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Abstract: SUMOylation in plants is associated with biotic and abiotic stress responses, flowering and other 15 

aspects of development, and ICE1 protein SUMOylation by SUMO E3 ligase SIZ1 plays important roles in 16 

plant cold tolerance. Here, we reported the subcellular localization of EcaICE1 and its interaction with 17 

EcaSIZ1 in Eucalyptus camaldulensis. The genes EcaICE1 and EcaSIZ1 were isolated by homologous 18 

cloning. The subcellular localization analysis showed that EcaICE1 was located in nucleus．Bimolecular 19 

fluorescence complementation (BiFC) analysis revealed that EcaICE1 could interact with EcaSIZ1 in the 20 

nucleus of Nicotiana benthamiana leaves. Moreover, yeast two-hybrid assay confirmed that the amino acid 21 

region from position 84 to 126 in EcaICE1 was critical for the strong transactivation activity of EcaICE1 22 

and that the C terminal region from position 361 to 557 in EcaICE1 was the key region for its interaction 23 

with EcaSIZ1 by using different truncated lengths of non-transactivation activity of EcaICE1 as the bait 24 

protein. Collectively, our results showed that EcaICE1 may have a SUMOylation pathway similar to 25 

Arabidopsis thaliana.  26 

Key words: Eucalyptus camaldulensis; EcaICE1; EcaSIZ1; protein interaction; SUMOylation 27 
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Low temperature is one of the important environmental factors that could restrict the growth and 29 

development, geographical distribution and production of plants, and low temperature stress could reduce 30 

production in agriculture and forest (Janmohammadi et al. 2015). In order to overcome low temperature stress, a 31 

series of complex response mechanisms can be activated at physiological and molecular levels for plants (Shi et 32 

al. 2018). Researches reveal that a large number of cold-regulated genes (CORs) are induced after plant cold 33 

acclimation. These CORs genes usually contain DRE/CRT cis-acting elements and can be combined by 34 

transcription factors CBFs or DREB1s family (Stockinger et al. 1997). CBFs or DREB1s are key transcription 35 

factors of low temperature signaling pathway and play important roles in enhancing plant cold tolerance 36 

(Chinnusamy et al. 2007). However, CBFs or DREB1s are also induced by low temperature. ICE1 gene has been 37 

firstly verified from Arabidopsis thaliana, which can specifically bind to the cis-acting element of MYC 38 

promoter of CBF3 and then induce the expression of CBF3 downstream gene (Chinnusamy et al. 2003). After 39 

that, a lot of studies reveal that ICE-CBF-COR is the important signal network for plants to adapt to the cold 40 

stress (Shi et al. 2018). In Arabidopsis thaliana, ICE-CBF-COR pathway is positively or negatively controlled 41 

by some regulators at transcriptional, post-transcriptional and post-translational levels. SIZ1 (Miura et al. 2007) 42 

and OST1 (Ding et al. 2015) are positive regulators, while HOS1 (Dong et al. 2006) and MPK3/6 (Li et al. 2017) 43 

are negative regulators. The Ub E3 ligase HOS1, can ubiquitinate and degrade ICE1 protein, thereby increase the 44 

cold sensitivity of the transgenic plants (Dong et al. 2006). On the contrary, SUMO E3 ligase SIZ1, can enhance 45 

the stability of ICE1 protein by SUMOylation and promote the expression of CBF3, and then causes enhanced 46 

cold tolerance (Miura et al. 2007). OST1 can interact with ICE1, competed with HOS1, enhancing the stability 47 

and transcriptional activity of ICE1, further resulting in increased cold tolerance (Ding et al. 2015). Recently, the 48 

protein kinase MPK3/6 can interact with and phosphorylate ICE1, enhancing the degree of ubiquitination of 49 

ICE1, but the interaction between HOS1 and ICE1 is not affected, suggesting that the degradation of ICE1 50 

protein may be performed by the unknown E3 ligase (Li et al. 2017). Although ICE1 gene had been isolated 51 

from A. thaliana (Chinnusamy et al. 2003), Brassica juncea (Wang et al. 2005), Populus suaveolens (Lin et al. 52 

