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Abstract

Quantitative dynamical models are widely used to study cellular signal processing. A critical step

in modeling is the estimation of unknown model parameters from experimental data. As model sizes

and datasets are steadily growing, established parameter optimization approaches for mechanistic models

become computationally extremely challenging. However, mini-batch optimization methods, as employed

in deep learning, have better scaling properties. In this work, we adapt, apply, and benchmark mini-

batch optimization for ordinary differential equation (ODE) models thereby establishing a direct link

between dynamic modeling and machine learning. On our main application example, a large-scale model

of cancer signaling, we benchmark mini-batch optimization against established methods, achieving better

optimization results and reducing computation by more than an order of magnitude. We expect that

our work will serve as a first step towards mini-batch optimization tailored to ODE models and enable

modeling of even larger and more complex systems than what is currently possible.

Introduction

Cellular signal processing controls key properties of diverse mechanisms such as cell division (42), growth

(36), differentiation (7), or apoptosis (56). Understanding its highly dynamic and complex nature is one
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of the major goals of systems biology (29). A common approach is modeling signaling pathways using

ordinary differential equations (ODEs) (10; 14; 27; 60; 68). To account for the complex cross-talk between

different pathways, recent models grew increasingly large, reaching the boundaries of what is currently

computationally feasible (14; 21; 31; 54).

Most ODE models contain unknown parameters, e.g., reaction rate constants, which have to be inferred

from measurement data such as immuno-blotting (8), proteomics (21), quantitative PCR (3), or viability

(14). The larger a model becomes, the more data are needed to ensure the reliability of parameter

estimates and model predictions (2). For models of cancer signaling, public databases (4; 12; 35; 43)

can be exploited. Yet, if the data used to calibrate the model is derived from different experimental

conditions, those constitute independent initial value problems, which need to be simulated repeatedly

during model training (48). This causes a linear scaling of the computation time with the number of

experimental conditions to be simulated. For large-scale ODE models with hundreds to thousands of

chemical species and thousands of experimental conditions, this can take tens of thousands of computing

hours, even if one applies state-of-the-art methods, such as exploiting adjoint sensitivity analysis and

hierarchical problem structures (14; 54).

For training of ODE models, gradient-based approaches such as multi-start local optimization (48) or

hybrid scatter search (62) have repeatedly shown to be the best performing methods to date (48; 52; 62).

In multi-start local optimization, local optimizations are initialized at many randomized starting points

in order to globally explore the parameter space (15). For small- to medium-scale models, these methods

unravel the structure of local optima and recover the same global optimum (20; 48) reproducibly. However,

for large-scale models, where each local optimization is computationally expensive, only a small number

of starts can be performed (14; 21; 54). This is one of the main reasons why satisfactory parameter

optimization for large-scale ODE models is still an open problem (26).

In the field of deep learning, where also gradient-based local optimization methods are used (33; 40; 51;

58), model training is often performed on vast datasets, requiring many independent model evaluations

(25; 32). The problematic scaling behavior with respect to the size of the dataset is addressed by mini-

batch optimization (1; 19; 57; 66): In each step of parameter optimization, a randomly sampled subset –

a mini-batch – of the training data is used to inform the optimization process (19; 49). Hence, the model

is only evaluated on a fraction of the dataset per optimization step, which leads to a drastic reduction of

computation time (19; 66).

Sophisticated implementations of many mini-batch optimization algorithms are available in state-of-

the-art toolboxes for neural nets, such as Tensorflow (1). Conceptually, these frameworks can be employed

to mimic simple ODE solver schemes, e.g., a forward Euler integration, such as done in (67). However,

it is well-known that ODE models in systems biology typically exhibit stiff dynamics. This makes it

necessary to employ advanced numerical integration methods, such as implicit solvers with adaptive

time stepping (30; 41; 48). This implies that it is essential to combine advanced methods from both

fields, deep learning and ODE modeling. Furthermore, it is not clear how hyperparameters of mini-batch

optimization methods, such as the mini-batch size, the learning rate, the optimization algorithm or other

tuning parameters affect the optimization process for ODE models.
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We implemented various mini-batch optimization algorithms for ODE models. We benchmarked these

algorithms on small- to medium-scale ODE models, identified the most important hyperparameters for

successful parameter optimization, and introduced algorithmic improvements, which are tailored to ODE

modeling. Then, we transfer the approach to a large-scale model of cancer signaling (14), which we

trained on a dataset comprising 13,000 experimental conditions – an unprecedented scale for training

an ODE model. For this application example, we benchmarked our approach against state-of-the-art

methods (14), achieving better optimization results while reducing the computation time by more than

an order of magnitude. To the best of our knowledge, this is the first study integrating advanced training

algorithms from deep learning with sophisticated tools from ODE modeling.

Results

Implementation of mini-batch optimization algorithms for ODE models

The inference of model parameters θ from experimental data is based on reducing a distance measure

between simulated model outputs and measurements. In practice, the distance metric is often based on

the assumption that the measurement noise is normally distributed and independent for each data point.

