR  for  different  modulation  frequencies  and  two  sides  of  stimulation  were
reconstructed using the MNI approach (Fig. 1). For each experimental condition, the MNI approach
yields an ASSR map,  which shows the magnitude of the ASSR for different  brain regions.  As an
example, the ASSR map for 4 Hz AM stimuli presented to the left ear is illustrated in Fig.3. This figure
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shows different steps from a source distribution map in the time domain (Fig.3.a) to the ASSR map
(Fig.3.d). The time-series of three sample dipoles located in the precentral gyrus, the middle frontal
and the auditory cortex (AC) are shown in Fig.3.b. The time-series of the dipole in the AC suggests a
high neural synchronization to the envelope of 4 Hz AM stimuli, while the dipole in the middle frontal
gyrus does not show synchronization.  The degree of synchronization or ASSR of each dipole was
calculated based on the frequency response of that dipole at the modulation frequency (Fig.3.c). The
ASSR amplitudes were used to generate the ASSR map (Fig.3.d). This ASSR map illustrates a high
ASSR amplitude in the AC, smaller amplitudes in the precentral gyrus and no significant ASSRs in the
middle frontal gyrus. Similar to the ASSR map, the SNR map was also generated based on the value of
SNR (in dB) for each dipole (see 2.4.5. developing the ASSR map).

Fig. 3. The ASSR map in response to 4Hz AM stimuli presented to the left ear. (a) Reconstructed brain map at 528 ms using
dSPM and enlarged view of three sample dipoles located in the precentral gyrus, the middle frontal and the auditory cortex
(from top to bottom). The map shows the absolute values of activity. The color bar indicates the magnitude of activity (no
unit because of normalization within dSPM algorithm). (b) Time series of activity (original values with length of one epoch)
for the 3 sample dipoles. The vertical dashed line shows the time point of 528 ms. (c) The frequency spectrum for the 3
sample dipoles.  (d) The generated ASSR map using ASSR amplitude for  the dipoles with significant response (F-test,
α=0.05, corrected for multiple comparison using FDR, Benjamini and Hochberg, 1995). The color bar indicates the ASSR
amplitude with arbitrary unit because of normalization within the dSPM algorithm. The dipoles with not significant ASSRs
were set to zero. (e) The generated SNR map. The color bar indicates the SNR of 4 Hz ASSR in dB.

3.2. Defined ROIs
After developing the ASSR maps, the ROIs were defined for further analysis and interpretation of the
results. 8 ROIs were defined along the primary auditory pathway as primary ROIs. These ROIs were
located bilaterally in the AC at the cortical level as well as in the MGB, IC, and CN at the subcortical
level (Fig. 4).

The ROIs beyond the auditory pathway, also termed non-primary ROIs, were defined based on the
averaged SNR map (cf method section). Fig. 5 illustrates 11 cortical ROIs, which were obtained for all
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experimental  conditions  (4  modulation  frequencies  and  2  sides  of  stimulation).  The  respective
anatomical labels of the primary and the non-primary ROIs are listed in Table 1.  

Fig. 4. ROIs along the primary auditory pathway and their neural responses. The central panel depicts cortical ROIs (center-
top) in the left and right auditory cortex (LAC, RAC) and sub-cortical ROIs (center-bottom) located bilaterally in the medial
geniculate body (LMGB, RMGB), inferior colliculus (LIC, RIC), and cochlear nucleus (LCN, RCN). Surrounding panels
illustrate biased response (calculated based on Eq. 3, dashed lines) and neural background noise (calculated based on Eq. 3,
dotted lines) of each ROI, in response to 4, 20, 40, 80 Hz AM stimuli presented to the left (blue) and right ears (red). The
error bars show the standard deviation estimated by means of the jackknife method (Efron and Stein, 1981).

Table 1. Anatomical label of primary and non-primary ROIs

Primary ROIs Non-primary ROIs

Cortical:
Left auditory cortex (LAC)
Right auditory cortex (RAC)

Subcortical:
Left medial geniculate body (LMGB)
Right medial geniculate body (RMGB)
Left inferior colliculus (LIC)
Right Inferior colliculus (RIC)
Left cochlear nucleus (LCN)
Right cochlear nucleus (RCN) 

