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Abstract 

A central, unsolved challenge in neuroscience is how the brain orchestrates function by organising 

the flow of information necessary for the underlying computation. It has been argued that this 

whole-brain orchestration is carried out by a core subset of integrative brain regions, commonly 

referred to as the ‘global workspace’, although quantifying the constitutive brain regions has proven 

elusive. We developed a normalised directed transfer entropy (NDTE) framework for determining 

the pairwise bidirectional causal flow between brain regions and applied it to multimodal whole-

brain neuroimaging from over 1000 healthy participants. We established the full brain hierarchy 

and common regions in a ‘functional rich club’ (FRIC) coordinating the functional hierarchical 

organisation during rest and task. FRIC contains the core set of regions, which similar to a ‘club’ of 

functional hubs are characterized by a tendency to be more densely functionally connected among 

themselves than to the rest of brain regions from where they integrate information. The invariant 

global workspace is the intersection of FRICs across rest and seven tasks, and was found to consist 

of the precuneus, posterior and isthmus cingulate cortices, nucleus accumbens, putamen, 

hippocampus and amygdala that orchestrate the functional hierarchical organisation based on 

information from perceptual, long-term memory, evaluative and attentional systems. We confirmed 

the causal significance and robustness of this invariant global workspace by systematically 

lesioning a generative whole-brain model accurately simulating the functional hierarchy defined by 

NDTE. Overall, this is a major step forward in understanding the complex choreography of 

information flow within the functional hierarchical organisation of the human brain.  
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Introduction 

Over the last decades, careful research within systems neuroscience has suggested that the brain is 

hierarchically organised in terms of anatomical structure (Bullmore and Sporns, 2012; Felleman and 

Van Essen, 1991; Hagmann et al., 2008; Markov et al., 2014; Mesulam, 1998; van den Heuvel and 

Sporns, 2011; Zamora-Lopez et al., 2010) and function (Atasoy et al., 2016; Atasoy et al., 2017; 

Buckner and DiNicola, 2019; Huntenburg et al., 2018; Margulies et al., 2016). Nevertheless, a key 

remaining challenge is to determine how precisely this hierarchical organisation allows the brain to 

orchestrate function by organising the flow of information and the underlying computations 

necessary for survival.   

 A large body of research has argued that whole brain orchestration is likely to be carried out by a 

core subset of integrative brain regions. For example, according to the classic model of Norman and 

Shallice (Norman and Shallice, 1980), this processing involves the prefrontal cortices in charge of 

the supervisory attentional regulation of lower-level sensori-motor chains. In contrast, Baars 

proposed the concept of a ‘global workspace’, where information is integrated in a small group of 

brain regions before being broadcasts to many other regions across the whole brain (Baars, 1989). 

Extending this framework, Dehaene and Changeux (1998) proposed their ‘global neuronal 

workspace’ hypothesis that associative perceptual, motor, attention, memory, and value areas 

interconnect to form a higher-level unified space where information is broadly shared and broadcast 

back to lower-level processors. Colloquially, the global workspace is thus akin to a small core 

assembly of people in charge of an organisation. Larger brain network organisation has been shown 

to be efficient, robust and largely fault tolerant (Alstott et al., 2009; Bullmore and Sporns, 2012; 

Honey and Sporns, 2008), yet the effects of lesioning such a core assembly are currently unknown. 

 Until now, a key obstacle to advancing our understanding of the human brain’s functional 

hierarchical organisation has been the lack of suitable whole-brain measurements. However, the 

advent of ‘big data’, such as Human Connectome Project (HCP) (Glasser et al., 2016b; Van Essen 

et al., 2013), has created large multimodal whole-brain neuroimaging datasets of healthy 

individuals both in resting state and whilst performing many different tasks. Potentially, the 

development of more advanced neuroimaging methods could allow for the estimation of bi-

directional flow of information between all regions across the whole brain, which could 

subsequently be used to characterise the functional hierarchical organisation of the brain.  

 If the precise characterisation of hierarchical information flow could be obtained, this would 

allow for the discovery of a core set of brain regions responsible for integration and orchestration. 

We propose here the ‘Functional Rich Club’ (FRIC) as the core set of regions, separate from the 

rest of the brain, which similar to a ‘club’ of functional hubs are characterized by a tendency to be 

more densely functionally connected among themselves than to other brain regions from where they 
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receive integrative information. This notion is related to previous static descriptions of the 

anatomical rich club (van den Heuvel and Sporns, 2011; Zamora-Lopez et al., 2010), which 

includes nodes in a network with a tendency for high-degree nodes to be more densely connected 

among themselves than nodes of a lower degree. However, FRIC is a dynamic measure based on 

bidirectional flow of information that is not constrained by anatomy and thus will change across 

different tasks. Using our colloquial example of a core assembly, for different tasks some people 

remain through all executive meetings while others are substituted in and out based on their 

expertise. In a similar manner, FRIC would include both common and task-specific brain regions as 

a result of the different flow of information for different kinds of tasks. Following the original ideas 

of Baars, we propose that the invariant ‘global workspace’ is the intersection of the different sets of 

task-related FRICs.  

 Here, we apply our novel normalised directed transfer entropy (NDTE) framework on state-of-

the-art data from over 1000 healthy HCP participants to discover the global workspace given as the 

intersection of FRICs from seven different tasks and resting condition. The NDTE framework 

provides a bidirectional causal description of the functional information flow underlying brain 

signals using a normalised version of the transfer entropy with appropriate surrogate methods and 

aggregation of p-value statistics across the many participants (see Methods).  

 Furthermore, we validate the causal significance of the invariant global workspace through 

constructing and selectively lesioning a whole-brain model that accurately simulates the empirical 

functional hierarchy and thus describes the underlying dynamical mechanisms. Systematic lesioning 

of subsets of regions in the FRIC in this model establishes the causal role of the global workspace 

in orchestrating function and allows us to characterise the efficiency and robustness. Overall, this is 

a major step forward in understanding the complex choreography of information flow within the 

functional hierarchical organisation of the human brain.  

 

Results 

The overall aim is to find the regions orchestrating the functional hierarchical organisation, 

sometimes called the ‘global workspace’ (Baars, 1989; Dehaene et al., 1998). In order to obtain 

robust results, we used multimodal neuroimaging data from 1003 normal participants (Human 

Connectome Project, HCP) whilst performing seven tasks and resting state (Glasser et al., 2016b). 

As sketched in Figure 1, this is made possible by the framework of Normalised Directed Transfer 

Entropy (NDTE), which allows for the precise characterisation of the causal flow of information 

between pairs of brain regions and consequently the estimation of the overall hierarchical 

organisation of the human brain in a given state. Furthermore, this quantitative framework can be 

used to identify the smallest core set of brain regions that integrate and orchestrate function in a 
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given task. This ‘Functional Rich Club’ (FRIC) comprises the core set of regions, which are 

separate from the rest of the brain, and which is defined as a ‘club’ of functional hubs that are 

characterized by a tendency to be more densely functionally connected among themselves than to 

other brain regions from where they receive integrative information.  

 Finally, we identify the ‘global workspace’ as the intersection of the FRIC members across tasks 

and rest. The key functional relevance of these core set of brain regions is then shown to be causal 

through creating and lesioning a mechanistic whole-brain model that can generate the NDTE flow 

during resting. Lesioning the FRIC members in this whole-brain model causes significant 

breakdown of information flow compared to lesioning non-FRIC members, attesting to the major 

significance of the global workspace in orchestrating functional organisation. 