The corresponding negative log-likelihood function J , which serves as objective or cost function, is (up to

a constant, more details in the Methods section and the Supplementary Information) given by the sum

of weighted least squares:

J(θ) =
1

2

M∑
e=1

Ne∑
i=1

(ȳe,i − ye,i(θ))2

σ2
e,i

(1)

Here,M denotes the number of different experimental conditions, Ne the number of measured data points

for condition e, ȳe,i are the measured data points, ye,i are the observables from the model simulation,

and σe,i denotes the standard deviation for data point ȳe,i. An experimental condition is the setting

of a specific biological perturbation experiment, such as a stimulation with a drug and its dosage, but

it can also comprise differences in the experiment which are due to working with different cell-lines. In

the ODE model, these experimental settings are given by a vector of input parameters, which define the

initial value problem and hence determine the time-evolution of the studied system. If the system has

M experimental conditions, this means that the underlying ODE model must be evaluated M times for

different input parameter vectors, i.e., M different initial value problems have to be solved to evaluate

the (full) objective function. A more detailed explanation of this aspect is given in the Methods section,

an explanation in a more general context is given in the Supplementary Information.

Classical (full-batch) optimization methods evaluate the full objective function, i.e., simulate all ex-

perimental conditions, in each iteration of parameter optimization (Fig 1A). In contrast, mini-batch

optimization methods evaluate only the contribution to the objective function coming from a randomly

chosen subset, a mini-batch, of experimental conditions in each step (19; 49). The cycle until the whole

dataset has been simulated, i.e., the computational equivalent of one iteration in full-batch optimization,

is called an epoch. It is important to note that each experimental condition is simulated only once per

epoch, i.e., the experimental conditions are drawn in a random, but non-redundant fashion. In this way,

mini-batch optimization allows to perform more – but less informed – optimization steps than classical
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Figure 1: Visualization of full-batch and mini-batch optimization. A Classical full-batch optimization methods

evaluate the contribution of all data points – and thus all experimental conditions – to the objective function in each

step. The computation time scales linearly with the number of independently evaluable experimental conditions. B

In mini-batch optimization, the independent experimental conditions are randomly divided into disjoint subsets, the

mini-batches. Per optimization step, only the contribution of the chosen mini-batch is evaluated. Hence, possibly

many optimization steps can be performed during one epoch, which is the time needed to evaluate the objective

function on the whole dataset.

full-batch approaches in the same computation time.

Various algorithms exist for full-batch and mini-batch optimization and each algorithm is influenced

by different hyperparameters and optimizer settings. For full-batch optimization methods such as BFGS

(18) and interior-point algorithms (64), many hyperparameters are associated with stopping conditions

and at least good rules-of-thumb exist for their choice. For mini-batch optimization, there are various

critical and less studied hyperparameters, e.g., the learning rate, which controls – but is not identical to –

the size of the optimization step in parameter space. In order to apply mini-batch optimization methods

to ODE models and benchmark the influence of these hyperparameters, we implemented some of the most

common algorithms in the parallelizable optimization framework parPE (54): Vanilla stochastic gradient

descent (SGD) (49), stochastic gradient descent with momentum (47; 58), RMSProp (61), and Adam

(28) (see also Supplementary Information, Algorithms 1, 2, 3, and 4). This allowed a direct comparison

with the implemented full-batch optimizers when using multi-start local optimization. More importantly,
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Table 1 Overview of ODE models for benchmarking mini-batch optimization

Model name State variables Parameters Conditions Data points Reference

Fujita 9 19 600 6,000 (17)

Bachmann 25 40 1,200 12,000 (3)

Lucarelli 33 72 1,500 60,000 (38)

our implementation in parPE combines state-of-the-art numerical integration methods available in the

SUNDIALS solver package (24) and adjoint sensitivity analysis for scalable gradient evaluation (13), since

simple schemes (such as Euler’s method) can not be expected to yield reliable results for this problem

class.

Mini-batch size and learning rate schedules have a strong influence on optimizer

performance

To evaluate available mini-batch optimization algorithms for ODE models, we considered three benchmark

problems (Table 1, adapted from (20)). To facilitate the analysis of the scaling behaviour with respect

to the number of experimental conditions, we generated artificial data (Fig. 2A). Details on the three

benchmark examples and on the artificial datasets are given in the Methods section.

We used a mini-batch size of 30 experimental conditions and 50 epochs of training – corresponding

to roughly 50 iterations of a classical full-batch optimizer – which are typical hyperparameter choices in

deep learning (19). We benchmarked the four implemented optimization algorithms: Vanilla stochastic

gradient descent (SGD), stochastic gradient descent with momentum, RMSProp, and Adam (details are

given in the Mathods section). To assess the impact of the learning rate, we considered three schedules:

a medium and a low learning rate, both logarithmically decreasing, and a fixed learning rate. Details

on these choices are given in the Methods section. The well-established full-batch optimizer Ipopt (64)

was used as benchmark and was granted 50 iterations, so all tested methods had a similar computational

budget. For each model, 100 randomly chosen initial parameter vectors were created, from which all

optimizers were started. To assess the overall performance of each optimizer setting, we sorted the starts

by their final objective function value and each of the 100 starts was ranked across the optimizer settings.

Computing the mean of the 100 rankings for each setting led to an averaged rank, which we used as a

proxy for overall optimization quality (Fig. 2A).