Left precentral gyrus (LPrC) 
Right precentral gyrus (RPrC)
Right orbitofrontal (ROF)
Right parahypocampal (RPHC)
Left orbitofrontal (LOF)
Right occipital (ROcc)
Right superior parietal (RSP)
Left superior parietal (LSP)
Right posterior cingulate gyrus (RPCG)
Right anterior cingulate gyrus (RACG)
Right parieto-occipital (RPO)
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Fig. 5. Non-primary ROIs and their neural responses. Central panels depict the averaged normalized SNR-maps of different
experimental conditions (4, 20, 40, and 80 Hz AM stimuli presented to the left and the right ears) and the obtained ROIs.
The anatomical labels of ROIs are listed in Table 1. Surrounding panels illustrate biased responses (calculated based on Eq.
3, dashed lines) and neural background noise (calculated based on Eq. 3, dotted lines) of each ROI, in response to AM
stimuli with different modulation frequencies presented to the left (blue) and right ears (red). The error bars show the
standard deviation estimated by means of the jackknife method (Efron and Stein, 1981).

3.3. ASSR of the primary and the non-primary ROIs
The time-series of each ROI (primary or non-primary) was extracted from the representative dipole of
that ROI (cf method section). Then, the biased response and the neural background noise (Eq.3) were
calculated based on the extracted time-series (Fig. 4 and Fig. 5, surrounding panels).

3.3.1. Consistency of the primary ROIs

The grand-average SNR map (Fig.  5,  central  panel)  shows active regions in the left  and the right
auditory cortices which are highly comparable anatomically with the location of Heschl’s gyrus. The
location of this activation is consistent with literature about the cortical sources of ASSRs (Kuriki et al.,
2013; Popescu et al., 2008; Schoonhoven et al., 2003; Steinmann and Gutschalk, 2011). Moreover, the
high SNR observed in these regions was consistent with the prior knowledge about auditory cortex as
the main cortical generator of ASSRs (Giraud et al., 2000; Herdman et al., 2002; Picton et al., 2003).
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The primary subcortical sources of ASSRs are located in the CN, the IC, and the MGB (Coffey et al.,
2016; Langers et al., 2005; Overath et al., 2012; Steinmann and Gutschalk, 2011). Significant ASSR
activity in these regions was also observed in the present study (Fig. 4). Detection of these sources at 4
different modulation frequencies and 2 sides of stimulation demonstrate the robust ability of the MNI
approach to detect activity of subcortical sources of ASSR.

3.3.2. Consistency of the non-primary ROIs

Using the group-ICA approach, Farahani et al. (2019) detected 4 sources beyond the auditory pathway
as non-primary sources of ASSRs. These were located in the left and right motor areas, the superior
parietal lobe and the right occipital lobe. In the present study, the ROIs labeled as LprC, RprC, LSP,
RSP,  Rocc,  and RPO, all  with significant  ASSRs,  are  consistent  in  location with  the  non-primary
sources reported by Farahani et al. (2019). 

The ROIs located in the left and the right orbito-frontal (LOF and ROF, respectively) are consistent in
location with the identified ASSR sources in the frontal lobe by Farahani et al. (2017). These sources
are also in line with the “what” path of auditory processing which is responsible for sound recognition
(Kraus and Nicol, 2005; Maeder et al., 2001; Martin, 2012).

Significant ASSR activity in the non-primary ROIs was detected for every experimental condition. This
is  in  line  with the findings  of  Farahani  et  al.  (2019) regarding the robustness  of  the  non-primary
activities across different modulation frequencies.

3.3.3. ASSR activity of the ROIs

The ASSR amplitudes (Eq. 3) of the extracted time-series were considered ASSR activity of each ROI.
For all  the primary and non-primary ROIs the ASSR activities were statistically significant (Ftest,
α=0.05, cf developing ASSR map section). The ASSR activities and standard deviations (estimated
using the Jackknife methods) of the 4 different modulation frequencies and 2 sides of stimulation for
the primary and the non-primary ROIs were summarized in Table 2 and Table 3, respectively. These
data provide the basis for further comparisons between sources to investigate the effect of modulation
frequency or side of stimulation. In the following section the activity of a cortical ROI is compared
with the activity in a subcortical ROI for low and high modulation frequencies. 

Table 2.  ASSR activity  (ASSR amplitude * 1000) and standard deviation (between brackets)  of  the primary ROIs in
response to 4, 20, 40, and 80 Hz AM stimuli and two sides of stimulation.