2007), wheat (Badawi et al. 2008), banana (ZHAO et al. 2013), E. camaldulensis (Lin et al. 2014), Pyrus 53 

ussuriensis (Huang et al. 2015) and Hevea brasiliensis (Deng et al. 2017), the understanding of its positive and 54 

negative regulations is still limited in woody plants. 55 

Eucalyptus species are the important commercial tree species worldwide. The molecular regulation 56 

mechanism of low temperature stress of Eucalyptus could have the potential to increase Eucalyptus plantation 57 

range. Eucalyptus CBF genes has been studied (Kayal et al. 2006; Gamboa et al. 2007; Navarro et al. 2009, 58 
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2011), but the knowledge about ICE1 or ICE1-like modules is still rather limited. Our precious studies have 59 

shown that the overexpression of EcaICE1 from E. camaldulensis can enhance the cold tolerance and the 60 

expression level of downstream genes in transgenic tobaccos (Lin et al. 2014). However, the studies of 61 

subcellular localization, transcription activity and upstream regulators of EcaICE1 remain uncertain. In this study, 62 

we analyzed the subcellular localization and the transcription activation region of EcaICE1. Furthermore, the 63 

protein interactions between EcaICE1 and EcaSIZ1 were verified by Bimolecular fluorescence complementation 64 

(BiFC) and Yeast two-hybrid (Y2H) assays.  65 

 66 

Methods and Materials 67 

Plant materials 68 

The 30-day-old rooting tissue culture plantlets of E. camaldulensis cv. 103 were used in this study. Tissue culture 69 

condition was performed as described previously (Lin et al. 2014). Tobacco (Nicotiana benthamiana) plants 70 

were maintained in a growth chamber of 25 ◦C under long day conditions (16/8 h light/dark photoperiod), and 71 

5-week-old plants were selected for further subcellular localization and BiFC analysis. 72 

            73 

RNA isolation and Gene cloning 74 

Total RNA was extracted as described previously (Lin et al. 2014). 1 μg DNase I-treated RNA was used for 75 

synthesizing the first strand cDNA according to the manufacturer’s instructions ( PrimeScript II 1st Strand 76 

cDNA Synthesis Kit; Takara, Dalian, China). The primers of EcaICE1 and EcaSIZ1 (listed as table 1) were 77 

designed by homology cloning techniques, and then used for amplifying the aim genes with the first strand 78 

cDNA as the template. The PCR process as follows: 95 ◦C for 4 min, followed by 35 cycles of 95 ◦C for 10 s, 58 79 

◦C for 10 s and 72 ◦C for 20 s.  80 

 81 

Bioinformatics analysis of gene sequence 82 

The coding sequence (CDS) of EcaICE1 and EcaSIZ1 were predicted using FGENESH 2.6 software 83 

( http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind ), and further 84 

confirmed by BLASTP program on the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The nuclear 85 

localization signals were predicted using ProtComp 9.0 (http://linux1.softberry.com/berry.phtml?topic= 86 

protcomppl&group=programs&subgroup=proloc), and the protein secondary domains were searched by Motif 87 
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scan (https://myhits.isb-sib.ch/cgi-bin/motif_scan). Finally, sequence alignments with other plants were 88 

performed with ClUSTALX software. 89 

 90 

Subcellular localization of EcaICE1  91 

The complete Open Reading Frame (ORF) of EcaICE1 was recombinated to the 5′-terminus of the yellow 92 

fluorescent protein (YFP) of the pEarleyGate101 vector with CaMV 35S promoter using primers (listed as table 93 

S1). The recombinant vector 35S::EcaICE1-YFP was transferred into Agrobacterium tumefaciens strain GV3101, 94 

further injected into the abaxial surfaces of 5-week-old tobacco with an incubator for 2-3 d. The YFP signal in 95 

the leaves of tobacco was examined using confocal microscopy (Olympus BX61, Tokyo, Japan). 96 