We found across all algorithms that the highest, i.e., the medium, but decreasing learning rate was

preferred, the low but decreasing learning rate was second and the constant, medium learning rate resulted

in the worst performance (Fig. 2B). A higher learning rate in the beginning of the optimization process

seemed to be crucial for the mini-batch optimizers to progress quickly towards favorable regions of the

parameter space (Supplementary Fig. 1, 2, and 3). Given the medium learning rate, different algorithms

were able to compete with or even outperform the full-batch optimizer Ipopt, but the adaptive algorithm

RMSProp performed particularly well. In most cases, the preferred learning rates led to step-sizes during

optimization which were comparable or slightly lower than those which were chosen by classical (full-
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Figure 2: Bechmarking full-batch against mini-batch optimization methods on small- to medium-scale models. A

Schematic overview of optimizer comparison: Benchmark models were chosen, noisy artificial data created, 100

initial points randomly sampled and different local optimizers started, each start was ranked between optimizers and

an averaged score was computed. B Comparison of performance for different local optimizers with three different

learning rate schedules (lower rank implies better performance, ranks of models are stacked). C Top 25 starts of the

local optimizer Adam with tuning parameters taken from the literature (standard) vs. a simplified version (tuned).

D-F Boxplots of final cost function values for the best 25 starts of the two best mini-batch optimizers, compared

against the Ipopt (full-batch optimizer), for each model. G Comparison of performance for all starts of the best two

mini-batch optimizers given the best learning rate, for different mini-batch sizes, compared against Ipopt (ranks of

models are stacked).
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batch) optimization methods (Supplementary Fig. 4).

Given these findings, we compared the optimization algorithm Adam – which is maybe the most

popular algorithm for training deep neural nets – with two different tuning variants: the tuning proposed

in the original publication (called standard, see (28)) and a simplified scheme (called tuned), which

employs the same rate for both internally used decaying averages (see Methods for more details). The

analysis of the best 25 starts for all models with medium, decreasing learning rate showed that the tuned

version outperformed the original one for all cases on our benchmark examples (Fig. 2C, Supplementary

Fig. 1, 2, and 3). When comparing the performance of the tuned version of Adam and RMSProp with

medium learning rate, we see that they show a very similar performance for the best 25 starts for all

three tested models and perform as good as Ipopt or even better (Fig. 2D-F).

We then assessed the impact of the mini-batch size on the optimization result. Again, we used

an average ranking, 100 starts, and investigated 6 mini-batch sizes for each model. We restricted our

analysis to the two previously best performing optimization algorithms, tuned Adam and RMSProp, with

the medium but decreasing learning rate. We found that in general, small mini-batch sizes were preferred,

but the optimal size seemed to be model dependent (Fig. 2G, Supplementary Fig. 5, 6, and 7). While

a mini-batch size of only one experimental condition worked best for the smallest example (Fujita), a

mini-batch size of 10 experimental conditions performed best for the other two examples, yielding about

0.1% to 1% of the whole dataset as mini-batch. Interestingly, the mini-batch size seemed to impact both

optimization algorithms to the same degree.

Combining mini-batch optimization with backtracking line-search improves the ro-

bustness of the optimization process

A common challenge when performing parameter estimation for ODE models are regions in parameter

space for which the numerical integration of the ODE is difficult or even fails. This may happen due

to bad numerical conditioning of the problem or simply the divergence of the solutions (24). For this

reason, full-batch optimizers use line-search or trust-region approaches (45), which can deal with these

non-evaluable points by adapting the step-size (Fig. 3A). We found these problems also present in our

benchmark examples (Fig. 3B, left), leading to failure of local optimization processes as available mini-

batch optimization methods cannot handle failures of the objective function evaluation (probably because

it is not encountered in deep learning). Hence, we implemented a rescue functionality, which attempts

to recover a local optimization by undoing the previous step and performing backtracking line-search. In

some cases, these failures happened at the initial points of optimization, and could hence not be recovered.

In all of the remaining cases, the rescue functionality was able to successfully recover the respective local

optimization (Fig. 3B). More details are given in the Methods section and Supplementary Information,

Algorithm 5.

In the previous study, best optimization performance was achieved with medium learning rates. In

the following, we increased the learning rate to higher values, but found it obstructing the optimization

process (Fig. 3C). As overall, higher learning rates were beneficial and as it is a priori not clear for a

given model what a good learning rate would be, we implemented an additional backtracking line-search.
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Figure 3: Influence of line-search methods on optimizers performance and reliability. A Schematic of the rescue

functionality, which tries to recover from failed model evaluations, based on backtracking line-search. B Percentage of

failed local optimizations per model (with optimizer Adam) due to non-integrability of the underlying ODE. Failure

at the initial point of optimization can not be recovered, but failure during the optimization process is prevented when

applying the rescue functionality. C Boxplots for the best 25 starts of mini-batch optimizers Adam for three different

learning rates for the largest example (Lucarelli), showing that too high learning rates obstruct the optimization

process. D Line-search implementation for mini-batch optimizers is implemented based on backtracking, while keeping

the mini-batch fixed during line-search. E Comparison of performance for optimizer Adam, given different learning

rates, for naive implementation, with rescue functionality, and rescue functionality and line-search (ranks of models

are stacked). F All starts of the local optimizer Adam for the largest of the three examples (Lucarelli), naive

implementation compared against rescue functionality and line-search, employing a high learning rate. G Waterfall

plot for the largest of the three examples (Lucarelli), for naive implementation of Adam, with rescue functionality

and with rescue functionality and line-search.
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It re-evaluates the objective function without gradient on the same mini-batch for different step-sizes,

before accepting a proposed step (Fig. 3D). Details on the implementation can be found in the Methods

section (Fig. 7) and Supplementary Information, Algorithm 6.

