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Abstract 

Brain age prediction studies measure the difference between the chronological age of an individual and their 

predicted age based on neuroimaging data, which has been proposed as an informative measure of disease and 

cognitive decline. As most previous studies relied exclusively on magnetic resonance imaging (MRI) data, we 

hereby investigate whether combining structural MRI with functional magnetoencephalography (MEG) information 

improves age prediction using a large cohort of healthy subjects (N=613, age 18-88) from the Cam-CAN. To this 

end, we examined the performance of dimensionality reduction and multivariate associative techniques, namely 

Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA), to tackle the high dimensionality 

of neuroimaging data. Using MEG features yielded worse performance when compared to using MRI features, but 

the combination of both feature sets slightly improved age prediction (mean absolute error of 5.28 yrs). Furthermore, 

we found that PCA resulted in worse performance, whereas CCA in conjunction with Gaussian process regression 

models yielded the best prediction performance. Notably, CCA allowed us to visualize the features that significantly 

contributed to age prediction. We found that MRI features from subcortical structures were more reliable age 

predictors than cortical features, and that spectral MEG measures were more reliable than connectivity metrics. Our 

results provide an insight into the underlying processes that are indicative of brain aging, thereby advancing the 

discovery of valuable biomarkers of neurological syndromes that emerge later during the lifespan.  
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1 Introduction 

The human brain changes continuously across the adult lifespan. This process, termed brain aging, underlies the 

gradual decline in cognitive performance observed with aging. Although aging-induced changes are not necessarily 

pathological, the risk of developing neurodegenerative disorders rises with increasing age (Abbott, 2011). The wide 

range of age-associated brain disorders indicates that the effect of aging on brain structure and function vary greatly 

among individuals. In fact, diseases such as Alzheimer’s disease and schizophrenia are thought to be the result of 

pathological processes associated with accelerated brain aging (Kirkpatrick et al., 2008; Sluimer et al., 2009). 

Therefore, a better understanding of the neural correlates underlying brain aging, as well as better ways to identify 

biomarkers of healthy aging could contribute to improve the detection of early-stage neurodegeneration or predict 

age-related cognitive decline. 

One promising approach for identifying individual differences in brain aging relies on the use of neuroimaging data 

to accurately predict “brain age” – the biological age of an individual’s brain (Cole et al., 2019). In that context, 

machine learning (ML) techniques have proven to be a promising tool to ‘learn’ a correspondence between patterns 

in structural or functional brain features and the age of an individual (Dosenbach et al., 2010; Franke et al., 2010). 

In other words, ML techniques represent functions in high-dimensional space, wherein each dimension corresponds 

to a feature derived from neuroimaging data, to estimate the brain age. When predictive models are trained on 

neuroimaging datasets across the lifespan with a large number of subjects, they can generalize sufficiently well on 

unseen or ‘novel’ individuals. This provides the opportunity to deploy ML models at the population level and use 

the predicted age as a biomarker for atypical brain aging processes. 

Most studies have explored the use of ML on data obtained from neuroimaging techniques to quantify atypical brain 

development in diseased populations. A common practice entails training a ML-based prediction model on healthy 

subjects and subsequently using it to estimate brain age in patients. The difference between an individual’s predicted 

brain age and their chronological age is then computed (the “brain age delta”), providing a potential measure that 

indicates increased risk of pathological changes that may lead to neurodegenerative diseases. For instance, this 

approach has been applied to study brain disorders and diseases including Alzheimer’s disease (Franke and Gaser, 

2012; Gaser et al., 2013), traumatic brain injury (Cole et al., 2015), schizophrenia (Koutsouleris et al., 2014; 

Schnack et al., 2016; Shahab et al., 2019), epilepsy (Pardoe et al., 2017), dementia (Wang et al., 2019), Down’s 

syndrome (Cole et al., 2017a), Prader-Willi syndrome (Azor et al., 2019), and several others (Kaufmann et al., 

2019), as well as other pathologies such as chronic pain (Cruz-Almeida et al., 2019), HIV (Cole et al., 2017c), 

diabetes (Franke et al., 2013). Additionally, the utility of estimating brain age has also been extended beyond 

understanding neurological disorders such as in the context of testing the positive influence of meditation (Luders 

et al., 2016), as well as education and physical exercise (Steffener et al., 2016b) on brain age. Recent work has also 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/859660doi: bioRxiv preprint 

https://doi.org/10.1101/859660
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

shown a relationship between the brain age delta and specific cognitive functions, namely visual attention, cognitive 

flexibility, and semantic verbal fluency (Boyle et al., 2019). 