 97 

Bimolecular fluorescence complementation (BiFC) assay 98 

To generate the constructs for BiFC assays, the full-length CDS of EcaICE1 and EcaHOS1 (without their stop 99 

codons) were subcloned into pUC-pSPYNE or pUCpSPYCE vectors as described previously (Walter et al. 100 

2004). Expressions of target genes alone were used as negative controls. The resulting recombinant vectors were 101 

used for transient assays of tobacco leaves as described earlier. The transformed tobacco leaves were then 102 

incubated at 22 ◦C for 24–48 h. The YFP signal was observed using a florescence microscope (Zeiss Axioskop 2 103 

plus). The primers for BiFC assay were listed in Supporting Information Table S2. 104 

 105 

Yeast two-hybrid (Y2H) assay 106 

Yeast two-hybrid assays were performed using the Matchmaker™ gold Yeast two-Hybrid Systems (Clontech). 107 

Different truncated CDS of EcaICE1 without transcriptional activation activity and EcaSIZ1 were subcloned into 108 

pGBKT7 and pGADT7 vectors to fuse with the DNA-binding domain (DBD) and activation domain (AD), 109 

respectively, to create different baits and preys (primers are listed in Supplemental table S3). Then, different 110 

pairs of bait and prey recombinants were co-transformed into yeast strain gold Y2H by the lithium acetate 111 

method, and yeast cells were grown on SD/-LW medium (minimal media double dropouts, SD medium with 112 

-Leu/-Trp) according to the manufacturer’s protocol (Clontech) for 3 days. Transformed colonies were plated 113 

onto SD/-LWHA medium (minimal media quadruple dropouts, SD medium with-Leu/-Trp/-Ade/-His) containing 114 

125-μM Aureobasidin A (AbA), to test for possible interactions among EcaICE1 and EcaSIZ1, according to the 115 

yeast cell growth status. 116 

 117 

Transcriptional activation assay 118 

The full-length ORF of EcaICE1 and EcaSIZ1 were recombinated into pGBKT7 vector, respectively, and 119 
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co-transformed into yeast strain gold Y2H. Then we found that both EcaICE1 and EcaHOS1 had strong 120 

transcriptional activation activity (results are listed in Supplemental Figure S4). So we further performed 121 

transcriptional activation assay for EcaICE1. Different truncated coding regions of EcaICE1 (EcaICE1T1~T6) 122 

were recombinated into pGBKT7 vector, then followed Y2H assay, adding 0, 125, 250, and 500 μM AbA, to 123 

further discover the critical region of transactivation activity for EcaICE1. The primers were listed in Supporting 124 

Information Table S3. 125 

 126 

RESULT 127 

The gene amplification and sequencing analysis of EcaICE1 and EcaSIZ1 128 

The multiple alignments of plant ICE1 protein sequences (Figure 1) shows that the EcaICE1 protein has a highly 129 

conserved MYC-like bHLH domain (basic helix-loop-helix) and a zipper structure at the C-terminus, and an 130 

S-rich (Serine-rich) acidic domain at the N-terminus. In addition, the SUMO binding site is also present in 131 

EcaICE1 and the other two Eucalyptus ICE1, and it is identical to ICE1 from A. thaliana and Capsella 132 

buras-pastoris, but slightly different from the other woody plants. Furthermore，the 363-381 position of EcaICE1 133 

protein is a nuclear localization signal, as shown in the NLS（Nuclear localization sequence）box, which means 134 

that it may be located in the nucleus. However, it is interesting that only Eucalyptus ICE1 proteins have a Q-rich 135 

(Glutamine-rich) domain, suggesting that Eucalyptus ICE1 proteins might have different characteristics with the 136 

other plants.  137 

The amplified EcaSIZE1 cDNA is 2847bp with a full ORF (2616 bp) encoding 872 amino acids. BLAST 138 

analysis illustrates that EcaSIZ1 shares a high sequence identity with other plant SIZ1-like proteins, such as E. 139 

grandis (99%, XP_010043707), Ziziphus jujube (72%, XP_015880489), Malus domestica (72%, 140 