Functional hierarchical organisation of resting  

We characterised the functional hierarchical organisation of the resting state of 1003 HCP 

participants. For this purpose, we extracted the causal bidirectional flow of information between 

brain regions using the concept of normalised directed transfer entropy (NDTE) (see Methods), 

which is an information theoretical measure of causality between two time series. This allows us to 

infer the underlying bidirectional causal reciprocal communication between any source and target 

regions. Specifically, this computes the mutual information directed flow, i.e. the predictability of a 

target in the future given the past of the source region, beyond the predictability from its own past 

(see Equation 1 in Methods). This is then normalised by the mutual information that both source 

and target have about the future of the target (see Equation 8 in Methods). At the individual level, 

we compute the statistical significance by using the circular time shifted surrogates method which 

has been shown to be particularly well-adapted to causal measurements (Quiroga et al., 2002). At 

the group level, we aggregate the p-values corresponding to each pairwise NDTE flow by using the 

Stouffer method (Stouffer et al., 1949) (see Methods).  

 We computed two matrices containing the causal NDTE flow between the regions in two 

different parcellations (see Methods). For a fine-scale parcellation, we used a modified version of 

the Glasser parcellation with a total of 378 regions (360 cortical and 18 subcortical regions) 

(Glasser et al., 2016a). For a coarser-scale parcellation suitable for whole-brain computational 

modelling, we used a modified Desikan-Killiany parcellation which included subcortical regions 

(DK80, 62 cortical regions and 18 subcortical regions) (Desikan et al., 2006; Klein and Tourville, 

2012).  

 In order to establish the hierarchical organisation, we compute the total incoming and outgoing 

information for all brain regions. More specifically, for each brain region, the total incoming flow 

of information, G��, is the sum of all sources (ie the sum over the rows in the matrix). Similarly, the 

total outgoing flow of information, G��� , is the sum over all targets (ie the sum over the columns). 
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We also compute the total information being processed in a brain region as the sum: G��� � G�� �
G��� , which is possible given that the measures have been properly normalised (see above and 

Methods). 

 We show the functional hierarchy described by each of the incoming (Gin), outgoing (Gout) and 

total (Gtot) directional information flow computed from the NDTE matrix of 1003 HCP participants 

(see Figure 1 and Methods) in the Glasser parcellation (Figure 2A) and DK80 (Figure 2D). As can 

be seen (especially in the enlarged version in Figure S1), the outgoing information flow, Gout, is 

highest in sensory areas, while incoming information, Gin, is highest in higher-order, integrative 

transmodal areas.  

 On the other hand, a popular proxy for anatomical hierarchy is the myelination of brain regions 

as measured by myelin-weighted T1w/T2w (Glasser and Van Essen, 2011), and so we render this in 

the Glasser parcellation (Figures 2B and S1) and DK80 (Figure 2E and S1). Important 

information about the driving nature of sensory areas (more myelin) and the integrative role of 

higher-order transmodal areas (less myelin) have been demonstrated from this structural 

information in recent papers (Burt et al., 2018; Demirtas et al., 2019; Margulies et al., 2016). 

However, this structural measure does not change with different tasks and is therefore unlikely to 

capture the functional dynamic changes in hierarchical organisation. 

 We provide scatterplots between the functional hierarchy (Gin, Gout and Gtot) and structural 

hierarchy (myelination) for the cortical regions in the Glasser parcellation (Figure 2C) and DK80 

(Figure 2F). The linear correlations are shown by the red line (with standard error in shaded gray) 

overlaid on the scatterplots with Glasser values: 0.29 for Gin, 0.57 for Gout and 0.63 for Gtot and 

DK80 values: 0.07 for Gin, 0.53 for Gout and 0.60 for Gtot. This shows that myelination is 

remarkably highly correlated with Gtot, and mainly driven by correlation with the outgoing flow, 

Gout. Importantly, as expected, the level of correlation is decreasing between function and structure 

for the incoming flow (the integrative measure of Gin).  

 In order to validate the results from fMRI, we also characterised the functional hierarchical 

organisation for the corresponding HCP MEG timeseries in the 62 cortical regions of the DK80 

parcellation. Attesting to robustness of the results, we found similar correlations between Gin and 

Gout from HCP MEG data and myelinisation: 0.04 for Gin (14-22Hz, window size 1000ms), 0.48 for 

Gout (22.5-30.5Hz, window size 500ms) (see Supplementary Figure S2). 

Functional hierarchy across different tasks and rest 

It is clear from these results that the measures of Gin and Gout are very different and we quantified 

the changes in the relationship between the functional hierarchy across different tasks and rest. 

Figure 3A provides cortical renderings of all seven tasks and rest of the incoming (Gin), outgoing 

(Gout) and total (Gtot) directional information flow computed from the NDTE matrix of HCP 
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participants (see Figure 1 and Methods) in the DK80 parcellation (using 3D views from the side 

and midline).  

 Quantification of the differences is provided by the correlation matrices between incoming (Gin), 

outgoing (Gout) and total (Gtot) directional information flow in the seven tasks and rest. The results 

show that there are significantly different between the hierarchy in tasks and rest for Gin (receivers), 

which reflects that different tasks process incoming information differently. On the other hand, 

outgoing flow of information (drivers) is remarkably similar across tasks, suggesting that sensory 

areas are consistently driving the information flow. Importantly, as shown in the Gtot matrix, the 

total processing of information flow is more similar within the seven tasks than compared to rest. 

Quantifying the Functional Rich Club (FRIC) in tasks and resting state 

In the structural domain, Zamora-Lopez, Van Heuvel and Sporns proposed the concept of a 

structural “rich club” (van den Heuvel and Sporns, 2011; Zamora-Lopez et al., 2010), which is 

characterized by a tendency for high-degree brain regions to be more densely connected among 

themselves than regions of a lower degree, providing important information on the higher-level 

topology of the brain network. We extended this concept to the functional domain by defining the 

concept of a functional rich club (FRIC), which crucially is not static but changes between tasks and 

rest (see above and Methods).  

 We computed the NDTE matrices for the DK80 parcellation for all seven tasks (emotion, 

gambling, language, motor, relational, social, working memory) and resting state for the HCP 

participants. This allows us to compute the ‘Functional Rich Club’ (FRIC) as the set of regions, 

separate from the rest of the brain, that define a ‘club’ of functional hubs characterized by a 

tendency to be more densely functionally connected among themselves than to other brain regions 

from where they receive integrative information (see Methods). Figure 4A shows that the 

functional rich clubs across tasks and rest contain similar but not identical core regions.  

Quantifying the Global Workspace 

We quantified the Global Workspace (GW), which is defined by the intersection of FRIC members 

across all possible tasks and resting state. The HCP data provides resting data as well as seven very 

different tasks, which we used to provide a reliable estimate of the GNW. Figure 4B plots a 

rendering of the cortical and subcortical regions in the GNW.  

 We found that the intersecting FRIC members for all seven tasks and rest are the following six 

brain regions: left precuneus, left nucleus accumbens, right hippocampus, right amygdala, left and 

right isthmus cingulate. Searching for a less restrictive definition, we further lowered the threshold 

to include areas only common to six tasks and rest, adding the left putamen and further lowering to 

five tasks, which added the left posterior cingulate. Even more we found that lowering the threshold 
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to four tasks added the right posterior cingulate, while common to three tasks added right nucleus 

accumbens and right precuneus. The results point to a remarkable stable, non-lateralised core of 

brain regions necessary in the global workspace. 

Establishing causal significance of FRIC by lesioning whole-brain model 

Still, this quantification is not causal and we wanted to establish the causal mechanistic functional 

relevance of the FRIC brain regions orchestrating functional hierarchical organisation of the resting 

state. So we created a whole-brain model that can generate the effective connectivity underlying the 

functional hierarchy and subsequently be manipulated (see Methods). Figure 5A shows the general 

framework of how this model uses optimised anatomically-constrained parameters (generative 

anatomically-constrained bidirectional connectivity, GABIC) to describe the effective strength of 

the synaptic coupling to fit the NDTE matrix by maximising the empirical and simulated NDTE 

matrices. The NDTE matrix is a strong measure of the effective connectivity in the brain and 

consequently GABIC is a matrix generating this effective connectivity rather than the effective 

connectivity per se. Optimising the model using a particle swarm optimizer (see Methods) was 

computationally very demanding but we managed to find a very good fit with a correlation between 

empirical and model-generated NDTE matrices of 0.6. Please note that given that NDTE matrix is 

bidirectional and the GABIC matrix is therefore also asymmetric. Importantly, the GABIC matrix 

does not correlate with the NDTE matrix (correlation of only 0.01), demonstrating the complex 

non-linear relationship between the generative parameters and the effective connectivity as 

measured by NDTE. NDTE correlated 0.49 with the static functional connectivity, demonstrating 

that there is complementary information in the causal information flow measure of NDTE thus 

further constraining the whole-brain modelling.  