The studies mentioned above have mainly focused on estimating brain age based on structural magnetic resonance 

imaging (MRI), with most studies using T1-weighted images (e.g. Cole, Leech and Sharp, 2015; Cole, Poudel, et 

al., 2017). This is partly due to the availability of large lifespan MR-based open datasets, which has allowed 

researchers to train and validate their predictive models on a large number of subjects. However, it is well known 

that in addition to structural alterations, changes in brain function also occur during aging (Cabeza et al., 2018; 

Grady, 2012; Peters, 2006). One example of brain function changes associated with age is functional connectivity, 

which is defined as the similarity between activity in different brain regions (Sala-Llonch et al., 2015). This metric, 

derived from functional MRI (fMRI) data, has been successfully used to predict age (Dosenbach et al., 2010; Li et 

al., 2018; Liem et al., 2017; Nielsen et al., 2018; Vergun et al., 2013). A few studies have also investigated age-

related brain function changes using electroencephalography (EEG) (Dimitriadis and Salis, 2017; Sun et al., 2019; 

Zoubi et al., 2018). Specifically, this modality has enabled researchers to build a brain age prediction model based 

on the temporal and spectral features of electrophysiological brain activity, as well as the connectivity between 

brain regions. A detailed overview of different neuroimaging modalities and ML methods that have been used to 

estimate brain age is presented in (J. Cole et al., 2018). However, the aforementioned studies investigated the age-

related structural and functional brain changes in isolation, with the exception of (Liem et al., 2017) that combined 

cortical anatomy and fMRI. Furthermore, no study to date has exploited the high spatiotemporal resolution of 

magnetoencephalography (MEG) data (Baillet, 2017) to estimate brain age.  

Moreover, a major roadblock to clinical applications of ML models is their explainability (Bzdok and Ioannidis, 

2019), or the ability to attribute their predictions to specific input variables. From a clinical perspective, it would 

be useful to discriminate the neuroimaging features that are important to the ML model to estimate brain age. As 

argued by Kriegeskorte et al., decoding models can reveal whether information pertaining to a specific outcome or 

behavioural measure is present in a particular brain region or feature (Kriegeskorte and Douglas, 2019). In the same 

study, the authors also highlighted the difficulties and confounds associated with interpreting weights in a linear 

decoding model and consequently suggested the use of multivariate techniques to identify the informative 

predictors.  

To address the aforementioned challenges related to the combined use of structural and functional neuroimaging 

data to predict age and the explainability of the associated ML models, the main aims of the present study were to: 

(i) investigate whether combining information from multiple modalities (MRI and MEG) would improve brain age 

prediction performance, (ii) examine the performance of dimensionality reduction techniques in conjunction with 

ML models, and (iii) improve the explainability of the brain age prediction framework by applying multivariate 

associative statistical methods for identifying key features that exhibit the most prominent age-related changes. To 
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do so, we used structural MRI and functional MEG data collected from a large cohort of healthy subjects. We 

further applied Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) as dimensionality 

reduction and multivariate associative techniques, respectively, to assess their predictive performance. Finally, we 

visualized the most informative features in the context of age prediction. 
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2 Materials and Methods 

2.1 Dataset 

We analyzed data from the open-access Cambridge Center for Aging Neuroscience (Cam-CAN) repository (see 

Shafto et al. 2014; Taylor et al. 2017 for details of the dataset and acquisition protocols), available at https://camcan-

archive.mrc-cbu.cam.ac.uk//dataaccess/. Specifically, we used structural (T1-weighted MRI) and functional 

(resting-state MEG) neuroimaging data from 652 healthy subjects (male/female = 322/330, mean age = 54.3 ± 18.6, 

age range 18-88 years). The MR images were acquired from a 3T Siemens TIM Trio scanner with a 32-channel 

head coil. The images were acquired using a MPRAGE sequence with TR = 2250 ms, TE = 2.99 ms, Flip angle = 

9°, Field of View = 256 × 240 × 192 mm3 and voxel size = 1 mm isotropic. The resting-state MEG data were 

recorded using a 306-channel Elekta Neuromag Vectorview (102 magnetometers and 204 planar gradiometers) at 

a sampling rate of 1kHz. For the resting-state scan, subjects were asked to lie still and remain awake with their eyes 

closed for around 9 min. Following exclusions (e.g. subjects that did not have both MRI and MEG data, 

unsatisfactory pre-processing results such as failure to remove cardiac and ocular artifacts and/or failure to extract 

the cortical surface for source reconstruction), we report findings from a final dataset including 613 subjects. A 

descriptive list of subjects included in our dataset is detailed in the Supplementary Materials.  

 

2.2 Neuroimaging data processing 

A summary of the entire feature extraction process for MR images and MEG recordings is illustrated in Fig. 1. 

2.2.1 MRI structural analysis 

The processing of T1-weighted MR images followed the pipeline presented in (Cole et al., 2017b) and was 

implemented using tools from the FMRIB Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl) (Jenkinson et al., 

2012). Briefly, the Brain Extraction Tool (BET) (Smith, 2002) was used to isolate the brain tissue, and the FMRIB's 

Linear/Nonlinear Image Registration Tools (FLIRT/FNIRT) (Andersson et al., 2007; Jenkinson and Smith, 2001) 

were used to perform a non-linear registration to the MNI152 template brain (2mm resolution). Next, the registered 

images were segmented into Grey Matter (GM), White Matter (WM), and Cerebrospinal Fluid (CSF) using the 

MNI152 template mask for each tissue type. The GM maps were further segmented into cortical and subcortical 

regions to delineate the effects of aging on these regions. The resultant images were vectorized and subsequently z-

scored to obtain a feature vector for each subject. This process resulted in a feature matrix where each row consisted 

of normalized intensity values for a single subject (see Fig. 1 for the exact number of features from each brain 

structure). 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2019. ; https://doi.org/10.1101/859660doi: bioRxiv preprint 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://doi.org/10.1101/859660
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