We evaluated these two algorithmic improvements for Adam and the medium and high learning rate

on the three benchmark models (Fig. 3E, Supplementary Fig. 8). Interestingly, we found the strongest

improvement for the largest model, although it suffers only little from integration failure (Fig. 3B). The

line-search substantially improved the optimization process at high learning rates, which can be seen

in a direct comparison (Fig. 3F) and in the waterfall plot (Fig. 3G). Considering all three models, we

saw that the rescue functionality was generally helpful, whereas the line-search could also reduce the

computational efficiency in case a good learning rate was chosen (Fig. 3E). This is not surprising, as

the line-search needs additional computation time and some optimization runs were stopped prematurely

due to imposed wall-time limits. However, these negative effects at lower learning rates were mild when

compared against the positive effects at high learning rates and as the selection of a good learning rate

is currently a trial-and-error process, the adaptation is highly beneficial.

Mini-batch optimization enables training of predictive models of the drug response

of cancer cell-lines

Following the successful testing and improvement, we evaluated how mini-batch optimization combines

with sophisticated numerical integration algorithms applied for large-scale problems. Therefore, we con-

sidered the largest publicly available ODE model of cancer signaling (14). The model comprises various

pathways and their cross-talk and captures 1,228 biochemical species and 2,686 reactions and was orig-

inally developed and provided by Alacris Theranostics. The generic chemical reaction network can be

adapted to cancer cell-lines and treatment conditions using input parameter vectors. These vectors encode

mutation and expression status (based on genome and transcriptome sequencing) and drug concentrations

(Fig. 4A).

We extracted all available drug response data from the Cancer Cell Line Encyclopedia (4), which we

could match to the model, yielding in total 16,308 data points of viability read-outs. We split the data

80:20 into a training set and an independent test set. The training data is taken from 21 tissues with 7

different mechanistic targeted drugs at 8 different concentrations, adding up to 13,000 data points and

experimental conditions (Fig. 4B). The test data comprises the same number of drugs and concentrations

and is taken from 59 cell-lines from 21 (partly different) tissues, yielding 3,308 data points and exper-

imental conditions. To the best of our knowledge, this is the first time that an ODE model has been

trained on such a large set of training data from so many different experimental conditions.

We performed 100 local optimizations, in which we trained the model for 20 epochs and a mini-batch

size of 100, using the optimization algorithm Adam (tuned) with rescue functionality as well as line-

search. As in the Adam algorithm, the step-size during optimization scales with the square root of the

problem dimension, we decided to take the medium learning rate schedule with a lower initial learning

rate, yielding a step-size comparable to those for medium learning rates on the small- to medium-scale

examples (details on these hyperparameter choices are given in the Methods section). We considered the
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experimental conditions used for model training of recently published ODE models. C Correlation of measured data

and model simulation for all points of the training data, color-coding indicates density in scatter plot. D ROC-curves

for classification into responsive and non-responsive combinations of cell-lines and treatments on training data for

the best ten optimization runs (gray) and an ensemble simulation (black). E Area under ROC and classification

accuracy on training data for the ten best optimization results (gray), for the ensemble model (black), and for the

ensemble model on data for each drug individually (colored). F Correlation of measured data and model simulation

for independent test data, color-coding indicates density in scatter plot. G ROC-curves for classification on test data.

Classification thresholds from the training data were used. H Area under ROC and classification accuracy on test

data for the ten best optimization results (gray), for the ensemble model (black), and for the ensemble model on data

for each drug individually (colored).
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best 10 optimization results for creation of an ensemble model, similar to (23). Based on this approach,

we found a Pearson correlation of 0.76 of the simulation of the trained ensemble model with the training

data (Fig 4C). We then considered a cell-line to be responsive to a particular treatment, if the viability

of the corresponding cell-line was reduced by more than a factor of two. When computing the receiver-

operator-characteristic (22) based on the trained ensemble model, we achieved an AUC value of 0.96

(Fig 4D). Interestingly, the AUC values when relying on single optimization runs instead of an ensemble

were lower (between 0.91 and 0.94). Based on the characteristics, we computed classification thresholds

for the simulation, when a cell-line together with a treatment condition is to be classified as responsive

and repeated the computations for each considered drug individually. On the training data, the ensemble

model achieved a classification accuracy of 86% (Fig 4E). Simulated responses to the drugs Selumentinib

and Erlotinib matched particularly well, yielding AUCs of 0.95 and 0.96, and classification accuracies of

91% each, respectively.

When considering the independent set of test data and comparing it to the simulation of the en-

semble model, we still found a Pearson correlation of 0.74, and hence only a slight decrease in model

performance (Fig 4F). This suggest that there is only little to no overfitting. Computing the receiver-

operator-characteristics yielded an AUC value of 0.94 for the ensemble model and AUC values between

0.90 and 0.92 for the ten best local optimizations (Fig 4G). This indicates that the trained model general-

izes well to unseen cell-lines. We computed the classification accuracy, relying on the thresholds inferred

from the training data and found that 85% of all treatment conditions were classified correctly into re-

sponsive or non-responsive (Fig 4H). Again, the AUCs and the classification accuracies varied across the

considered drug, with Selumentinib and Erlotinib performing best also on the test data, with AUCs of

0.96 and 0.99 and classification accuracies of 90% and 89%, respectively.