 Here, we used the whole-brain model to ascertain the causal significance of the FRIC regions in 

resting state. Figure 5B shows the result of lesioning all FRIC compared to non-FRIC members in 

the whole-brain model, which causes very significant breakdown in information flow. When 

measuring this in terms of correlation between empirical and simulated NDTE matrices we found 

that this impacts highly significantly the fitting when FRIC members are lesioned (p<10-30) 

compared to the lesioning of non-FRIC members. Furthermore, in Figure 5C, we show the 

significant consequences of detecting significant differences in the number of FRIC members 

detected when lesioning the original empirical FRIC members compared to empirical non-FRIC 

members (p<10-30). This is strong causal evidence for the major significance of FRIC in 

orchestrating functional organisation. 
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Alternative measure of functional hierarchy 

Finally, we were inspired by the careful neuroanatomical research by Markov and colleagues to 

define a similar measure of feedforward and feedback organisation but here for the functional 

domain (Felleman and Van Essen, 1991; Markov et al., 2013; Markov et al., 2014) (see Methods). 

However, as can be seen in Figure S3, this FF Hierarchy measure is only weakly discriminatory 

between the seven tasks – and only weakly correlated with G��, the integrative measure of incoming 

information flow.  

 

Discussion 

The major advance over the last couple of years in acquiring large multimodal neuroimaging 

datasets (‘big data’) is finally making it possible to address large, challenging problems in systems 

neuroscience (Alfaro-Almagro et al., 2018; Glasser et al., 2016b; Poldrack and Gorgolewski, 2014). 

A key open problem is how best to characterise the functional hierarchical organisation of whole-

brain dynamics to understand the orchestration of brain processing. Here, we applied our novel 

Normalised Directed Transfer Entropy (NDTE) framework to over 1000 participants from the 

Human Connectome Project (HCP) (Van Essen et al., 2013). This provided the precise 

characterisation of the causal flow of information between pairs of brain regions and consequently 

the estimation of the overall hierarchical organisation of the human brain in resting state and across 

seven tasks. This revealed the functional rich club (FRIC) organisation of a core group of brain 

regions changing with task and rest. Crucially, this advance allowed us to discover the core regions 

in the ‘global workspace’ (Baars, 1989; Dehaene et al., 1998) as the common FRIC regions 

invariant across task and rest. 

Discovering the Global Workspace 

The global workspace was found to consist of a core subset of brain regions including the 

precuneus, posterior and isthmus cingulate, nucleus accumbens, putamen, hippocampus and 

amygdala. This core functional ‘club’ of integrative brain regions is remarkably consistent with the 

original proposal by Dehaene and Changeux (Dehaene et al., 1998), which suggests that the global 

neuronal workspace must integrate past and present through focusing and evaluation. Indeed, the 

authors propose that associative perceptual, motor, attention, memory, and value areas interconnect 

to form a higher-level unified space. For the integration of the past, the hippocampus has been 

shown to play a key role in many aspects of memory (see for example (Eichenbaum et al., 2007; 

Scoville and Milner, 1957; Squire et al., 2004)). Similarly, the evaluation of value has been shown 

to involve the nucleus accumbens (e.g. (Berridge and Kringelbach, 2008; Berridge and Robinson, 

2003; Haber and Knutson, 2010)), putamen (e.g. (Di Martino et al., 2008; Haber and Knutson, 
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2010)) and the amygdala (e.g. (Haber and Knutson, 2010; LeDoux, 2003; Schoenbaum et al., 2003; 

Swanson and Petrovich, 1998; Zald and Pardo, 1997)). The integration of the past, present and 

future by processing and attending perceptual information has been strongly associated with the 

precuneus (e.g. (Cavanna and Trimble, 2006; Margulies et al., 2009; Northoff and Bermpohl, 

2004)) and the posterior and isthmus cingulate cortices (e.g. (Haber and Knutson, 2010; Leech and 

Sharp, 2014; Mesulam, 1999; Northoff and Bermpohl, 2004; Paus, 2001)). Interestingly, the 

functions of the precuneus have also been shown to be compromised in coma and vegetative state 

(Laureys et al., 2004). 

 The definition of the global workspace proposed here follows the original ideas of Baars’ 

cognitive theory of consciousness, which distinguishes a vast array of unconscious specialised 

processors running in parallel, and a single limited-capacity serial “global workspace” that allows 

them to exchange information (Baars, 1989). The subsequent development by Dehaene and 

Changeux (Dehaene and Changeux, 2005) of this theory into the global neuronal workspace 

includes a further “ignition” component capturing the strong temporary increase in synchronized 

firing leading to a coherent state of activity. The transition to this state of high correlated activity is 

very fast and leads to amplification of local neural activation and the subsequent ignition of 

multiple distant areas. We have not studied ignition here since the fast timescale (typically about 

100-200 ms) is difficult to capture with fMRI – although we have recently shown that such fast 

timescales can be reconstructed using appropriate whole-brain modelling (Deco et al., 2019b). Yet, 

the potential role of ignition in initiating and sustaining FRIC and the global workspace should 

clearly be further investigated in future studies using for example MEG.  

 

Causal evidence for importance of FRIC regions 

Importantly, as a further proof of causal significance of the core FRIC regions, we built and 

lesioned a whole-brain model that can generate effective connectivity obtained using our NDTE 

framework (see Figure 5 and Methods). We found that lesioning ten FRIC regions for the resting 

state very significantly impaired the flow of information and the ability to form new FRIC among 

the remaining brain regions. This causally establishes the full FRIC network as having a key 

integrative role in orchestrating functional hierarchical organisation. Furthermore, we found that 

this FRIC network is fairly fault tolerant in that lesioning four FRIC members were not significantly 

different from lesioning four non-FRIC members. However, lesioning five FRIC compared to five 

non-FRIC members did lead to significantly different information flow. This suggests that there is a 

tipping point where the breakdown of information flow in the FRIC leads to significant problems. 

As such, the partial breakdown of FRIC members could be a significant factor in the transitioning to 

neuropsychiatric disorders (Deco and Kringelbach, 2014). In particular the specific breakdown of 
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the integration of the evaluative system related to self-processing (precuneus, nucleus accumbens, 

putamen and cingulate cortices) and could lead to the anhedonia, the lack of pleasure, which is a 

major symptom of neuropsychiatric disease (Berridge and Kringelbach, 2015; Kringelbach, 2005). 

Implications for elucidating functional brain hierarchy 

A long history of neuroanatomical discoveries has demonstrated that the brain is clearly hierarchical 

in its structure from single units to the larger circuits (Bullmore and Sporns, 2012; Felleman and 

Van Essen, 1991; Hagmann et al., 2008; Markov et al., 2014; Mesulam, 1998; van den Heuvel and 

Sporns, 2011; Zamora-Lopez et al., 2010). Research by Margulies and colleagues (Margulies et al., 

2016) have used neuroimaging to extend Mesulam’s seminal proposal that brain processing is 

shaped by a hierarchy of distinct unimodal areas to integrative transmodal areas (Mesulam, 1998). 

Recently, this idea has been further extended by applying the principle of harmonic modes to 

functional connectivity HCP data (Glomb et al., 2019). This revealed hitherto unknown principle 

unifying the gradiental and modular aspects and revealing the multi-dimensional hierarchical nature 

of brain organisation.  