 

2.2.2 MEG analysis 

The MEG data were processed using the open-source software MNE-Python (https://martinos.org/mne) (Gramfort 

et al., 2014). Raw MEG data were high-pass filtered at 1 Hz, notch filtered at 50 Hz and 100 Hz to remove power 

line artifacts, and resampled at 200 Hz. Cardiac and eye movement artifacts were identified using Independent 

Component Analysis (ICA) and automatically classified comparing the ICA components with the simultaneously 

recorded electrocardiography (ECG) and electrooculography (EOG) signals (Jas et al., 2018). Artifact-free MEG 

data were converted from sensor to source space on the subject’s cortical surface using the linearly constrained 

minimum variance (LCMV) beamformer (Van Veen et al., 1997). The cortical surface was reconstructed from the 

T1-weighted MR images as obtained from the FreeSurfer recon-all algorithm (Dale et al., 1999; B Fischl et al., 

1999; Bruce Fischl et al., 1999; Fischl et al., 2004, 2002, 2001; Fischl and Dale, 2000). The sources were constrained 

within the cortical regions of the brain and assumed to be perpendicular to the cortical envelope. The noise 

covariance matrix was estimated using the empty room recordings, and the data covariance matrix was estimated 

directly from the MEG data. After source reconstruction, we parcellated the cortex into 148 brain regions using the 

Figure 1. Feature extraction pipeline for MRI and MEG data.  
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Destrieux atlas (Destrieux et al., 2010). Each parcel time series was corrected for signal leakage effects using a 

symmetric, multivariate correction method intended for all-to-all functional connectivity analysis (Colclough et al., 

2015). For each parcel, the power spectral density (PSD) for the entire resting state scan was calculated and averaged 

within 7 frequency bands, namely Delta (2–4 Hz), Theta (4–8 Hz), lower Alpha (8–10 Hz), higher Alpha (10-13 

Hz), lower Beta (13–26 Hz), higher Beta (26–35 Hz) and Gamma (35–48 Hz). Relative power was calculated by 

dividing the power within each band by the total power across all bands (Niso et al., 2019). In addition to the PSD 

values, amplitude envelope correlation (AEC) within each frequency band was used to estimate the functional 

connectivity between different cortical parcels (Brookes et al., 2012; Hipp et al., 2012), as this method provides a 

robust measure for stationary connectivity estimation (Colclough et al., 2016). Inter-layer Coupling (ILC) was also 

calculated from the functional connectivity matrices to estimate the similarity of the connectivity profile across 

frequency bands (Tewarie et al., 2016). Therefore, each row of the resulting MEG feature matrix consisted of PSD, 

AEC and ILC values for a single subject. 

 

2.3 Brain age prediction analysis 

2.3.1 Gaussian Processes Regression (GPR) 

Gaussian Process Regression (GPR) has been widely used for predicting chronological age from T1-weighted 

images (Aycheh et al., 2018; Cole et al., 2017a, 2017b, 2017c, 2015; J. H. Cole et al., 2018). GPR is a non-

parametric approach, which finds a distribution over possible functions that are consistent with the data (Rasmussen 

and Williams, 2006). The main assumption underlying GPR is that any finite subset of the available data must 

follow a multivariate Gaussian distribution. The prior belief about the relationship between variables is decided by 

the sufficient statistics of these multivariate Gaussian distributions, namely the mean vector and standard deviation 

matrix. The standard deviation matrix, therefore, indicates the confidence of model predictions. Multivariate 

Gaussian distributions also have the ability to reflect local patterns of covariance between individual data points. 

Therefore, a combination of multiple such distributions in a GP can model non-linear relationships and is more 

flexible than conventional parametric models, which rely on fitting global models.  

In this work, a GPR model was defined using the neuroimaging features as inputs (i.e. independent variables) and 

chronological age as the output (i.e. dependent variable). The GPR model was implemented using the scikit-learn 

toolbox (Pedregosa et al., 2011) in Python, with an additive dot-product and white kernel. The obtained feature 

vectors were used as inputs in the GPR model for training. We used a 20-fold cross-validation strategy, and each 

random split of the dataset consisted of 500 subjects in the training set (81.7 %) and the rest in the testing set (18.3 

%). Model performance was evaluated using the Mean Absolute Error (MAE) and coefficient of determination (𝑅2) 

of the prediction. We also compared the performance of GPR models with Support Vector Regression (SVR) 
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models (Basak et al., 2007), which are more commonly used in the ML literature for regression problems. We 

observed that GPR outperformed SVR. Therefore, GPR was chosen to be the regression model for all further 

analyses. 

 

2.3.2 Similarity metric 

Following (Cole et al., 2017b), we represented the data as a 𝑁 ×  𝑁 similarity matrix (𝑁 being the number of 

subjects in training set). The similarity between any two subjects was calculated using the dot product between their 

corresponding feature vectors. We also examined a different similarity metric, namely the cosine similarity, but it 

yielded comparable performance. Therefore, each testing subject was represented as a 500-element vector 

containing similarity values corresponding to each of the 500 training subjects. 