Backtracking line-search improves optimizer performance on the large-scale ODE

model of cancer signaling

We then used the large-scale application example to confirm our findings from the smaller models. We

compared 20 epochs of mini-batch optimization with Adam and either the former medium or the new lower

learning rate schedules, with and without line-search, always using the rescue functionality, which enabled

substantial improvements for this model (Supplementary Fig. 9). As benchmark, we performed 150

iterations with Ipopt – which also employs a line-search algorithm – and restricted to 20 local optimization

due to the high computation time. All optimizers were initialized with the same parameter vectors. We

also took snapshots of optimization process with Ipopt at computation times which were as close as

possible to those used by the mini-batch optimizations.

We found that in terms of final objective function values and correlation with the training data, mini-

batch optimization at lower learning rates yielded slightly better results than the Ipopt runs with 150

iterations (Fig. 5A). In terms of total computation time, the mini-batch approach was faster by a factor of

4.1. Optimization with medium learning rates yielded inferior results in terms of objective function values

and correlation with the data, but further reduced the overall computation time. Additional line-search

markedly improved the optimization quality for this model at the medium learning rate, while increasing
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Figure 5: Comparison of optimization results for the large-scale cancer model, for different learning rates (LR), with

rescue functionality only (rescue) and with additional line-search (LS). A Boxplots of the 10 best optimization runs

out of 20, started at the same random parameters, for Ipopt (at three different stages of the optimization process

to compare performance over computation time) and for mini-batch optimization with different optimization settings

on training data: final objective functions values (upper panel), correlation of model simulation with measurement

data (middle panel), and total computation time for all 20 optimization runs (lower panel). B Boxplots of the 10

best optimization runs, for Ipopt (at three different stages of the optimization process to compare performance over

computation time) and for mini-batch optimization with different optimization settings on independent test data:

final objective functions values (upper panel) and correlation of model simulation with measurement data (middle

panel).
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the computation time by less than 13%. For the runs with lower learning rate, the line-search had almost

no effect. When assessing the fit to independent test data, we found again that mini-batch optimization

with the lower learning rates showed similar or better results than Ipopt (Fig. 5B). As before for high

learning rates, the optimization at medium learning rates was improved by line-search, but turned out to

be inferior overall.

We investigated two further threshold-dependent characteristics to assess optimization performance:

the computation time until convergence was reached for the first time and the number of converged starts

per computation time. Both are common metrics for optimization performance (62). As threshold for

convergence, we defined a value-to-reach based on the ten best optimization results from Ipopt and fixed

it to the mean plus one standard deviation over final objective function values. We now granted 100 starts

to the mini-batch optimizers, to allow them a similar budget of total computation time as for Ipopt. Con-

sidering the computation time until the first start converged, mini-batch optimization at medium learning

rate with line-search was fastest, outperforming Ipopt by a factor of up to 27 (Supplementary Fig. 10).

When comparing the number of converged starts per computation time, mini-batch optimization was

up to a 6.9-fold faster than full-batch optimization. This time, optimization with lower learning rates

performed better. Hence, lower learning rates yield more reasonable step-sizes for large-scale models.

Overall, these observations confirm the finding that the choice of the learning rate is a crucial hyperpa-

rameter when working with mini-batch optimizers for ODE models and that, if too high learning rates

are chosen, line-search can markedly improve results (Supplementary Fig. 10).

Mini-batch optimization outperforms full-batch optimization by more than an order

of magnitude

To evaluate the robustness of the mini-batch optimizer with respect to mini-batch size, we ran optimiza-

tions with mini-batch sizes 10, 100, 1000, and 13000 (full-batch), granting 10, 20, 50, and 150 epochs of

optimization time and 100, 100, 50, and 25 local optimizations, respectively. This time, we used Adam

without the line-search feature, as the previous study indicated it to have little to no impact for the

chosen (low) learning rate.

For the large-scale model of cancer signaling, we found a clear benefit of smaller mini-batch sizes.

Objective function and correlation values were substantially improved (Fig. 6A). As the total computation

time was reduced by smaller mini-batch sizes, we faced the counter-intuitive effect of a seeming anti-

correlation of optimization performance and total computation time. Optimization with the smallest

mini-batch size outperformed Ipopt in terms of final objective function values while reducing the total

computation time by more than a factor of 10. The findings on the optimization quality persisted when

looking at the performance on independent test data (Fig. 6B). Again, the smallest mini-batch size yielded

the best results, showing even a better generalization to independent test data than all previously tested

approaches, possibly due the regularizing effect of small batch-sizes and hence possibly less overfitting of

the training data.

For the two smallest mini-batch sizes, we performed multi-start optimizations with 100 starts. Es-

pecially the waterfall plot for the smallest mini-batch size showed that not only computation time was
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Figure 6: Comparison of optimization results for the large-scale cancer model, for different mini-batch sizes at low

learning rate. A Boxplots of the 10 best optimization runs out of 20, started at the same random parameters, for

Ipopt (at four different stages of the optimization process to compare performance over computation time) and for

mini-batch optimization with different optimization settings on training data: final objective functions values (upper

panel), correlation of model simulation with measurement data (middle panel), and total computation time for all 20

optimization runs (lower panel). B Evaluation of objective function values and correlation with measurement data

for results from A on independent test data.
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reduced, but also the optimization quality was markedly improved (Supplementary Fig. 11). When com-

paring computation time to first convergence, mini-batch optimization was up to 52 times faster than

Ipopt. In terms of converged starts per computation time, we found an 18-fold improvement when using

mini-batch optimization. As additional test, we assessed the influence of the optimization algorithm on

the optimization result (Supplementary Fig. 12). This indicated again that the chosen algorithm was less

important than the choice of the learning rate or the mini-batch size.