XP_008385287), Citrus sinensis (70%, XP_006488140), P. trichocarpa (71%, XP_024454498), and A. thaliana 141 

(68%, OAO90655), respectively. The multiple alignments of plant SIZ1 protein sequences (Figure 2) 142 

demonstrate that EcaSIZ1 protein has a conserved MIZ1/SP zinc finger domain, SAP, PINIT, SXS and 143 

PHD, similar to other plant HOS1 proteins. These results show that EcaSIZ1 is the SIZ1 protein from E. 144 

camaldulensis. 145 

 146 

Subcellular localization of EcaICE1 147 

Based on the multiple alignment analysis (Figure 1), there was one potential NLS sequence in the bHLH domain 148 
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of EcaICE1. To investigate the subcellular localization of EcaICE1 in plant cells, the full-length coding region of 149 

EcaICE1 was fused to the N–terminus of the YFP reporter gene under the control of the 35S promoter 150 

(35S::EcaICE1-YFP). By transient analysis using tobacco leaf epidermis, the yellow fluorescence of EcaICE1 151 

fused-proteins was localized exclusively in the nucleus (Figure 3), indicating that EcaICE1 was a nuclear 152 

localized protein, similar to other plant ICE1(Huang et al. 2015; Deng et al. 2017), consistent with the classical 153 

role of bHLH as transcriptional regulators in plants (Gabriela et al. 2003). 154 

 155 

EcaICE1 could interact with EcaSIZ1 156 

Previous report showed that SIZ1 could interact with ICE1 to regulate its transcriptional activity in A. thaliana, 157 

which plays an important role in response to cold stress (Miura et al. 2007). In order to investigate whether 158 

EcaSIZ1 could also interact with EcaICE1 in E. camaldulensis, the protein-protein interactions between 159 

EcaICE1 with EcaHOS1 were first analysed using BiFC assay in tobacco leaves. The YFP fluorescent signal was 160 

observed at the nucleus when EcaICE1-pSPYCE was co-transfected with EcaHOS1-pSPYNE (Figure 4). In 161 

contrast, no YFP fluorescent signal was observed in the negative controls including EcaICE1-pSPYCE 162 

co-expressed with unfused pSPYNE or EcaHOS1-pSPYNE co-expressed with unfused pSPYCE. These results 163 

showed that EcaICE1 could interact with EcaSIZ1 to form heterodimers at the nucleus (Figure 4). 164 

 165 

Transcriptional activation domain of EcaICE1 166 

To further discover the protein-protein interaction region between EcaICE1 with EcaHOS1, we performed the 167 

Y2H assay. It was surprised that not only EcaICE1 but also EcaHOS1 had strong transactivation activity when 168 

their full-length sequences were fused into the pGBKT7 vector and co-transfected with pGADT7 empty vector, 169 

respectively (Figure S4). In order to remove the effects of strong transactivation activity on protein-protein 170 

interaction, we further characterized which region of EcaICE1 acts as transcriptional transactivation, Y2H assays 171 

were carried out using intact or truncated EcaICE1 as an effector (Figure 5A). The transfected yeast cells 172 

harboring either the full-length EcaICE1 (pGBKT7-EcaICE1) or the truncated version (EcaICE1T1(1-41a); 173 

EcaICE1T2(1-83a)) grew well on the selection medium SD/-LWHA, suggesting that the N-terminal 1-83 residues 174 

are not necessary for transactivation activity of the EcaICE1. In contrast, when the N-terminal amino acids of the 175 

other truncated version (EcaICE1T3(1-125aa); EcaICE1T4 (1-184aa); EcaICE1T5(1-316aa); EcaICE1T6(1-360aa)) 176 

were deleted, no interactions were detected (Figure 5B). Taken together, these results demonstrate that amino 177 

acids from positions 84 to 125 in EcaICE1 are critical for the transactivation activity of EcaICE1, which contains 178 
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Q-rich domain (Figure 1), in agreement with transactivation domain mode in Sp1 (Courey et al. 1989).  179 