However, the use of a similarity metric entails the following issues: (1) the training set needs to have enough subjects 

to sample the spectrum of healthy aging completely, and (2) the predictions are based on how similar a test subject 

is to each of the training subjects. To avert these issues, we used dimensionality reduction techniques, namely PCA 

and CCA, to identify the features that mostly contribute to brain age prediction. PCA and CCA project the data onto 

a lower dimensional space and allow ML models to represent age as a function of neuroimaging features, as opposed 

to similarity scores. This approach allowed us to visualize the age-related neuroimaging features after the model 

was trained.  

 

2.3.3 Principal Component Analysis (PCA) 

PCA is a linear dimensionality reduction technique using singular value decomposition (SVD) of the data to project 

it onto a lower dimensional space (Jolliffe, 2002). It is widely used to decompose multivariate datasets into a set of 

successive orthogonal components that explain the maximum amount of the data variance (e.g. Amico and Goñi, 

2017; Larivière et al., 2019). The obtained principal components correspond to the maximal modes of variation and 

hence correspond to the most prominently changing features in the dataset. Often, the number of principal 

components is selected visually as the point where the total variance explained by increasing the number of 

components starts plateauing (“knee rule”). We applied PCA to project the feature matrix onto a lower dimensional 

space and subsequently estimate brain age using a GPR model. In each case, we used the knee of the curve relating 

the variance explained vs the number of principal components to decide the number of components to be retained. 

In all the models using only MRI data, 5 components were retained, whereas in all models using MEG data or a 

combination of MRI and MEG data, 10 components were retained. In every case, the number of retained principal 

components explained about 60-66% of the variance in the data. 
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2.3.4 Canonical Correlation Analysis (CCA) 

CCA is another dimensionality reduction technique that identifies latent variables to model the covariance in input 

and output variables (Thompson, 2005). CCA has been successfully applied in the context of brain-behavior 

relationships (Smith et al., 2015), neurodegenerative diseases (Avants et al., 2014) and psychopathology (Xia et al., 

2018). CCA, similarly to PCA, uses the SVD factorization method to reduce the dimensionality of the data. 

However, in CCA the covariance matrix is used instead of the input variance matrix. Therefore, the obtained 

canonical components are maximally correlated to the output variable. 

In the present case, the CCA inputs were the neuroimaging feature matrices and the output the chronological age 

vector. Therefore, CCA retrieved a linear combination of the neuroimaging features that were maximally correlated 

to the age of the individuals. We used CCA to project the feature vector along this direction and subsequently used 

the projection values to predict age using GPR.  

CCA also yields a loading vector for every CCA component that quantifies the contribution of each feature to that 

specific CCA component (Wang et al., 2018). We used these loading values to assess the contribution of each 

feature to brain age prediction and thereby understand which regions of the brain exhibit maximal age-related 

changes. To estimate the reliability of these loading values, we used the bootstrapped ratio, whereby we repeated 

the CCA analysis for 1000 bootstrapped samples of the dataset chosen at random with replacement (Efron and 

Tibshirani, 1986; McIntosh and Lobaugh, 2004). The bootstrapped ratio (BSR) of the loading values indicates 

which areas reliably contribute to the brain age prediction, thus increasing the overall reliability of the prediction 

models. The procedure for generating the BSR of the loading values is illustrated in Fig. 2. 

We also examined deep CCA (Andrew et al., 2013) to learn a non-linear combination of features that maximally 

covary with age. However, deep CCA was not numerically stable and hence it was not explored further. 

 

Figure 2. Calculation of loadings and bootstrapped ratio (BSR) of loading values from the employed CCA model. 
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3 Results 

A summary of the results is presented in Fig. 3. The performance of different brain age prediction methods is shown 

in detail in Tables 1 & 2. To get an estimate of the chance level of age prediction, we used predictions from a 

random model with no training. Irrespective of the modality of data used, the chance level of MAE was ~16.74 

years and 𝑅2 was around zero. These values served as a baseline to assess the performance of various models. All 

models, irrespective of the data modality, performed better than chance level thus indicating that all the considered 

neuroimaging features exhibited some age-related effects. 

 

3.1 Dimensionality reduction techniques 

We compared the performance of all models using a 20-fold cross-validation approach with random training (500 

subjects) and testing (112 subjects) splits of the dataset in each fold. First, to compare the performance of different 

dimensionality reduction techniques with the similarity metric presented in (Cole et al., 2017b), we used only the 

voxel-wise T1-weighted intensity levels (from all tissues) as input to different models. CCA yielded the best 

performance with respect to age prediction, with a corresponding MAE of 5.57 yrs (Table 1). PCA resulted in a 

significantly degraded performance, yielding a MAE of 9.23 yrs. Using GPR on the similarity scores yielded worse 

performance (MAE of 7.3 yrs) when compared to using GPR on the raw features (MAE of 5.64 yrs). The failure of 

Figure 3. Summary of the age prediction mean absolute error (MAE) in years for different methods and data modalities (average 

across 20-folds, error bars denote standard error). The best performance was obtained with the CCA+GPR model combining 

both MRI and MEG features (pink bars). The similarity metric and PCA reduction degraded performance in all cases (second 

and third bars for each color). 
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the similarity metric to yield the best performance is likely due to the sample size of the dataset, which was much 

smaller than the dataset used in (Cole et al., 2017b). This could possibly have led to incomplete sampling of the 

aging subspace and hence yielded worse performance. 