Discussion

We presented a framework for using mini-batch optimization in combination with advanced numerical

integration methods for the parameter estimation of ODE models in systems biology. We introduced

algorithmic improvements (tailored to ODE models), benchmarked different methods and their hyper-

parameters on published models (with artificial data), and identified the most important factors for

successful optimization. Then, we applied mini-batch optimization to a particularly large personalizable

model of cancer signaling and trained it on measured cell-line drug response data from a public database.

The trained model provided accurate predictions whether a certain treatment would reduce cell viability

by more than 50% for a chosen cell-line in more than 85% of the cases, even on cell-lines which had not

been used for model training. The stochasticity introduced by the mini-batching in combination with the

large dataset seemed to have addressed the overfitting observed in previous studies (14) and ensemble

modeling improved the prediction accuracy further. Overall, our implementation reduced computation

time by more than one order of magnitude while providing better fitting results than established methods.

The improved scaling characteristics should render problems with even larger datasets feasible.

We identified the choices of learning rate and mini-batch size to be the most influential hyperparam-

eters for parameter optimization and made the three following observations: Firstly, learning rates for

mini-batch optimization which yield step-sizes slightly smaller than those used by established optimiza-

tion techniques – see Supplementary Fig. 4 for examples – are a good choice. Secondly, surprisingly small

mini-batch sizes were preferred in all of our application examples. Thirdly, the choice of the optimization

algorithms seems to be less important, as at least Adam and RMSProp performed equally well on all

examples.

Overall, learning rates and mini-batch sizes would be promising candidates for auto-tuning schemes.

There are various known methods for auto-tuning of step-sizes during optimization (5; 6; 45). Combining

those with mini-batch optimization may lead to substantial improvements and we also proposed and

tested an implementation of a line-search method for mini-batching, which may serve as a starting point.

For the mini-batch size, auto-tuning may be less straight forward, but also here, first approaches exist,

which are based on assessing the variance of the objective function gradient across a chosen mini-batch

and possibly enlarging the mini-batch size (34). Other algorithmic improvements – more specific to ODE

models – would be combining mini-batch optimization with hierarchical optimization for observation-

specific parameters, such as scaling factors or parameters for measurement noise (37; 54). This approach

allows substantial improvements in parameter optimization for ODE models and it is to be expected that

also mini-batch optimization would benefit from it. A complementary approach would be to implement
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variance reduction techniques (11; 53). Some of these methods enjoy good theoretical properties but

are demanding in terms of memory consumption, which might make them prohibitive for applications

in deep learning, but possibly well-suited for training of ODE models. Hierarchical optimization as well

as variance reduction should be combined with methods for early-stopping, to avoid over-fitting and to

further reduce computation time (39).

Since mini-batch optimization is computationally more efficient than full-batch optimization when

working with large datasets, it is also a promising approach to drastically improve the exploration of

parameter space. Especially when using methods such as multi-start local or hybrid local-global opti-

mization (46; 48; 62), much more local optimizations can be performed. In our large-scale application

example, we confirmed that ensemble modeling leads to better predictions than point estimates (9; 23).

Furthermore, there have been recent advances when using ensembles created from the optimization his-

tory of an ODE model (63). Mini-batch optimization is particularly well-suited for these approaches, as

it creates more comprehensive optimization histories.

In summary, we showed that combining mini-batch optimization with advanced numerical integration

methods for parameter estimation of ODE models can help to overcome some major limitations. We

hope it will become an actively developed and applied group of methods in systems biology. We think

and hope that our work can serve as foundation for other research groups to further push the boundaries

of what is computationally feasible and lead to new, fruitful applications.

Methods

Modeling of chemical reaction networks with ordinary differential equations (ODEs)

We considered ODE models with state vector x(t) ∈ Rnx , describing the concentrations of nx ∈ N

biochemical species, e.g., (phospho-)proteins or mRNA levels in a time interval t ∈ [0, T ]. The time

evolution of x was given by a vector field f , depending on unknown parameters θ ∈ Rnθ , e.g., reaction

rate constants, and a vector of known input parameters u ∈ Rnu :

d

dt
x(t, θ, u) = f(x(t, θ, u), θ, u), with x(0) = x0(θ, u) (2)

In our case, input parameters were drug treatments and differences between cell-lines based on mRNA

expression levels and genetic profiles. As the ODE had no closed-form solution, we used numerical

integration methods to solve/integrate Equation (2). As ODEs in systems biology applications are usually

assumed to be stiff (30; 41), we employed an implicit multi-step backward differential formula scheme of

variable order. This allowed adaptive time-stepping and automated error control, helping to ensure the

desired accuracy of the computed results (30; 41; 48).

To match the model to the data, we used observable functions, which describe (phospho-)protein

concentrations for the small- to medium-scale models. For the large-scale model, there is only one

observable function (cell viability), described by a combination of downstream signaling activities (14):

y(θ, u) = h(x(t, θ, u), θ) (3)
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The data D = {ȳe,i}e=1,...,M, i=1,...,Ne was simulated as a time-course for the small- to medium-scale

models. For the large-scale model, it was taken at steady-state, yielding only one datapoint per experi-

mental condition e. Distinct experimental conditions differed through their vectors of input parameters

ue, e = 1, . . . ,M . Those input parameters captured all the differences between the different experimental

setups, i.e., drug treatments and mRNA expression levels of the cell-lines. Hence, to simulate the whole

dataset D once, M different initial value problems had to be solved.