 Here, we have developed the novel NDTE framework for discovering the functional hierarchical 

organisation of the human brain. We have demonstrated that this can be used to characterise the 

FRIC corresponding to the core integrative transmodal brain regions allowing for the necessary 

whole-brain cohesion (as shown by the cartoon in a simplified 2D representation in Figure 1C). As 

shown in Figure 2, the outgoing information flow (drivers), ����, reflects mostly the unimodal 

sensory regions, where the incoming information flow (integrative receivers), �	
 , reflects the 

higher-order transmodal regions.  

 The results using the NDTE framework confirm and extend previous neuroanatomical findings 

of the static anatomical hierarchy measuring through cortical myelination and in particular the 

neuroimaging measure of weighted T1w/T2w maps (Glasser and Van Essen, 2011) as a useful 

proxy for hierarchy (Burt et al., 2018; Demirtas et al., 2019; Margulies et al., 2016). The results 

show that the NDTE framework can capture this static myelination hierarchy (Figure 2 and S1). 

Specifically, we found that the sum of incoming and outgoing flow of information, ����, correlates 

very highly with the T1w/T2w maps in both the Glasser and DK80 parcellations. Using causal 

measures of timeseries have had a long history and there have been considerable arguments in the 

literature as to the appropriateness of using these on BOLD timeseries due to the potential impact of 

the variability of the haemodynamic response across brain regions (David et al., 2008; Friston, 

2009; Smith et al., 2011). Nevertheless, it has also been demonstrated that causal timeseries 

methods perform much better with sufficiently fast sampling and low measurement noise (Seth et 

al., 2013). This is the case with the state-of-the-art HCP data with a fast TR of 0.78 seconds, 
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providing excellent subsampling of the haemodynamic response function, and thus mitigating the 

potential problems with poor subsampling with long TR that can lead to problems with spurious 

and undetectable causality, as well as distortion of relative strengths.  

 Still, we also confirmed the results by applying the NDTE framework to MEG timeseries from 

the 62 cortical regions of the DK80 parcellation, and demonstrating similarly high correlations with 

myelination (Figure S2). This clearly demonstrates the robustness of the NDTE framework for both 

haemodynamic and direct electromagnetic measures of brain activity.  

 The NDTE framework includes suitable normalisation, surrogates and p-value aggregation 

across large number of participants (see Methods), which contribute to robustness of the method. 

Indeed, the high correlation between myelination and the total incoming and outgoing information 

flow, ����, obtained for both BOLD and MEG, provides strong empirical evidence and confidence 

in the highly meaningful results. 

 Complementary to the measures of causal connection strength, we also designed another 

hierarchical measurement inspired by the seminal GLM method of computing the fraction of 

feedforward and feedback organisation originally developed in neuroanatomy (Felleman and Van 

Essen, 1991; Markov et al., 2013; Markov et al., 2014). Figure S3 shows that this FF Hierarchy 

measure is highly correlated with itself across the seven tasks and rests. In contrast this measure 

correlates only very weakly with �	
, the integrative measure of incoming information flow. This is 

expected given that FF hierarchy is an ordered measure of the fraction of feedforward and feedback 

connections. As such this is not as useful for establishing the full hierarchical organisation as the 

other NDTE flow measures. 

Causal confirmation using novel generative whole-brain model 

Traditionally, whole-brain models have been relatively successful in linking structural connectivity 

with functional dynamics (Breakspear, 2017; Deco and Kringelbach, 2014). This has revealed 

important new mechanistic principles of brain function (Deco et al., 2018; Deco et al., 2019a; Deco 

et al., 2019b; Deco et al., 2017e; Honey et al., 2007). Nevertheless, the present causal 

characterisation of whole-brain information flow offers a new avenue for generating even more 

useful models. We have created a generative whole-brain model that can recreate the causal 

information flow in terms of the NDTE matrix. In other words, our second order model using 

GABIC to describe the generators accounting for the causal influence of one neural system over 

another.  

 Crucially, this whole-brain model was used to systematically test the robustness and fault 

tolerance of the empirically extracted FRIC members. Lesioning all FRIC compared to non-FRIC 

members causes very significant breakdown in information flow (p<10-30).  This provides causal 

mechanistic evidence for the importance of the FRIC members in orchestrating the complex 
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choreography of information flow within the functional hierarchical organisation of the human 

brain.  

Conclusion 

The findings presented here help shed new light on a major unsolved problem in neuroscience 

which is to characterise the functional hierarchical organisation of whole-brain dynamics 

underlying the orchestration of information across the whole-brain. Crucially, this enabled us to 

discover the core regions of the global workspace across task and rest. The brain regions identified 

corresponds remarkably well to the predictions made by Changeux and Dehaene of higher-level 

unified space which is well suited for integrating past and present through focusing and evaluation. 

While the results presented here pertain only to the global workspace of conscious processing, 

future work could use the NDTE framework to investigate other states such as sleep and 

anaesthesia. Such further investigations could potentially allow for a direct comparison between the 

global workspace theory with other theories of consciousness such as the Integrated Information 

Theory (Tononi et al., 1994) and the Temporo-spatial Theory of Consciousness (Northoff, 2013). 

Equally, the NDTE framework could be used to investigate unbalanced brain states in 

neuropsychiatric disorders. Importantly, given that such investigations would be using a generative 

whole-brain model, this could subsequently be used to perturb and rebalance the model to discover 

novel optimal, causal paths to health (Deco et al., 2017a; Deco et al., 2019a; Deco and Kringelbach, 

2014). 
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Methods 

Neuroimaging data acquisition, preprocessing and timeseries extraction 

Ethics 

The Washington University–University of Minnesota (WU-Minn HCP) Consortium obtained full 

informed consent from all participants, and research procedures and ethical guidelines were 

followed in accordance with Washington University institutional review board approval. 

Participants 

The data set used for this investigation was selected from the March 2017 public data release from 

the Human Connectome Project (HCP) where we chose a sample of 1003 participants. From this 

large sample we further chose to replicate in the smaller subsample of 100 unrelated participants 

(54 females, 46 males, mean age�=�29.1�+/-�3.7 years). This subset of participants provided by 

HCP ensures that they are not family relatives, and this criterion was important to exclude possible 

identifiability confounds and the need for family-structure co-variables in the analyses. 

Neuroimaging acquisition for fMRI HCP  

The 1003 HCP participants were scanned on a 3-T connectome-Skyra scanner (Siemens). We used 

one resting state fMRI acquisition of approximately 15 minutes acquired on the same day, with eyes 

open with relaxed fixation on a projected bright cross-hair on a dark background as well as data 

from the seven tasks. The HCP website (http://www.humanconnectome.org/) provides the full 

details of participants, the acquisition protocol and preprocessing of the data for both resting state 

and the seven tasks. Below we have briefly summarised these. 

Neuroimaging acquisition for dMRI HCP  

Diffusion spectrum and T2-weighted imaging data from 32 participants in the Human Connectome 

Project (HCP) were obtained from the HCP database. The acquisition parameters are described in 

details on the HCP website (Setsompop et al., 2013).    

Neuroimaging acquisition for MEG HCP 

We used the human non-invasive resting state magnetoencephalography (MEG) data publicly 

available from the Human Connectome Project (HCP) consortium, acquired on a Magnes 3600 

MEG (4D NeuroImaging, San Diego, USA) with 248 magnetometers. The resting state data consist 

of 89 subjects (mean 28.7 years, range 22-35, 41 f / 48 m, acquired in 3 subsequent sessions, lasting 

6 minutes each).  
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The HCP task battery of seven tasks 

The HCP task battery consists of seven tasks: working memory, motor, gambling, language, social, 

emotional, relational, which are described in details on the HCP website (Barch et al., 2013). HCP 

participants performed all tasks in two separate sessions (first session: working memory, gambling 

and motor; second session: language, social cognition, relational processing and emotion 

processing). 