Furthermore, when only cortical or subcortical MRI features or MEG features were used, similar trends were 

observed. Specifically, similarity metric and PCA reduction degraded performance, as compared to GPR on raw 

features (Fig. 3). Conversely, CCA yielded the best performance for age prediction. 

Model Input Features MAE (yrs) R2 

GPR 

WM 6.82 ± 0.12 0.78 

GM 6.42 ± 0.1 0.81 

Cortical GM 7.29 ± 0.13 0.76 

Subcortical GM 6.05 ± 0.11 0.83 

GM+WM+CSF 5.64 ± 0.07 0.85 

Similarity+GPR 

WM 11.07 ± 0.48 0.49 

GM 8.28 ± 0.31 0.70 

Cortical GM 10.10 ± 0.41 0.57 

Subcortical GM 8.04 ± 0.29 0.71 

GM+WM+CSF 7.30 ± 0.14 0.77 

PCA+GPR 

WM 11.71 ± 0.51 0.38 

GM 8.63 ± 0.34 0.66 

Cortical GM 10.18 ± 0.40 0.54 

Subcortical GM 8.77 ± 0.32 0.65 

GM+WM+CSF 9.23 ± 0.39 0.62 

CCA+GPR 

WM 6.77 ± 0.15 0.78 

GM 6.37 ± 0.11 0.81 

Cortical GM 7.27 ± 0.16 0.77 

Subcortical GM 5.97 ± 0.08 0.83 

GM+WM+CSF 5.57 ± 0.06 0.86 

 

Table 1. Comparison of age prediction by GPR models with different dimensionality reduction techniques for GM, WM and 

CSF voxel intensities. Mean absolute error (MAE) and coefficient of determination (R2) were calculated over the testing set 

and averaged over 20-folds. 
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3.2 Cortical vs. subcortical MRI features 

To delineate the contribution of cortical and subcortical MRI features, we compared the performance for each of 

these features separately. Subcortical MRI features clearly outperformed cortical features, irrespective of the model 

used (Fig. 3 & Table 1). CCA was found to yield the best performance in each case, with subcortical MRI features 

yielding a MAE of 5.97 yrs and cortical MRI features yielding a MAE of 7.27 yrs (Table 1). These results indicate 

that the subcortical regions were more reliable indicators of brain age as compared to the cortical ones. This finding 

was further supported by the CCA loadings of MRI features, whereby subcortical regions exhibited higher BSR of 

loading values as compared to cortical regions (Fig. 4b). 

 

3.3 Combining structural and functional features from MRI and MEG data 

We extracted the relative PSD of the MEG data in 7 frequency bands for each brain region, as well as the AEC and 

ILC measures to quantify functional connectivity (Tewarie et al., 2016). However, ILC values did not significantly 

contribute to age prediction, with the corresponding MAE values being very close to those of the random model 

(Table 2). PSD performed better than AEC using GPR, but AEC performed better than PSD when using CCA 

(Table 2). Combining all the MEG features using a CCA+GPR model yielded the best performance, with a MAE 

of 9.67 yrs. However, this performance was considerably inferior compared to that obtained using MRI features 

(MAE of 5.57 yrs). 

An important consideration when comparing MEG results to MRI is that the MEG features only contained 

information from the cortex, whereas the MRI intensities were from both cortical and subcortical regions. Therefore, 

we compared the performance of models using MEG features to those including only cortical MRI features. Across 

all methods, MEG features yielded worse performance compared to using cortical MRI features (worse by 2.45 yrs 

for GPR, 2.03 yrs for similarity, 2.61 yrs for PCA, and 2.4 yrs for CCA respectively). This suggests that MEG 

features alone were not as good predictors of brain age as MRI features. 

To assess the potential of multimodal prediction, we combined all MRI and MEG features to predict brain age. As 

before, the CCA+GPR model yielded the best performance with a MAE of 5.28 yrs (Table 2), which was slightly 

better than using only MRI features (MAE of 5.57 yrs) or even only subcortical MRI features (MAE 5.45 yrs). This 

suggests that the MEG features added complementary information to the structural features, which improved the 

brain age prediction.  
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3.4 CCA loadings 

One of the goals of the present work was to identify the brain regions which exhibit more pronounced age-related 

changes. The CCA loadings provided a way to assess the contribution of each neuroimaging feature to age 

prediction, thus indicating the features that exhibited the most reliable age-related changes. The histogram of the 

BSR of voxel intensity loading values, as well as the top 15% BSR of loading values for GM, WM, and CSF are 

shown in Fig. 4a & 4b, respectively. The histogram of BSR values indicates that GM and WM voxels exhibited 

more reliable age-related changes as compared to CSF (the histogram peak for GM and WM was located around -