 180 

Protein-protein interaction region between EcaICE1 with EcaSIZ1 181 

Now the truncated EcaICE1 proteins without transcriptional activation activity (EcaICE1T3~T6) were fused 182 

to the GAL4 activation domain of vector pGBKT7 and co-transformed with pGADT7-EcaHOS1 into yeast strain 183 

separately to exam the protein-protein interaction region between EcaICE1 with EcaHOS1. The results showed 184 

(Figure 6) that all the truncated EcaICE1T3 could interact with EcaHOS1, indicating that the C-terminus protein 185 

of EcaICE1(361-557aa) is indispensable for its interaction with EcaHOS1 protein, similar to A. thaliana (Miura 186 

et al. 2007).  187 

 188 

DISCUSSION 189 

It is reported that China is the world's second largest wood consumer and the first largest wood 190 

importer (Lin 2019 ). At present, Chinese annual wood consumption has exceeded 600 million cubic meters, 191 

and its wood demand has become more than 50% dependent on imports. Eucalyptus, the main trees of 192 

man-made forest in South China even whole China, plays an important role in Chinese wooden market ( Li 193 

et al. 2017 ). However, low temperature is a primary disadvantage factor, which causes the biomass to fall, 194 

and limits the development of its health (Janmohammadi et al. 2015). As the result, it is important to reveal 195 

the molecular mechanism of cold stress in Eucalyptus for improving the cold tolerance on the inheritance 196 

level as well as expanding the growing in northern region. In Arabidopsis, the cold signaling pathways, 197 

ICE-CBF-COR pathway (Ding et al. 2015; Shi et al. 2018) and ICE-CBF pathway is positively correlated 198 

with response to low temperature stress (Lin et al. 2014), had been studied clearly while the research of 199 

subcellular localization, transcriptional activation and interactions with upstream regulators in E. 200 

camaldulensis has still uncertain. Therefore, we further analyze the subcellular localization, transcriptional 201 

activation of EcaICE1, and EcaSIZ1 (the homologous gene of SIZ1) was cloned to determine the protein 202 

interactions between EcaICE1 and EcaSIZ1 as well as the key region by BiFC and yeast two-hybrid system 203 

technology for exploring the SUMOylation pathway of EcaICE1. 204 

According to the multiple comparison of EcaICE1 protein sequence, these is a nuclear localization 205 

sequence signal in its bHLH-ZIP domain, indicated that EcaICE1 may be located in nucleus. Further, the 206 

analysis of subcellular localization demonstrates that EcaICE1 is really located in nucleus, which is similar 207 

to P. ussuriensis (Huang et al. 2015) and H. brasiliensis (Deng et al. 2017) as well as according with the 208 
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characteristics of transcription factor family of plant bHLH (Gabriela et al. 2003). Above all, EcaICE1, 209 

located in nucleus, may play a regulatory role in the molecular mechanism of cold stress. What is more, we 210 

further found that the EcaICE1 84th to 95th amino acid of N-terminal, which is the Glutamine-rich domain, 211 

was identical with its homologous gene of ICE1 in E. grandis and E. globulus, and this domain only was 212 

found in the ICE1 homologous protein in Eucalyptus. Interestingly, it was found that EcaICE1 protein had 213 

strong transcriptional activation activity. Similar results were also reported on the ICE1 in P. ussuriensis 214 

(Huang et al. 2015) and H. brasiliensis (Deng et al. 2017) while ICE1 protein did not have transcriptional 215 

activation activity in Arabidopsis. The 46th to 95th and the 1th to 402th amino acid of N-terminal of 216 

protein were verified that those are the key region of transcriptional activation activity in PuICE1 of P. 217 

ussuriensis (Huang et al. 2015) and HbICE1 of H. brasiliensis (Deng et al. 2017), respectively. 218 