 

Neuroimaging structural connectivity and extraction of functional timeseries 

Parcellations 

All neuroimaging data was processed using two standard cortical parcellations with added 

subcortical regions. For a fine-scale parcellation, we used the Glasser parcellation with 360 cortical 

regions (180 regions in each hemisphere) (Glasser et al., 2016a). We added the 18 subcortical 

regions, ie nine regions per hemisphere: hippocampus, amygdala, subthalamic nucleus (STN), 

globus pallidus internal segment (GPi), globus pallidus external segment (GPe), putamen, caudate, 

nucleus accumbens and thalamus. This created a parcellation with 378 regions: Glasser378 

parcellation, which is defined in the common HCP CIFTI grayordinates standard space with a total 

of 91,282 grayordinates (sampled at 2 mm3).  

 For a coarser-scale parcellation, we used the Mindboggle-modified Desikan-Killiany parcellation 

(Desikan et al., 2006) with a total of 62 cortical regions (31 regions per hemisphere) (Klein and 

Tourville, 2012). We added the same 18 subcortical regions mentioned above (9 regions per 

hemisphere) and ended up with 80 regions in the DK80 parcellation; also precisely defined in the 

common HCP CIFTI grayordinates standard space.  

Generating structural connectivity matrices from dMRI 

We used the state-of-the-art preprocessed dMRI data from 32 HCP participants available as part of 

the freely available Lead-DBS software package (http://www.lead-dbs.org/). The precise 

preprocessing is described in details in Horn and colleagues (Horn et al., 2017) but briefly, the data 

was processed using a generalized q-sampling imaging algorithm implemented in DSI studio 

(http://dsi-studio.labsolver.org). Segmentation of the T2-weighted anatomical images produced a 

white-matter mask and co-registering the images to the b0 image of the diffusion data using 

SPM12. In each HCP participant, 200,000 fibres were sampled within the white-matter mask. 

Fibres were transformed into MNI space using Lead-DBS (Horn and Blankenburg, 2016). We 

subsequently used the standardized methods in Lead-DBS to produce the structural connectomes 

for both the Glasser378 and DK80 parcellations 
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Preprocessing and extraction of functional timeseries in fMRI resting state and task data 

The preprocessing of the HCP resting state and task datasets is described in details on the HCP 

website. Briefly, the data is preprocessed using the HCP pipeline which is using standardized 

methods using FSL (FMRIB Software Library), FreeSurfer, and the Connectome Workbench 

software (Glasser et al., 2013; Smith et al., 2013). This preprocessing included correction for spatial 

and gradient distortions and head motion, intensity normalization and bias field removal, 

registration to the T1 weighted structural image, transformation to the 2mm Montreal Neurological 

Institute (MNI) space, and using the FIX artefact removal procedure (Navarro Schroder et al., 2015; 

Smith et al., 2013). The head motion parameters were regressed out and structured artefacts were 

removed by ICA+FIX processing (Independent Component Analysis followed by FMRIB’s ICA-

based X-noiseifier (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014)). Preprocessed timeseries 

of all grayordinates are in HCP CIFTI grayordinates standard space and available in the surface-

based CIFTI file for each participants for resting state and each of the seven tasks. 

 We used a custom-made Matlab script using the ft_read_cifti function (Fieldtrip toolbox 

(Oostenveld et al., 2011)) to extract the average timeseries of all the grayordinates in each region of 

the Glasser and DK80 parcellations, which are defined in the HCP CIFTI grayordinates standard 

space. 

Preprocessing and extraction of MEG data timeseries 

For each participant, the MEG data were acquired in a single continuous run comprising resting 

state. As a starting point we used the ‘preprocessed’ MEG data from the HCP database. At this level 

of preprocessing, removal of artefactual independent components, bad samples and channels have 

already been performed (Larson-Prior et al., 2013). We then subjected the preprocessed data to 

bandpass filtering (1-48Hz, Butterworth) and LCMV beamforming (using beamforming routines 

from the Matlab based Fieldtrip toolbox (Oostenveld et al., 2011)), which is downsampled to 200 

Hz and resulted in 5798 virtual source voxels (with 8mm grid resolution). We extracted timecourses 

from the 62 cortical regions of the DK80 parcellation. All resting state runs for a participant were 

acquired in a single session and we concatenated the resting state runs for each participant, and 

applied a single beamformer, parcel time-course extraction and spatial leakage reduction. 

Neuroimaging analysis tools and methods 

Normalized Directed Transfer Entropy (NDTE) 

In order to establish and to investigate the functional hierarchical organisation of whole-brain 

activity we need first to characterize how different brain regions communicate between each other, 

i.e. compute the directed flow between regions. We characterize the functional interaction between 

two brain regions, in a given parcellation, by an information theoretical statistical criterion that 
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allows us to infer the underlying bi-directional causal reciprocal communication. Let us assume that 

we want to describe the statistical causal interaction exerted from a source brain area X to another 

target brain area Y. We aim to measure the extra knowledge that the dynamical functional activity 

of the past of X contribute to the prediction of the future of Y, by the following mutual information: 

 

���	��; 		|�	� � ���	��|�	� 
 ���	��|		 , �	�    (1) 

 

where Yi+1 is the activity level of brain area Y at the time point i+1, and Xi indicates the whole 

activity level of the past of X in a time window of length T up to and including the time point i (i.e. 

Xi=[Xi Xi-1 … Xi-(T-1)]). Note that this causality measure is not symmetric, i.e. allows bidirectional 

analysis. The conditional entropies are defined as follows: 

 

���	����	� � ���	��, �	� 
 ���	� 

                     � 
 ∑ ���	��, �	�log ����	��|�	��
���,

�     (2) 

 

���	���		 , �	� � ���	��, �	 , 		� 
 ��		 , �	� 

                            � 
 ∑ ���	��, �	 , �	�log ����	��|�	 , �	��
���

�,��            (3) 

 

The mutual information I(Yi+1; Xi|Yi) expresses the degree of statistical dependency between the 

past of X and the future of Y. In other words, if that mutual information is equal to zero, then the 

probability ���	��, 		��	� � ���	��|�	�. ��		|�	�  and thus we can say that there is no causal 

interaction from X to Y.  

 Consequently I(Yi+1; Xi|Yi) expresses a strong form of Granger causality (Granger, 1980), by 

comparing the uncertainty in �	�� when using knowledge of only its own past �	  or the past of both 

brain regions, i.e. 	 	, �	 . This information-theoretical concept of causality was introduced in 

neuroscience by Schreiber (2000) and is usually called Transfer Entropy (Brovelli et al., 2015; 

Chicharro and Ledberg, 2012; Vicente et al., 2011; Wibral et al., 2014). In order to facilitate 

computation, Brovelli et al. (2015) proposed a weaker form of causality allowing calculation of the 

involved entropies by just considering a Gaussian approximation, i.e by considering only second 

order statistics.  Indeed, under this approximation, the entropies can be computed as follows: 
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In other words, causality is based only on the corresponding covariance matrices.  

 In order to be able to sum and compare the directed mutual information flow between different 

pairs of brain regions, this has to be appropriately normalised. In fact, if the mutual information 

directed flow is correctly normalized then the different values could be combined for example to 

know the total directed flow exerted by the whole brain on a single region or vice versa, the directed 

flow exerted by a single brain region on the whole brain. More specifically, we define this 

information theoretical measure as normalised directed transfer entropy (NDTE) flow: 

 

# � ���	��; 		|�	�/���	��; 		 , �	�      (8) 

 

where ���	��; 	 	 , �	� is the mutual information that the past of both signal together, 		 , �	 , has 

about the future of the target brain region �	��. Given that, 
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this normalisation compares the original mutual information directed flow, i.e. the predictability of 

�	�� by the past of 		|�	 with the internal predictability of �	��, i.e. ���	��; �	�. 