Model Input Features MAE (yrs) R2 

GPR 

PSD 9.75 ± 0.32 0.55 

AEC 11.15 ± 0.43 0.45 

ILC 14.47 ± 0.55 0.15 

PSD+AEC+ILC 9.74 ± 0.3 0.57 

Similarity+GPR 

PSD 9.93 ± 0.35 0.56 

AEC 14.26 ± 0.55 0.16 

ILC 13.11 ± 0.49 0.28 

PSD+AEC+ILC 12.13 ± 0.46 0.37 

PCA+GPR 

PSD 10.68 ± 0.38 0.47 

AEC 13.55 ± 0.51 0.20 

ILC 14.60 ± 0.57 0.14 

PSD+AEC+ILC 12.79 ± 0.48 0.28 

CCA+GPR 

PSD 12.75 ± 0.56 0.24 

AEC 11.11 ± 0.4 0.46 

ILC 15.88 ± 0.75 0.04 

PSD+AEC+ILC 9.67 ± 0.28 0.58 

GPR PSD+AEC+ILC+MRI 5.61 ± 0.08 0.85 

Similarity+GPR PSD+AEC+ILC+MRI 7.40 ± 0.14 0.76 

PCA+GPR PSD+AEC+ILC+MRI 7.65 ± 0.18 0.73 

CCA+GPR PSD+AEC+ILC+MRI 5.28 ± 0.07 0.87 

 

Table 2. Comparison of age prediction by GPR models with different dimensionality reduction techniques for MEG features 

and MEG + MRI (GM+WM+CSF) features. Mean absolute error (MAE) and coefficient of determination (R2) were calculated 

over the testing set and averaged over 20-folds. 
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300 and -400 respectively, whereas the histogram peak for CSF was located around -100). Almost all of the loading 

values were negative, indicating a decreased voxel intensity with increasing age. Further, the top 15% of BSR values 

were confined to subcortical regions, thus supporting our earlier results that subcortical regions yield better age 

prediction. Some of these areas are shown in Fig. 4b, and 3D nifti volumes of the CCA loadings are available in 

NeuroVault (https://identifiers.org/neurovault.collection:6091). The highlighted (red) GM areas were localized in 

subcortical structures such as the putamen, thalamus, and the caudate nucleus, as well as regions in the cerebellum. 

Most of the highlighted (green) WM voxels were confined to the corpus callosum, thus indicating that the latter 

was associated to the most consistent age-related changes among WM voxels. Another structure among WM voxels 

that exhibited age-related changes was the thalamic radiation.  

Furthermore, we visualized the CCA loadings for the MEG features. The PSD loadings are shown in Fig. 5 and the 

AEC loadings are shown in Supp. Fig. 1. Comparing the BSR values we found that PSD values were more reliable 

Figure 4. BSR of CCA loading values for T1-weighted intensity levels. (a) Distribution of BSR values for GM (orange), WM 

(green) and CSF (blue) voxels. (b) Brain regions with the top 15% BSR values, highlighting that the most reliable voxels for 

brain age prediction were located within subcortical regions. 

(a) 

(b) 
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(BSR values ~450) than AEC values (BSR values ~300). Regarding the PSD loadings (Fig. 5), we observed 

different regions showing age-related effects within various frequency bands. Contrary to MRI loadings, whereby 

most of the loading values were negative, PSD loadings were found to be both positive and negative. The low-

frequency bands exhibited decreasing PSD values with age, with delta and theta band PSD exhibiting maximal age-

related effects in the frontal areas and alpha band PSD exhibiting maximal age-related effects in the visual and 

motor areas. Higher frequency bands (beta and gamma) exhibited increasing PSD values with age in frontal and 

motor areas. 1. Regarding the AEC loadings (Supp. Fig. 1), the all-to-all connectivity matrices (one per frequency 

band) were sorted by functional networks according to the Yeo 7-network brain cortical parcellation (Yeo et al., 

2011). Most functional connections exhibited increased connectivity with age within all frequency bands, with the 

exception being the visual network, which showed decreased connectivity with age for the high alpha and high beta 

frequency bands. The ILC loadings are not shown since ILC values did not significantly contribute to age prediction 

(Table 2). 

 

 

  

Figure 5. BSR of CCA loading values depicting cortical regions with PSD values that are correlated (pink) or anti-correlated 

(blue) with age for each frequency band. 
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4 Discussion 

In this study, we aimed to leverage multimodal neuroimaging data to predict age in a large cohort of healthy subjects 

(N=613) between 18-88 years. We applied dimensionality reduction techniques in conjunction with ML and found 

that the combination of MRI and MEG features with a CCA+GPR model yielded the best performance. 

Furthermore, using PCA was detrimental to the performance of GPR. We identified and visualized the regions that 

exhibited age-related changes and we found that subcortical T1-weighted intensity levels were the ones that help 

predict age more reliably than cortical ones. We also showed the age-related changes in the spectral features of 

various cortical regions, as observed using the MEG data. In addition, we demonstrated that using multivariate 

associative techniques such as CCA provide better explainability of the predictive models, which may contribute to 

the identification of clinically relevant biomarkers of pathologic aging. 