To account for the fact that experimental data are noise-corrupted, we chose an additive Gaussian

noise model with standard deviation σe,i for experimental condition e and measurement index i. For the

large-scale application example, we used the same σe, i for all experiments, as no prior knowledge on the

standard deviation was available.

ȳe,i = yi(θ, ue) + εe,i, with εe,i ∼ N (0, σ2
e,i) (4)

A more detailed explanation of ODE modeling in general is given in the Supplementary Information.

Parameter optimization

This statistical observation model allowed us to compute the likelihood of an observed value y(x(t, θ, u), θ)

given a parameter vector θ, assuming independence of the measurement noise terms (48). Due to its better

numerical properties, we took its negative logarithm, which yielded:

J̃(θ) =
1

2

M∑
e=1

Ne∑
i=1

(
(ȳe,i − yi(θ, ue))2

σ2
e,i

+ log
(
2πσ2

e,i

))
= J(θ) + const. (5)

Assuming fixed measurement noise, the logarithmic term was just a constant offset. By neglecting it and

identifying yi(θ, ue) with ye,i(θ), we arrived at the objective or cost function J(θ), which was given in

Equation (1).

For global optimization of θ, we used multi-start local optimization, i.e., we randomly sampled many

parameter vectors, from which we initialized local optimizations. This approach has repeatedly shown

to be among the most competitive methods (48; 62), if high-performing local optimization methods with

accurate gradient information of the objective function are used (52). In order to compute accurate

gradients, we employed adjoint sensitivity analysis, which is currently the most performing method for

gradient computation of high-dimensional ODE systems (13; 14). To benchmark our local optimization

methods, we used the interior-point optimizer Ipopt (64), which combines a limited-memory BFGS scheme

with a line-search approach (44). In previous studies (54), since such interior-point optimizers have shown

to be among the most competitive methods for local optimization of large-scale ODE systems (54; 62).

More information on the formulation of the (log-)likelihood function and global parameter optimization

of ODE models in a more general context is given in the Supplementary information.
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Mini-batch optimization algorithms

Mini-batch optimization is a particular type of local optimization, which exploits the sum structure of

the objective function (49). In our case, we could rewrite the objective function in the following form:

J(θ) =

M∑
e=1

1

2

Ne∑
i=1

(
ȳe,i − yi(θ, ue)

σe,i

)2

︸ ︷︷ ︸
=Je(θ)

=

M∑
e=1

Je(θ) (6)

In the beginning of each epoch, the data set was randomly shuffled and then divided into mini-batches,

random subsets of same size S ⊆ {1, . . . , ne}. Hence, no datapoint was used redundantly within one

epoch. In each optimization step r, only the (sub-)gradient, sometimes also called gradient estimate (19),

based on the mini-batch Sr was used. The exact way how a parameter update was executed, i.e., how

θ(r+1) was computed from θ(r) and the (sub-)gradient
∑
e∈Sr ∇θJe(θ

(r)), was dependent on the chosen

algorithm. We investigated the following common mini-batch optimization algorithms in our study (see

Supplementary Information for more details and (19; 50) for a comprehensive summary of mini-batch

optimization algorithms):

• Vanilla stochastic gradient descent (SGD) (49), which is the simplest possible algorithm, using only

the negative gradient of the objective function as update direction (Supplementary Information,

Algorithm 1).

• Stochastic gradient descent with momentum (47; 58), a common variant, which uses a decaying

average of negative gradients as direction instead of the negative objective function gradient alone

(Supplementary Information, Algorithm 2).

• RMSProp (61), a so-called adaptive algorithm, which rescales/preconditions the current gradient

by a decaying average over root-mean-squares of the previous objective function gradients (Supple-

mentary Information, Algorithm 3).

• Adam (28), another adaptive algorithm, which attempts to combine the benefits of RMSProp with

the momentum approach by using two decaying averages (Supplementary Information, Algorithm 4).

For Adam, we tested two different settings: As the two decaying averages in the algorithm are controlled

by two tuning parameters ρ1 and ρ2, we set them first – according to the original publication – to 0.9

and 0.999, respectively, and then, based on some non-exhaustive testing, both to 0.9. We denoted the

first setting as Adam (standard), the second as Adam (tuned).

Learning rates and optimizer step-sizes

All the considered mini-batch algorithms rescale the computed parameter update with a factor called

learning rate η, which can either be fixed over the optimization process, preschuled, or adapted according

to the optimization process. In our study, we tested – based on the literature (19; 50) and our experience

with local optimization – in total four learning rate schemes, which refer to the following numerical values

for the small- to medium-scale models:

• High learning rate, logarithmically decreasing from 100 to 10−3 (only used for studying the behavior

when combined with line-search).
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• Medium learning rate, logarithmically decreasing from 10−1 to 10−4.

• Low learning rate, logarithmically decreasing from 10−2 to 10−5.

• Constant learning rate, fixed to the value 10−3.