 Furthermore, in order to perform a solid and robust statistical significance analysis of the NDTE 

flow, #, we use the surrogate framework, inspired by the work of Theiler and colleagues (Theiler et 

al., 1992). This traditional surrogate methodology uses a phase randomisation of the Fourier 

transform of the original data in order to preserve the linear correlations. Nevertheless, as discussed 

and analysed rigorously in Diks and Fang (Diks and Fang, 2017); these methods are not suitable for 

detecting significance when using entropy measures, as discussed extensively (Faes et al., 2008; 

Hinich et al., 2005). In view of these problems, Quiroga and colleagues proposed the circular time 

shifted surrogates method, which is a robust method using surrogates that can be used for causality 

measurements (Quiroga et al., 2002). Hence, we use this methodology for analysing the p-values of 

the hypothesis testing, aiming to detect significant values in #  for each pair for each single 

participant. For each statistical test (i.e. each pair of regions and each subject), we generate 100 

independent circular time-shifted surrogates by separately resampling both the driving signal X and 

the target response signal Y. Specifically, two independent random integers c and d are randomly 

generated within the interval [0.05n 0.95n] (where n is the number of time point in the time series 
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signal). Then the circular time-shift is performed by moving the first c values of 	 � %	�, … , 	
' to 

the end of the time series which creates the surrogate sample 	 � %	���, … , 	
, 	�, … , 	�', and 

similarly for Y the first d values of � � %�� , … , �
' are moved to the end of the time series to create 

the surrogate sample � � %����, … , �
 , �� , … , ��'.  
 This type of surrogates does not assume Gaussianity and preserves the whole statistical structure 

of the original time series. We use a nonparametric kernel distribution representation of the 

probability density function of the surrogate values of #, and compare the fraction of area of that 

distribution above the value of the NDTE flow of the original data, #��	�	
��, to the total area, and 

compute the corresponding p-value. 

  After computing the individual p-values for each brain region pairs and each single participant, 

we aggregate the p-values for each single pair of brain areas across the whole group of participants. 

The combination of different p-values across subjects is a classical problem in statistics that was 

originally addressed by Ronald Fisher in what nowadays is known as Fisher’s method (Fisher, 

1925). Here, we used a more sensitive methodology, namely the Stouffer’s method (Stouffer et al., 

1949) which sums the inverse normal transformed p-values. Indeed, the Stouffer’s statistics is given 

by 

 

( � ∑ Φ����	�	��        (10) 

 

where Φ  is the standard normal cumulative distribution function, and �	  the p-values of each 

participant i (computed for a given pair). Under the null hypothesis, the Stouffer’s statistics is 

normal distributed N(0,m), being m the total number of participants. After the aggregation of the 

pairs of p-values across participants, we correct for multiple comparisons by using the traditional 

False Discover Rate method of Benjamini and Hochberg (Benjamini and Hochberg, 1995). 

 The result of the significance test across participants determines a binary matrix T (with 

dimension number of brain regions in a given parcellation) that indicates with ones or zeros if the 

corresponding pair is significant or not (rows indicates target regions and columns driving regions). 

In fact, we can define now with this matrix T, the broadness of incoming or outgoing information 

for each brain area i by *	
�+� � ∑ "	�� , and *����+� � ∑ "�	� , respectively. The broadness of the 

incoming or outgoing information is the number of areas that drives or that are influenced 

significantly across participants by a single specific brain region. 
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Functional Hierarchical Organisation 

Using the above methods describing NDTE flow, we can establish and study the functional 

organisation of data where the different levels of directed flow to and from a given brain region i 

are given �	
�+�, �����+�, and �����+�. 

 Our analysis of functional relevance and hierarchy is based on the resulting averaged NDTE 

flow, #���, across participants. We define for each brain region i the incoming level of directed flow, 

i.e. the degree of being a receiver, by �	
�+� � ∑ #���	�� . Similarly, for each brain region i the 

outgoing level of NDTE flow, i.e. the degree of being a driving region, by �����+� � ∑ #����	� . The 

total level of functional interaction for each brain region i is thus given by �����+� � �	
�+� �
�����+�. 

Functional Rich Club (FRIC) 

We define the functional rich club (FRIC) in a matrix  #��� with N regions, by running a simple 

algorithm that searches for the largest subset of regions , � %+� , . . , +�' , where ������,�  is 

significantly larger than all other sets with the same number of regions: 

 ������,� � ∑ #���  � ∑ �	
�,� 
 ∑ �����,�   (12) 

Using a more detailed notation, the equation can be further expressed as  
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where 2 is the total number of regions.  

Similarly, the second term, i.e. the sum of �	
, can be expressed as  
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Thus, taken together, Equation 12 can also be written as  

������,� � / 0/ #���	�
�

	��


 / #���	�
!

	����

1
�

���

� / / #���	�
!

�����

�

	��

 

Where the first term describes the difference between the information flow of each member of the 

subset to the other members in the subset compared with the information flow outside the subset. 

The second term describes the information flow that each member of the subset receives from 

outside. 
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 As can be appreciated from the combinatorics, for a matrix  #���  with more than just a few 

regions, it is computationally very demanding to exhaustively compute the optimal solution. 

However, it is also clear from the definition that the FRIC for a given set of regions are likely to be 

found from the regions with highest level of incoming directed flow (�	
). So we created the 

following algorithm: Sort the regions according to �	
  and then iteratively computed �����  for 

progressively more l regions. Statistical significance was computed by replacing a random region of 

the k regions with any of the remaining regions using a Monte Carlo framework. 

Defining hierarchy using GLM 

In the literature, hierarchy has traditionally been proposed using neuroanatomy and specifically the 

anatomical hierarchical ordering based on the different structure of feed-forward and feedback 

connections across the brain (Barone et al., 2000; Felleman and Van Essen, 1991). Based on this, 

Markov and colleagues defined a framework for assigning hierarchical values to each region in 

such a way that the difference of the hierarchical values in two brain regions predicts the fraction of 

feed-forward connections coupling those two brain regions (Markov et al., 2013; Markov et al., 

2014). In fact, they proposed to use the Supragranular Layer Neurons (SLN) index defined as the 

fraction of projections originated in the supragranular layer of the source area to the target area 

divided by the total number of projections between the SLN of projections. This idea was based on 

the observations of Felleman and Van Essen (1991) and Barone et al. (2000) that in the visual 

system, feed-forward projections directed from early visual areas to higher-order areas tend to 

originate in the supragranular layers of the cortex and terminate in layer 4, whereas, projections 

from higher-order areas to early visual areas originate in the infragranular layers and terminate 

outside of layer 4.  

 Our framework of computing the NDTE flow (see above) allows us to extend these seminal 

ideas to the functional level. Instead of using the anatomically based SLN index, we can use the 

fraction of functional feed-forward causal connections with respect to the total number of 

connections, feed-forward and feedback, between two brain regions. Consequently, we assign a 

functional hierarchical value H to each brain region such that the difference of the corresponding 

values between two brain regions predicts the functional fraction of direct connections from one 

source region i to another target region j. We use a generalized linear model to establish this 

prediction, as follows: 

 

"�����
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where the left hand is the fraction of feedforward connections respect to the total, 3�� is a logistic 

regression function (which correspond to fitting a Generalized Linear Model (GLM) with a 

binomial family (McCullagh and Nelder, 1989), and �	 and �� are the functional hierarchical values 

inferred for brain regions i and j. In order to establish a reference point, we assigned a hierarchy 

value of zero to the last parcel. 

Whole-brain model of NDTE flow 

The main aim of whole-brain modelling is to infer the causal dynamical mechanisms generating the 

observed empirical spatiotemporal dynamics. Here, we would like to estimate the generators 

underlying the empirical spatiotemporal dynamics in terms of the causal relationships between the 

different brain regions, i.e. the NDTE flow. Specifically, the whole-brain model will link the 

structural anatomy (given by the dMRI data) with the functional dynamics (given by the fMRI data) 

by adapting the free parameters, i.e. the generators to provide the optimal fit between the simulated 

and empirical NDTE flow. The generators are internal parameters describing the local dynamics of 

a brain region, such as noise and latency, as well as the strength of the synaptic conductivity of 

connections between different brain areas linked by the anatomical fibres. We call the matrix of the 

generative conductivities of the existing anatomical fibres for “Generative Anatomically-

constrained BIdirectional Connectivity” (GABIC).  