 

4.1 Dimensionality reduction techniques 

We used T1-weighted MR images and resting-state MEG data to develop a brain-age prediction framework that 

uses both structural and functional information of the brain. We restricted our analysis to cortical sources of the 

MEG data and thereby had functional information from cortical regions only. Since the goal was to predict age, the 

desired MAE for the perfect model would be 0 yr. However, owing to subject variability and the ill-conditioning of 

the problem, precisely what is considered a “healthy” subject, we did not expect to achieve a MAE of 0 yr. 

We used similarity metric-derived feature vectors to compare the performance of different regression models, 

namely GPR and SVR. Similar to the results obtained by Cole et al. (Cole et al., 2017b), GPR outperformed SVR. 

Based on these results, in the present study we used GPR as the regression model of choice for age prediction. 

Furthermore, we explored the contribution of dimensionality reduction techniques in age prediction. PCA is one of 

the most commonly used dimensionality reduction techniques in neuroimaging. However, in our study PCA 

degraded prediction performance. This result may be explained by the fact that large variability exists between 

neuroimaging features across subjects. Since PCA yields components that are maximally varying in the dataset, 

these could be aligned to directions of subject variability in the dataset instead of age-related changes. Therefore, 

our results suggest that using PCA to perform dimensionality reduction does not lead to good performance in the 

context of brain age prediction. In contrast, CCA improved performance by yielding the component that maximally 

covaries with age, whereby identifying features that are most informative for age prediction.  
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4.2 Combining structural and functional features from MRI and MEG data 

Combining structural information from MR images and functional information from MEG recordings resulted in a 

small improvement in brain age prediction for all models (Tables 1 & 2). This may indicate that MEG features carry 

non-redundant information for age prediction. Among the MEG features, we found that PSD and AEC values were 

better predictors of age compared to ILC values. These results are in agreement with previous EEG studies 

(Dimitriadis and Salis, 2017; Sun et al., 2019; Zoubi et al., 2018) which reported improved brain age prediction 

using power spectral features.  

A possible reason that the prediction improvement yielded by the inclusion of MEG features was modest is that the 

extracted features were restricted to cortical regions. As MRI features from subcortical structures were found to be 

the best age predictors, we speculate that including functional features from deep brain structures could have 

resulted in greater improvement in the prediction models. This suggests that the use of newly developed 

methodologies to more reliably detect brain activity in deeper structures using MEG (Pizzo et al., 2019) could 

contribute to improved age prediction in future studies. 

 

4.3 CCA loadings 

Apart from yielded the best prediction accuracy, CCA was used to identify the brain regions that contribute more 

reliably to age prediction. CCA returns loading values for each input feature, therefore improving model 

explainability. Using the BSR of loading values for MRI features, we found that most of the voxel T1-weighted 

intensity levels were negatively correlated with age (Fig. 4a). A decrease in voxel intensities with age has been 

reported by (Salat et al., 2009), who suggested that this association was an indicator of brain atrophy. Thus, our 

findings are in agreement with previous studies that have reported cortical thinning with age (Fjell et al., 2009; 

Hogstrom et al., 2013; Salat et al., 2004; Storsve et al., 2014).  

Furthermore, our results indicate that subcortical regions are more reliable predictors of age compared to cortical 

regions. The brain structures that most reliably exhibited age-related changes included the putamen, thalamus, and 

caudate nucleus, which are important structures involved in relaying a variety of information across the brain, in 

sensorimotor coordination, and in higher cognitive functions (Grahn et al., 2008; Sefcsik et al., 2009; Sherman and 

Guillery, 2002). A number of stereological and MRI studies have reported atrophy in subcortical regions associated 

with aging, specifically in the putamen (Bugiani et al., 1978), amygdala (Coffey et al., 1992; Fjell et al., 2013), 

hippocampus (Fjell et al., 2013; Nobis et al., 2019), caudate nucleus (Krishnan et al., 1990), substantia nigra 

(McGeer et al., 1977), thalamus (Sullivan et al., 2004; Fjell et al., 2013), and cerebellum (Andersen et al., 2003; 

Good et al., 2001; Torvik et al., 1986). Recent studies using large subject cohorts have also reported an age-related 

decrease in the hippocampal and temporal lobe volumes (Nobis et al., 2019). Hence, our findings are in agreement 
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with the changes in size of specific brain areas associated with aging as reported in previous studies that are. 

However, we cannot rule out the possibility that the absence of strong negative correlations between age and MRI 

voxel intensities in the cortex could be attributed to improper alignment of sulci and gyri to the standard MNI152 

brain template. 

We found that the WM regions affected by age were mostly confined to the corpus callosum and the thalamic 

radiation. These results are in strong agreement with previous studies that have reported age-related alterations in 

WM structures (Salat et al., 2005), such as atrophy in corpus callosum fiber tracts (Ota et al., 2006; Pfefferbaum et 

al., 2000) and thalamic radiation (Cox et al., 2016). Although CCA loadings for CSF voxels did not exhibit high 

BSR values compared to their GM and WM counterparts, including CSF improved model performance. CSF 

information possibly indicates changes in brain volume and ventricle size that resulted in improved brain age 

prediction. 

Among the examined MEG features, PSD and AEC values yielded the best performance, however the PSD values 

were more reliable than the AEC values (compare BSR values in Fig. 5 and Supp. Fig. 1). We found the BSR of 

loading values for PSD values to be both positively and negatively correlated with age, depending on the frequency 

band (Fig. 5). Our results showed that delta and theta power decreases with age, most prominently in frontal regions. 