LAC RAC LMGB R MGB LIC RIC LCN RCN

4Hz-left 48.0
(10.6)

113.4
(27.4)

59.9
(11.1)

74.1
(13.3)

54.7
(10.5)

64.9
(11.7)

36.9
(9.4)

42.8
(9.5)

4Hz-right 103.7
(13.4)

86.0
(17.7)

71.5
(10.3)

67.0
(10.7)

60.0
(8.5)

60.0
(9.8)

33.4
(8.6)

28.8
(9.0)

20Hz-left 54.2
(17.4)

39.3
(16.5)

48.6
(14.9)

47.9
(14.1)

32.1
(13.6)

32.5
(13.5)

18.0
(8.1)

12.7
(7.6)

20Hz-right 54.6
(11.7)

73.3
(20.4)

37.6
(17.3)

71.2
(16.0)

27.3
(11.2)

50.8
(13.4)

25.8
(12.7)

32.1
(11.6)
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40Hz-left 99.9
(16.9)

82.6
(9.4)

119.8
(12.4)

131.6
(11.5)

86.3
(9.7)

90.5
(9.2)

50.1
(7.7)

47.6
(6.2)

40Hz-right 115.8
(18.8)

81.2
(16.1)

114.7
(13.9)

129.5
(14.5)

82.1
(10.9)

88.3
(10.5)

43.9
(7.4)

42.8
(7.7)

80Hz-left 26.8
(9.6)

28.6
(9.7)

39.5
(7.5)

44.3
(6.4)

32.6
(7.2)

35.8
(6.4)

24.8
(6.1)

25.5
(5.6)

80Hz-right 21.4
(7.1)

21.4
(6.1)

29.9
(5.8)

41.2
(7.7)

24.4
(5.0)

31.2
(6.7)

18.5
(4.6)

21.9
(6.0)

Table 3. ASSR activity (ASSR amplitude * 1000) and standard deviation (between brackets) of the non-primary ROIs in 
response to 4, 20, 40, and 80 Hz AM stimuli and two sides of stimulation. Abbreviations are listed in table 1.

LPrC RPrC ROF RPHC LOF ROcc RSP LSP RPCG RACG RPO

4Hz-left 30.5
(15)

35.3
(12.6)

90.7
(18.4)

79.9
(18.1)

70.1
(16.9)

65.0
(14.8)

37.9
(13.1)

51.7
(14.4)

16.1
(6.2)

38.4
(14.2)

50.9
(13.0)

4Hz-right 61.0
(14.4)

45.1
(14.1)

102.7
(14.1)

67.4
(13.4)

104.2
(14.3)

54.9
(13.5)

46.6
(15.0)

52.5
(15.4)

33.5
(16.8)

38.9
(14.9)

37.9
(14.1)

20Hz-left 51.4
(15.9)

21.2
(13.5)

75.0
(25.4)

36.3
(19.5)

59.9
(21.1)

43.8
(16.9)

28.2
(12.4)

38.4
(13.9)

52.7
(14.6)

65.1
(13.9)

32.5
(16.2)

20Hz-right 30.3
(16.8)

52.4
(13.8)

73.8
(25.1)

57.1
(16.4)

56.9
(27.1)

53.1
(16.9)

56.7
(15.2)

43.1
(12.6)

68.6
(13.9)

65.6
(15.5)

68.4
(12.7)

40Hz-left 74.4
(11.3)

75.5
(15.8)

184.3
(15.5)

90.8
(10.4)

124.3
(12.9)

114.9
(11.7)

150.4
(18.9)

111.2
(13.8)

167.3
(21.1)

147.9
(15.9)

103.1
(10.8)

40Hz-right 77.9
(19.3)

50.8
(8.2)

184.0
(19.6)

96.2
(13.8)

128.2
(18.9)

112.3
(17.3)

120.1
(14.6)

131.6
(15.4)

175.2
(27.3)

149.3
(18.5)

90.4
(19.8)

80Hz-left 20.3
(12.8)

28.6
(10.7)

27.7
(13.4)

33.1
(8.3)

16.5
(7.7)

33.8
(9.3)

49.6
(6.3)

54.2
(10)

65.3
(9.7)

30.3
(9.7)

55.0
(10.2)

80Hz-right 25.6
(8.6)

22.5
(8.4)

28.5
(11.0)

38.0
(10.2)

23.7
(9.7)

43.1
(11.2)

36.9
(10.8)

47.8
(11.5)

48.7
(12.5)

29.0
(11.9)

36.5
(7.5)

3.4. Comparison between primary sources: cortical versus subcortical

It is expected that the relative activity of cortical and subcortical sources will change depending on the
modulation frequency. Below 20 Hz the cortical sources show more activity than the sub-cortical ones,
while for higher modulation frequencies the sub-cortical sources show higher activity (Giraud et al.,
2000;  Gransier  et  al.,  2017;  Liégeois-Chauvel  et  al.,  2004;  Wong and Gordon,  2009).  In  order  to
investigate  this  behavior  for  the MNI approach,  we performed statistical  comparisons  between the
activity of AC and MGB (as cortical and subcortical sources, respectively) in response to 4 and 80 Hz
AM  stimuli  as  a  low  and  a  high  modulation  frequency,  respectively.  The  MGB was  selected  as
representative of sub-cortical sources, because it showed stronger responses than the IC and CN. 