 The GABIC matrix is estimated from the NDTE flow, which is bi-directional, and is therefore 

asymmetric. This is unlike the anatomical matrix extracted by dMRI tractography which is un-

directional. Importantly, GABIC is defined as the generators accounting for the causal influence of 

one neural system over another.  

 While there is a large literature on the dynamic causal modelling of effective connectivity within 

and among local neuronal (mass) models, the nonlinear and emergent dynamical properties of these 

systems have yet to be explored thoroughly. Previous models used the unidirectional structural 

connectivity (SC) to reproduce FC (Deco et al., 2011; Deco and Kringelbach, 2014) and a common 

global conductivity value meaning that only the scaling factor is optimized. In other words, the 

scaling factor is a global coupling parameter expressing the conductivity of all fibers equally. In 

contrast, another possibility is to tune network connections individually (but not independently), 

which requires a dedicated estimation procedure (Gilson et al., 2016). This corresponds to the 

concept of effective connectivity (EC) (Friston, 2011), which describes how network nodes excite 

or inhibit each other for a given model of local dynamics. EC thus describes causal interactions 

whose effects are modulated by the local dynamic regime of the node, which may shape FC in a 

complex fashion (Park and Friston, 2013): two areas may be significantly correlated (in FC) 

although disconnected (EC=0) when strong indirect pathways connect them (i.e., large network 
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effect). Biologically, EC measures the strengths of connections, which depend not only on 

anatomical properties embodied in SC values (connection densities), but also on heterogeneities in 

synaptic receptors or neurotransmitters. Gilson and colleagues provided a solution for estimating 

EC from fMRI FC with information about the directed connectivity at the whole-brain level 

(divided in a parcellation of 70 brain regions with a couple of thousands connections to tune).  

 Here, we significantly extend existing models by using a more powerful bidirectional measure, 

namely the NDTE flow that properly captures the underlying spatiotemporal dynamical causal 

mechanisms, and thus not correlations or timeshifted correlations. For that we use a recent 

successful model, namely the Hopf whole-brain model (Deco et al., 2017c), in combination with a 

powerful non-gradient based global optimization algorithm, namely the particle swarm 

optimization. 

 Briefly, in the following we describe how whole-brain models aim to balance between 

complexity and realism in order to describe the most important features of the brain in vivo (Cabral 

et al., 2017). This balance is extremely difficult to achieve because of the astronomical number of 

neurons and the underspecified connectivity at the neural level. The emerging collective 

macroscopic dynamics of brain models use mesoscopic top-down approximations of brain 

complexity with dynamical networks of local brain area attractor networks (Breakspear, 2017; Deco 

and Jirsa, 2012). Essentially, these models link anatomical structure (given by the dMRI 

tractography) and functional dynamics (typically measured with fMRI) to reproduce the whole-

brain empirical data (Deco et al., 2015; Jirsa et al., 2002).  

 Here we use the Hopf whole-brain model consisting of coupled dynamical units (ROIs or nodes) 

representing the N cortical and subcortical brain areas from a given parcellation (Deco et al., 

2017c). The local dynamics of each brain region is described by the normal form of a supercritical 

Hopf bifurcation, also known as the Landau-Stuart Oscillator, which is the canonical model for 

studying the transition from noisy to oscillatory dynamics (Kuznetsov, 1998). Coupled together 

with the brain network architecture, the complex interactions between Hopf oscillators have been 

shown to reproduce significant features of brain dynamics observed in electrophysiology (Freyer et 

al., 2011; Freyer et al., 2012), MEG (Deco et al., 2017b) and fMRI (Deco et al., 2017d; 

Kringelbach et al., 2015). 

 The dynamics of an uncoupled brain region n is given by the following set of coupled dynamical 

equations, which describes the normal form of a supercritical Hopf bifurcation in Cartesian 

coordinates: 

 

#$�

#�
� %a� 
 x�� 
 y��'x� 
 ω�y� �  βη��t�       (13) 
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#%�

#�
� %a� 
 x�� 
 y��'y� � ω�x� �  βη��t�       (14) 

 

where η��t�  is additive Gaussian noise with standard deviation β. This normal form has a 

supercritical bifurcation a�=0, so that if a�>0, the system engages in a stable limit cycle with 

frequency :
 � ω�/2�. On the other hand, when a�<0, the local dynamics are in a stable fixed 

point representing a low activity noisy state. Within this model, the intrinsic frequency ω� of each 

region is in the 0.008–0.08Hz band (n=1, …, N), where N is the total number regions.  

 We estimated the intrinsic frequencies from the empirical data, as given by the averaged peak 

frequency of the narrowband BOLD signals of each brain region. The variable x� emulates the 

BOLD signal of each region n. To model the whole-brain dynamics we added an additive coupling 

term representing the input received in region n from every other region p, which is weighted by the 

corresponding structural connectivity. The whole-brain dynamics was defined by the following set 

of coupled equations: 

 

#$�

#�
� %a� 
 x�� 
 y��'x� 
 ω�y� � G ∑ C�&'

&�� �x&�t 
 τ� 
 x�� � =
η��t�  (15) 

#%�

#�
� %a� 
 x�� 
 y��'y� � ω�x� � G ∑ C�&'

&�� �y&�t 
 τ� 
 y&� � =
η
�t�  (16) 

 

Where G denotes the global coupling weight, scaling equally the total input received in each brain 

area, and τ is a time lag. The initial values of noise was fixed thus: β=0.02, a� � 0, and the time 

lags also initialized to zero. The structural connectivity matrix C�&  is estimated and normalised 

from dMRI tractography (with a max of 0.2) and thus symmetric. We optimize sequentially, for 

each local region, the noise level, =
, the time lag, τ, the local bifurcation parameters, a�, and most 

importantly the matrix C�&. 

 During optimisation, the strength of connections in C�& is updated based on the fit between the 

model output and the empirical NDTE flow matrix in terms of correlation. The empirical NDTE 

matrix is bidirectional and thus asymmetric. Hence, when updating the structural matrix, this will 

become asymmetric too. Thus C�&  is the generative anatomically-constrained bidirectional 

connectivity, GABIC.  

 We used a global optimization routine of MATLAB, namely the particle swarm optimizer. 

Particle swarm is a population-based algorithm, similar to genetic algorithms (Kennedy and 

Eberhart, 1995). A population of individuals (called particles) diffuse throughout the searching 

region of parameters, not dissimilar to flocks of insects swarming. At each step, the algorithm 

evaluates the objective function for each particle. In our case, the objective function consisted of 
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maximizing the correlation between the empirical and simulated NDTE matrix (i.e. considering the 

causality between all pairs). The diffusion of the particles is optimally adapted by the algorithm in 

order to converge to a global maximum.  
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Figures 

 

Figure 1. Overview of general theoretical framework. A) Causal bidirectional flow of information 

between any two brain regions is determined by computing the pairwise normalised directed 

transfer entropy (NDTE). The statistical significance is determined at the individual level by using 

the circular time shifted surrogates method (Quiroga et al., 2002) and at the group level by using 

P-level aggregation across individuals. B) The functional hierarchical organisation is given by the 

full NDTE matrix, where the rows contain the target regions and the columns contain the source 

regions. For each brain region, the total incoming flow of information, �	
, is simply the sum of all 

sources (ie the sum over the rows in the matrix). Similarly the total outgoing flow of information, 

�����, is the sum over all targets (ie the sum over the columns). C) The functional rich club (FRIC) 

is the smallest set of brain regions that integrate and orchestrate function in a given task. It can be 

identified as the most highly connected brain regions that 1) are more densely connected within 

themselves than to regions with lower connectivity, whilst 2) having the highest level of incoming 

directed flow (�	
) and 3) the lowest outgoing directed flow (���� , see Methods). D) The global 

neuronal workspace has to be relevant to all tasks and situation and must therefore be the common 
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FRIC members across many different tasks, ie the intersection of FRICs from tasks and rest. E) In 

order to establish the causal importance of the FRIC, we fit a whole-brain model to the resting 

NDTE empirical data and extract the underlying effective connectivity (see Results and Methods). 