Unfortunately, neither of them further explored the structural characteristics of the transcriptional activation 219 

region. This study indicated that 84th to 125th amino acid of N-terminal of protein was the critical region 220 

of transcriptional activation in EcaICE1 of E. camaldulensis, including the Q-rich domain as well as 221 

according with the transcriptional activation structure of classical transcription factor Sp1 (Courey et al. 222 

1989). It means that Q-rich domain may be the key transcriptional activation region of EcaICE1 protein. 223 

SUMOylation is a posttranslational regulatory process in eukaryotes, including cold tolerance (Miura 224 

et al. 2007), ABA response (Miura et al. 2009), flowering time (Bo et al. 2010) and drought tolerance 225 

(Miura et al. 2013) and most of them are mainly devoting to A. thaliana. Studies in A. thaliana have shown 226 

that the SUMOylation pathway is mainly mediated by the SUMO E3 ligase SIZ1. Currently, SIZ1 genes 227 

have been isolated from plants such as rice (PARK et al. 2010), Dendrobium nobile (Liu et al. 2015), apple 228 

(Zhang et al. 2016), soybean (Cai et al. 2017) and tomato (Zhang et al. 2017), but no study on cloning the 229 

gene SIZ1 and its interaction with ICE1 in forest trees. The coding sequence of EcaSIZ1, which was 230 

isolated in this study, is similar to the cloned SIZ1 protein in the above plants, and also has similar protein 231 

secondary domains such as MIZ1/SP zinc finger domain, SAP domain, PINIT domain, SXS domain and 232 

PHD domain. Among them, MIZ1/SP zinc finger domain is associated with SUMO E3 ligase activity, and 233 

The SXS domain is associated with binding of SUMO (Miura et al. 2007). The SAP domain promotes 234 

binding to DNA, PINIT domain is related to intracellular retention. The above plant SIZ1 proteins are 235 

located in the nucleus and EcaSIZ1 protein should also have this conserved domain, so it indicated that 236 

EcaSIZ1 may be located in the nucleus too. PHD domain is a plant homologous domain, which only exists 237 

in SIZ1 proteins in plant (Park et al. 2010). Meanwhile, EcaSIZ1 protein shared more than 70% identity 238 
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with other woody plants at the SIZ1 homologous protein level, indicating that EcaSIZ1 is the SIZ1 gene 239 

from E. camaldulensis, and its encoded protein may have SUMO E3 ligase activity and mediate 240 

SUMOylation in the nucleus. 241 

BiFC assay showed that EcaICE1 and EcaSIZ1 had the protein interaction in plant nucleus, but which 242 

region of EcaICE1 was the key region of protein interaction is still unknown. Therefore, using EcaICE1 243 

with different truncated lengths without transcriptional activation activity as decoy protein, the 361th to 244 

557th amino acid region at the C-terminal of EcaICE1 protein where was the key region of its interaction 245 

with EcaSIZ1 was further identified by yeast hybrid technology. The protein sequence of EcaICE1 in this 246 

region contained a SUMO domain, which was completely consistent with the result of A. thaliana, 247 

suggesting that the process of ICE1 SUMOylation, mediated by SIZ1, might be similar to A. thaliana 248 

(Miura et al. 2007). As for whether EcaSIZ1 has SUMO E3 ligase activity and whether it could couple with 249 

EcaICE1 forming the SUMO coupling for playing a role in cold toleration in plant, need further 250 

experiments to confirm. 251 

 252 

CONCLUSIONS 253 

In this study, we cloned the gene EcaICE1 and EcaSIZ1 from E. camaldulensis, and the amplification 254 

of EcaICE1 was the same as the previous result, and EcaSIZ1 was highly conserved with other plant SIZ1 255 

genes. EcaICE1 was similar to other ICE1 in plant, located in nucleus, and it had a strong transcriptional 256 

activation activity. Moreover, the 84-126 amino acid regions of N-terminal domain of EcaICE1 protein, 257 

were the key region of transcriptional activation activity of EcaICE1. In addition, the C-terminal region 258 

from position 361 to 557 in EcaICE1 was the key region for its interaction with EcaSIZ1. According to this 259 

study, we made a foundation on SUMOylation pathway and the molecular regulation mechanism of 260 