Fig. 6 shows the ASSR amplitude of the AC and the MGB in response to 4 and 80 Hz AM stimuli
presented to the left and the right ears. The mean ASSR amplitude and the estimated standard deviation
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of the sources in the AC and thalamus (Fig. 6) were submitted to a factorial mixed analysis of variance
(FM-ANOVA) with amplitude as the dependent variable and sources (2 categories: AC and MGB),
hemisphere (2 categories: left and right), and side of stimulation (2 categories: left and right) as within-
subject variables. Afterwards, a two-sample t-test with Bonferroni correction was used for post hoc
testing. 

For  the  brain sources  of  4Hz ASSRs,  the  FM-ANOVA test  showed a  main  effect  of  source,  with
significantly higher ASSR amplitudes for the AC than for the MGB (F(1, 33) = 58.8, p < 0.001). A
significant interaction effect was observed for source and hemisphere (F(1, 33) = 13.7, p < 0.001) and
also for source and side of stimulation (F(1, 33) = 5.4, p < 0.05). Post hoc testing showed that, for left
side of stimulation, the right AC yielded significantly higher ASSR amplitudes than the right MGB (p <
0.001, Cohen's d 1.8), but the left AC yielded smaller amplitudes than the left MGB (p < 0.01, Cohen's
d 1.1). For right side of stimulation, both the left and the right ACs yielded significantly higher ASSR
amplitudes than the left MGB (p < 0.001, Cohen's d 2.6) and the right MGB (p < 0.001, Cohen's d 1.2),
respectively.
A significant main effect of source was identified for the 80 Hz ASSR with significantly higher ASSR
amplitudes for the MGB than for the AC (F(1, 32) = 118.8, p < 0.001). An interaction effect between
source and hemisphere was observed (F(1,32)=7.5, p < 0.01), but there was no significant interaction
effect between source and side of stimulation. Post hoc testing indicated that, irrespective of side of
stimulation, the ASSR amplitudes of the both left and right MGB were significantly higher than those
of the left AC (p < 0.001, Cohen's d 1.3) and the right AC (p < 0.001, Cohen's d 2.2), respectively.

Fig. 6. ASSR amplitudes of the auditory cortex (AC) and the medial geniculate body (MGB) in response to 4 and 80 Hz AM
stimuli presented to the left and the right ears. The bars are clustered per side of stimulation (left ear, right ear) and represent
the ASSR amplitude of the left and right AC and the left and right MGB (indicated by different colors). All ASSRs were
significantly different from the neural background activities (cf section 2.4.5. developing the ASSR map). The error bars
indicate the standard deviation estimated using the jackknife method (Efron and Stein, 1981). *p<0.05; ***p<0.001.
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4. Discussion

4.1. ASSR source reconstruction using the MNI approach

In the current study, we proposed an approach based on MNI for the reconstruction of ASSR sources.
This approach facilitates ASSR source analysis by developing a frequency-specific map, i.e. an ASSR
map.  The results demonstrated that the MNI approach can successfully reconstruct primary and non-
primary sources of ASSRs. In all experimental conditions (various modulation frequencies presented to
the left and the right ears), a significant ASSR activity was observed in the Heschl’s gyrus in both
hemispheres, which is located in the primary auditory cortex (Fig. 4). This result indicates that the MNI
approach is a robust method to reconstruct the primary sources from the ASSRs. The MNI method also
proved valuable to detect  non-primary sources,  thereby corroborating the results  of Farahani et  al.
(2019) which showed that non-primary sources are involved in auditory temporal processing. In the
current  study,  eleven  non-primary  ROIs  were  determined,  all  with  significant  ASSRs  for  every
experimental conditions. 

Moreover, the MNI approach was able to reconstruct the subcortical sources of ASSRs. Reconstruction
of  these  sources  provides  a  comprehensive  view  of  the  underlying  neural  generators.  Statistical
comparisons showed significantly more cortical activity than subcortical activity for low modulation
frequencies and more subcortical activity for high modulation frequencies (greater than 50 Hz). These
results were in line with previous electrophysiological ASSR studies (Alaerts et al., 2009; Gransier et
al., 2017; Herdman et al., 2002) and indicate the validity of the reconstructed subcortical activity.