F) The whole-brain model is then systematically lesioned for regions belonging to the FRIC and 

compared to lesioning non-FRIC members. Overall, this confirms the causal importance of these 

regions in the orchestration of the functional hierarchical organisation of the human brain.   
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Figure 2. Comparing functional and structural hierarchical organisation. A) Functional 

hierarchy is shown cortical renderings of each of the incoming (Gin), outgoing (Gout) and total (Gtot) 

directional information flow computed from the NDTE matrix of 1003 HCP participants (see 

Figure 1 and Methods) in the Glasser parcellation (using renderings of cortical flattening and 3D 

renderings with midline, right, left, top and bottom views). As can be clearly seen, the outgoing 

information, Gout, is highest in sensory areas, while incoming information, Gin, is highest in higher-

order, integrative transmodal areas. B) The structural hierarchy is shown for myelination of brain 

regions (myelin-weighted T1w/T2w). We use the same renderings at the voxel level (top box) and in 

the Glasser parcellation (bottom). C) Scatterplots between the functional hierarchy (Gin, Gout and 

Gtot) and structural hierarchy (myelination). The linear correlations are shown by the red line (with 

standard error in shaded gray) overlaid on the scatterplots. This shows that myelination is 

remarkably highly correlated with Gtot, and mainly driven by correlation with the outgoing flow, 

Gout,. On the other hand, there is a much lower correlation with the incoming flow, ie integrative 

measure of Gin. This means that the static measure of myelination is likely to mostly reflect the

driving flow in sensory areas but provides much less information on integrative areas. D) Shows 

the same panel A but for the DK80 parcellation. E) Shows the myelination in the DK80 

parcellation. F) Shows the scatterplots between the functional hierarchy (Gin, Gout and Gtot) and 

structural hierarchy (myelination) in the DK80 parcellation. The linear correlations are shown by 

the red line (with standard error in shaded gray) overlaid on the scatterplots. The results in this 

coarser scale DK80 parcellation are fully consistent with the finer scale Glasser parcellation. 

 

 

al 

) 

ee 

D 

ng 

-

in 

 in 

nd 

ith 

is 

w, 

ve 

he 

ws 

80 

nd 

by 

is 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/859579doi: bioRxiv preprint 

https://doi.org/10.1101/859579


 

Figure 3. Functional hierarchy across different tasks and rest. A) Cortical renderings of all seven 

tasks and rest of the incoming (Gin), outgoing (Gout) and total (Gtot) directional information flow 

computed from the NDTE matrix of 1003 HCP participants (see Figure 1 and Methods) in the 

DK80 parcellation (using 3D views from the side and midline). B) Matrices of the comparison of 

incoming (Gin), outgoing (Gout) and total (Gtot) directional information flow in the seven tasks and 

rest. As can be clearly seen from Gin matrix and the renderings of the incoming flow of information 

(receivers) are significantly different between tasks and rest. This suggests that different tasks 

process incoming differently. This is in contrast to the Gout matrix and the renderings of the 

outgoing flow of information (drivers), which are remarkably similar. This shows that sensory 

areas are consistently driving the information flow. Interestingly, as can be seen from the Gtot

matrix, the total processing of information flow is more similar within the seven tasks than 

compared to rest, suggesting the extrinsic, sensory nature of task processing compared to the 

intrinsic nature of resting state processing.  
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Figure 4. Discovering global workspace as the intersection of functional rich clubs for rest and 

seven tasks. A) We computed the functional hierarchical organisation of all seven tasks (emotion, 

gambling, language, motor, relational, social, working memory) for the HCP participants. This 

allows us to compute the ‘Functional Rich Club’ (FRIC) as the set of regions, separate from the 

rest of the brain, that define a ‘club’ of functional hubs characterized by a tendency to be more 

densely functionally connected among themselves than to other brain regions from where they 

receive integrative information (see Methods). As can be seen, these functional rich clubs are 

similar but not identical across tasks. B) We compute the regions in the Global Workspace (GW) as 

the intersection of the FRIC members across all possible tasks and resting state. Here, we used the 

maximal amount of tasks available to provide a reliable estimate of the GW. At the bottom of the 

figure, we show a rendering of the cortical and subcortical regions in the GNW. As can be seen, the 

FRIC regions for all seven tasks and rest defining the GNW are the following six brain regions: left 

precuneus, left nucleus accumbens, right hippocampus, right amygdala and left and right isthmus 

cingulate. Lowering the threshold of participation to more than five tasks adds two more regions: 

left posterior cingulate (in five tasks) and left putamen (in six tasks). Further lowering the threshold 

to three tasks provides another three brain regions: right nucleus accumbens (in three tasks), right 

precuneus (in three tasks) and right posterior cingulate (in four tasks). C) These regions fit well 

with the idea suggested by Dehaene and Changeux that the Global Workspace is ideally placed for 

integrating information from perceptual (PRESENT), long-term memory (PAST), evaluative 

(VALUE) and attentional (FOCUSING) systems. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/859579doi: bioRxiv preprint 

https://doi.org/10.1101/859579


36 

 

 

Figure 5. Establishing causal significance by lesioning whole-brain model. A) In order to 

establish the causal mechanistic functional relevance of the FRIC brain regions orchestrating 

functional hierarchical organisation of the resting state, we created a whole-brain model to fit the 

empirical NDTE flow matrix. B) Lesioning all FRIC compared to non-FRIC members in this whole-

brain model causes significant breakdown in information flow. The correlation between empirical 

and simulated NDTE matrices is maximally affected when FRIC members are lesioned (p<10-30) 

compared to when non-FRIC members are lesioned. C) Similarly, we found significant differences 

in the number of FRIC members detected when lesioning the original empirical FRIC members 

compared to empirical non-FRIC members (p<10-30). This is causal evidence for the major 

significance of FRIC in orchestrating functional organisation. 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/859579doi: bioRxiv preprint 

https://doi.org/10.1101/859579


37 

Supplementary figures 

 

Figure S1. Functional hierarchy of resting state found using NDTE rendered on Glasser and 

DK80 parcellations. At the top is shown the full cortical voxelbased renderings of myelin 

(T1w/T2w). Below is shown renderings for both the Glasser and DK80 parcellations of myelin and 

the NDTE measures (Gin, Gout and Gtot) in 1003 HCP participants. 
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Figure S2. Validating NDTE framework using MEG from 89 HCP participants. We used the 

NDTE framework on MEG resting state data from 89 HCP participants (each having three resting 

state sessions) and extracted the timeseries from the 62 cortical regions of the DK80 parcellation 

(see Methods). On the left is shown the scatterplots for Gin and Gout for fMRI resting state data 

versus myelin (T1w/T2w). On the right is shown the same scatterplots for Gin and Gout for MEG 

resting state data versus myelin. The correlation values are 0.04 for Gin (14-22Hz, window size 

1000ms), 0.48 for Gout (22.5-30.5Hz, window size 500ms). 
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Figure S3: Alternative measure of hierarchy. Inspired by the neuroanatomical research by 

Markov and colleagues, we computed a similar measure of hierarchy as the fraction of feedforward 

and feedback (FF) organisation. We computed this for the seven tasks and for resting state (top 

row). As can be seen from the correlation matrices, this FF Hierarchy measure is not 

discriminatory between the seven tasks and only weakly correlated with , the integrative 

measure of incoming information flow.  
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