These results are in agreement with the fact that slower waves (0.5–7 Hz) have been reported to decrease in power 

in older adults as compared to their younger counterparts (Caplan et al., 2015; Cummins and Finnigan, 2007; Leirer 

et al., 2011; Vlahou et al., 2014). Increased frontal theta activity has been linked to better performance in memory 

tasks (Jensen and Tesche, 2002; Onton et al., 2005), which may explain the decreasing power in lower frequencies 

for increasing age. Regarding the alpha band, the strongest effect of age was observed in the occipital cortex, 

whereby increased power within the higher alpha subband (10-13 Hz) was negatively correlated with age. These 

results align with several studies that have reported an association between a decrease in alpha power and increasing 

age (Gómez et al., 2013; Hübner et al., 2018). However other studies have not reported significant changes in alpha 

power with age (Heinrichs-Graham and Wilson, 2016; Xifra-Porxas et al., 2019). Likely, the later studies did not 

have sufficient statistical power to detect this age-related decrease in alpha power, since the cohort size was below 

35 subjects, whereas the studies that reported an association between alpha power and age (including ours) had a 

sample size larger than 85.  

In line with many previous studies, we observed an association between beta power and age (Heinrichs-Graham 

and Wilson, 2016; Hübner et al., 2018; Rossiter et al., 2014; Xifra-Porxas et al., 2019). Specifically, we found that 

the age-related increase in lower beta power (13-26 Hz) was restricted to frontal regions, whereas higher beta power 

(26-35 Hz) was restricted to the motor cortex. This beta power increase has been linked to higher levels of 

intracortical GABAergic inhibition as tested by pharmacological manipulations (Hall et al., 2011; 
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Muthukumaraswamy et al., 2013). This suggests that the age-related changes in beta power might be associated 

with local GABA inhibitory function. 

Finally, we found that AEC measures exhibited an age-related increase in connectivity within all frequency bands 

across all brain networks, apart from the visual network which showed a decrease in connectivity for the high alpha 

and high beta frequency bands. These results align well with a recent study where Larivière et al. reported lower 

beta-band connectivity in the visual network and higher beta-band connectivity in all other brain networks with age 

(Larivière et al., 2019). Higher functional connectivity in older adults has been associated with a lower cognitive 

reserve (López et al., 2014), and individuals with mild cognitive impairment exhibit an enhancement of the strength 

of functional connections (Buldú et al., 2011). Overall, the results from these studies suggest that the age-related 

increase in functional connectivity, as seen in our study, may play a role in modulating cognitive resources and 

therefore represent a marker of the decline in cognitive functions observed during aging. 

 

4.4 Limitations 

A limitation of brain age prediction is the use of chronological age as a surrogate for brain age. Although we used 

a cohort of healthy subjects, the brain age is known to depend on various other factors, such as education (Steffener 

et al., 2016a). In this work, we ignored all lifestyle factors and aimed to predict the biological age from 

neuroimaging features. Further, we used a single model to predict the brain age for both males and females. These 

factors contribute to the biological age labels being noisy version of the “true” brain age of each subject.  

A major drawback of using GPR as a regression model is that the prediction is reasonably good only for the age 

range of the training data. Further, our cohort had less subjects in the lower and higher age ranges. Therefore, the 

model returned biased age predictions for the youngest and oldest subjects. This is illustrated in Fig. 6, which shows 

the plot of predicted age vs. chronological age for the CCA+GPR model using all neuroimaging features. The 

Figure 6. Plot of predicted age vs. biological age for the CCA+GPR model using concatenated MRI and MEG features. 
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predictions for the youngest subjects were higher than the chronological age, whereas the trend is reversed for the 

oldest subjects. To reduce the prediction bias of the model, future work could include the estimation methods 

proposed by (Smith et al., 2019) to optimally calculate the difference between the chronological and biological age.  

 

5 Conclusions 

We used a combination of structural and functional brain information to predict brain age in a cohort of healthy 

subjects, which yielded slightly better performance than using a single neuroimaging modality. We showed that 

dimensionality reduction techniques can be used to improve brain age prediction and identify key neuroimaging 

features that show age-related effects. Specifically, we found that using CCA in conjunction with GPR yielded the 

best model for age prediction, whereas PCA degraded prediction performance. We also showed that the most 

reliable predictors of age-related effects were the MRI features from subcortical structures such as the putamen, 

thalamus, and caudate nucleus, and WM regions such as the corpus callosum. 
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Supplementary material 

 

Supplementary Figure 1. BSR of CCA loadings for AEC values depicting functional connections whose strength 

increases (red) or decreases (blue) with age for each frequency band. The AEC matrices were sorted by functional 

networks according to the Yeo 7-network brain cortical parcellation (Vis=Visual, SM=Somatomotor, DA=Dorsal 

attention, VA=Ventral attention, Lim=Limbic, FP=Frontoparietal, DMN=Default mode network). Most functional 

connections tend to increase their strength with age, except from the connectivity within the visual network for the 

alpha high and beta high frequency bands. 
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