4.2. Comparison between MNI and group-ICA

The fundamental distinction between the MNI and the group-ICA approach (Farahani et al., 2019) is
the use of head-model information for source decomposition. While in the group-ICA approach the
decomposition of the source ativities is only based on EEG data, in the MNI approach the activity of
sources is estimated based on a lead-field matrix obtained from the head-model.

The performance of the proposed MNI approach is compared with the group-ICA approach (Farahani
et al., 2019) in the following paragraphs, to determine the more effective approach for the purpose of
reconstructing ASSR sources.

Detection of sources in the AC

With the group-ICA approach, no source was detected in the auditory cortex in response to 20 Hz AM
stimuli, possibly because of the relatively high inter-subject variability of these sources (Farahani et al.,
2019).  However,  the  activity  in  the  auditory  cortex  in  response  to  20  Hz  AM  stimuli  can  be
reconstructed using the MNI approach (Fig. 4).  Moreover,  activity in the auditory cortex was also
reconstructed  for  80  Hz  ASSRs,  although  it  was  relatively  small  compared  to  other  modulation
frequencies. These results suggest that the MNI approach can overcome the limitations of group-ICA in
the detection of primary sources located in the AC, at some modulation frequencies. 

Reconstruction of subcortical activity

With the exception of the auditory cortex, most centers along the auditory pathway are subcortical
(Langers  et  al.,  2005;  Overath  et  al.,  2012;  Steinmann  and  Gutschalk,  2011).  As  a  result,  the
reconstruction of subcortical activity can be very informative for research on early auditory processing
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in the central auditory system. However, because of the deep location and special cell architecture of
the  subcortical  regions,  the  reconstruction  of  subcortical  activities  using  electrophysiological
measurements  can  be  problematic  (Attal  et  al.,  2009;  Attal  and  Schwartz,  2013).  Given  this
consideration, the MNI approach poses a great advantage over group-ICA for the reconstruction of
subcortical activity.

Reducing computational load

AMICA was chosen among many available  ICA algorithms for  the  implementation  of  group-ICA
(Farahani  et  al.,  2019)  because  of  its  superior  performance  in  terms  of  the  remaining  mutual
information  between  components  and  the  number  of  components  with  dipolar  scalp  projections
(Delorme et al., 2012). Applying AMICA on the concatenated data matrix of participants (with the size
of 64*17.1e6) took around 3 days with a powerful computer ("Ivy Bridge" Xeon E5-2680v2 CPU, 2.8
GHz, 25 MB level 3 cache, 32 GB RAM), while the development of the ASSR map for the MNI
approach took only 10 minutes using a normal computer (Core™ i7-4600M CPU, 2.9GHz, 4 MB level
3  cache,  16  GB RAM),  thereby indicating  a  much  lower  computational  load  than  the  group-ICA
approach.

The results of the current study demonstrate that using head-model information is beneficial and leads
to  a  better  performance  in  reconstructing  ASSR generators.  However,  it  should  be  noted  that  an
accurate  head-model  is  a  prerequisite  for  an accurate  source map.  In the current  study we used a
template  MRI to generate  the head model.  The use of  a  template  MRI for  individuals  is  a  rough
approximation and can  impose errors  into source reconstruction.  Therefore,  we used a  group-wise
framework (Farahani et al., 2019). 

5. Conclusions

In this study, a novel extension to MNI was proposed which facilitates ASSR source reconstruction by
developing the frequency-specific brain maps. The  proposed approach was capable of reconstructing
the  sources  located  outside  AC,  designated  as  non-primary  sources,  as  well  as  primary  sources,
bilaterally located in AC. The non-primary sources were consistent with those reported in the previous
studies (Farahani et al., 2019, 2017; Martin, 2012). Primary sources were consistently detected in every
experimental condition (4 modulation frequencies and two sides of stimulation) thereby demonstrating
the robustness  of  the approach. Moreover,  the MNI approach was successful  in  reconstructing the
subcortical activities of ASSRs as validated by comparing between cortical and subcortical activities, in
response to low and high modulation frequencies.

Finally, the MNI approach in our study showed a better performance than the group-ICA approach
(Farahani et al., 2019) in terms of detection of sources in the AC, reconstruction of subcortical activity
and reduction of computational load. The superior performance of this approach is most likely due to
the involvement of head-model information for the decomposition of the sources.
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