EcaICE1.  261 
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Table 1 Primers used in the experiments 347 

primers Primer sequences(5′→3′) 

EcaICE1-F ATGGTTCTGGGTCCCAGCG 

EcaICE1-R TCACACCATCCCATGGAAGC 

EcaSIZ1-F ATGGATTTGGTCTCTAGTTGCAAG 

EcaSIZ1-R CTATTCAGAATCTGATTCAATAGAAAGGTACA 

 348 

  349 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/859819doi: bioRxiv preprint 

https://doi.org/10.1101/859819
http://creativecommons.org/licenses/by/4.0/


 350 

Figure 1 Amino acid alignment of the EcaICE1 protein with twelve plant ICE1 proteins.  351 

The predicted protein domains were shown. The Arabidopsis thaliana AtICE1 (Accession: AAP14668), Capsella bursa 352 

CbICE1 (Accession: AAS7935), Camellia sinensis CsICE1 (Accession: GQ229032), Eucalyptus camaldulensis EcaICE1 353 

(Accession: MH899180), E. globulus EglICE1 (Accession: AEF33833), E. grandis EgrICE1 (Accession: XP_010066419), 354 

Glycine max GmICE1 (Accession: ACJ39211), Hevea brasiliensis HbICE1 (Accession: JT926796), Malus domestica 355 

MdICE1 (Accession: ABS50251), Populus suaveolens PsICE1 (Accession: ABF48720), P. trichocarpa PtICE1 (Accession: 356 

ABN58427) and Pyrus ussuriensis PuICE1 (Accession: APC57593) proteins are included. 357 
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 359 

Figure 2 Multi- alignment of amino acid of SIZ1 from Eucalyptus camaldulensis and other plants and their 360 

conserved domains 361 

Arabidopsis thaliana: AtSIZ1, OAO90655; Citrus sinensis: CsSIZ1, XP_006488140; Eucalyptus camaldulensis: EcaSIZ1, MH899182; E. 362 

grandis: EgrSIZ1, XP_010043707; Malus domestica: MdSIZ1, XP_008385287; Ziziphus jujuba: ZjSIZ1, XP_015880489; Populus 363 

trichocarpa: PtrSIZ1, XP_024454498. 364 
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 366 

Figure 3 Subcellular localization of EcaICE1 in leaves of Nicotiana benthamiana 367 

YFP: the yellow fluorescence signals under YFP-excited; Bright field: figure under bright field; Merge: The 368 

merge of YFP and bright field．Bar is 20 μm. 369 
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 371 

Figure 4 The protein interaction of EcaICE1 and EcaSIZ1 identificated by bimolecular fluorescence 372 

complementation methods 373 

YFP: the yellow fluorescence signals under YFP-excited; Bright field: figure under bright field; Merge: The 374 

merge of YFP and bright field．Bar is 20 μm. 375 
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 377 

   378 

Figure 5 Transcriptional activation region analysis of EcaICE1 protein 379 

BD: pGBKT7 vetor; AD: pGADT7 vetor; SD/-LW: SD/-Leu-Trp: double dropouts, SD medium with -Leu/-Trp; 380 

SD/-LWHA: quadruple dropouts, SD medium with-Leu-Trp-His-Ade;100
、10-1
、10-2: dilutions with 1, 10 and 100 381 

times respectively. 382 

  383 

A 

B 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/859819doi: bioRxiv preprint 

https://doi.org/10.1101/859819
http://creativecommons.org/licenses/by/4.0/


  384 

Figure 6 The interaction identification of EcaICE1 and EcaSIZ1 by yeast two-hybrid methods 385 

BD: pGBKT7 vetor; AD: pGADT7 vetor; SD/-LW: SD/-Leu-Trp: double dropouts, SD medium with -Leu/-Trp; 386 

SD/-LWHA: quadruple dropouts, SD medium with-Leu-Trp-His-Ade;100
、10-1

、10-2:  dilutions with 1, 10 and 387 

100 times respectively. 388 
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