Assuming a given algorithm in optimization step r produced a parameter update (direction) δr, then

the next proposed parameter vector would be

θ(r+1) = θ(r) + ηr · δr, (7)

with ηr being the learning rate at step r. Obviously, the learning rate influences the step-size of the

optimization algorithm in parameter space. However, many of the algorithms we investigated yielded

parameter updates with ‖δr‖ 6= 1. For, e.g., Adam, we obtained step sizes scaling with
√
nθ, with nθ

being the dimension of the unknown parameter vector (see Supplementary Information for more details

and the corresponding calculation). When transferring the results of our study from the small- and

medium-scale models to the large-scale model, we tried to conserve the actual step-sizes of the optimizers

rather than the learning rates themselves, assuming the step-sizes to be the more fundamental quantities.

On the large-scale model, we used two learning rate schedules with the following names and values:

• Medium learning rate, logarithmically decreasing from 10−1 to 10−4.

• Low learning rate, logarithmically decreasing from 10−2 to 10−4.

Line-search and rescue functionality for mini-batch optimization

The rescue functionality was implemented as an iterative backtracking line-search algorithm, performing

at most ten iterations. It is triggered, if the objective function and its gradient can not be evaluated. In

this case, it keeps the current mini-batch, but undoes the previous parameter update, reducing the step

length in each line-search iteration. More details on the method and its pseudo-code are given in the

Supplementary Information (Algorithm 5 for the pseudo-code).

The additional line-search functionality was implemented according to the interpolation method, de-

scribed in Chapter 3 of (45), and limited to at most three iterations. In each optimization step, the

objective function value is checked on the same mini-batch after the parameter update. The parameter

update is accepted, if the objective function decreases, otherwise, the step-size is reduced and the update

repeated (Fig. 7). More details on the implementation and its pseudo-code are given in the Supplementary

Information (Algorithm 6 for the pseudo-code).

Computation of final objective function and correlation values

To ensure an unbiased comparison of objective values, we computed final objective function and corre-

lation values after optimization for all methods (full-batch and mini-batch) on the whole dataset. As

we performed this comparison also on a set of independent test data and since the model was using

scaling parameters to match the model output to the measurement data (48), we computed those scaling

parameters analytically (54; 65).
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Figure 7: Comparison of standard mini-batch optimization and mini-batch optimization with line-search. Left panel:

Standard mini-batch optimization uses a prescheduled learning rate, which determines the step-size during optimiza-

tion regardless of whether an optimization step leads to an improvement or not. Right panel: If line-search is enabled,

the objective function is re-evaluated on the same mini-batch and checked for improvement. If no improvement is

achieved, the learning rate is reduced until either improvement is achieved or until the maximum number of line-search

steps is reached.

Computation of receiver-operator-characteristics and classification accuracy

We used 13,000 datapoints from 233 cell-lines for model training and 3,308 datapoints from 59 cell-lines

as test set. However, only for 198 cell-lines from the training set and 49 cell-lines from the test set,

all treatment conditions were available. In order to compute unbiased receiver-operator-characteristics

(ROCs), we used only those cell-lines, yielding 11,088 datapoints for the training set and 2,744 datapoints

for the test set. Experimental conditions were grouped into two groups: Those, in which cell viability

was reduced by more than 50% when compared to the untreated condition, were defined as responsive,

the rest as non-responsive. We then computed classification thresholds to be those model output values,

which corresponded to the points on the ROC being tangential to an affine function with slope 1 =̂ 45◦.

Implementation of parameter estimation using the toolboxes AMICI and parPE

Parameter estimation was performed using the parPE C++ library (54), which provides the means for

parallelized objective function evaluation and optimization of ODE models generated by the AMICI

ODE-solver toolbox (16) using optimizers such as Ipopt (64). In our studies, we used Ipopt version

3.12.9, running with linear solver ma27 and L-BFGS approximation of the Hessian matrix and extended
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parPE with the mini-batch algorithms described above.

For numerical integration of the ODEs we used AMICI, which provides a high-level interface to the

CVODES solver (55) from the SUNDIALS package (24) and generates model specific C++ code for

model evaluation and likelihood computation to ensure computational efficiency. In our applications, we

used AMICI default settings with adjoint sensitivitity analysis, employing a backward differential formula

(BDF) scheme of variable order, with adaptive time stepping and error tolerances of 10−8 for the relative

and 10−16 for the absolute integration error per step, allowing at most 104 integration steps.

Optimizations were run on the SuperMUC phase 2 supercomputer (Leibniz Supercomputing Centre,

Garching, Germany). Compute nodes were equipped with two Haswell Xeon Processor E5-2697 v3 CPUs

(28 cores per node) and 64GB of RAM. For the large-scale model, mini-batch optimization multi-starts

comprising 100 local optimizations were run on 65 nodes (1820 cores) with a wall-time limit of 48 hours.

The 20 local optimizations of Ipopt were separated to single runs with 12 nodes (336 cores), and 35 hours

of wall-time were granted. For the small to medium-scale models, each of the multi-starts comprising

100 local optimizations was run on 1, 2, and 3 nodes for the Fujita, Bachmann, and the Lucarelli model,

respectively, always exploiting all 28 cores per node. Wall-times were fixed to 15, 32, and 40 hours,

respectively.

Adaptation of benchmark models and creation of artificial data

The small- to medium-scale examples for the benchmark study were chosen based on a collection of

benchmark models (20). We chose models with different system sizes, which allowed the generation

of large artificial datasets, which were sufficiently heterogeneous. This should ensure clear differences

in objective function values and gradients, when different mini-batches were used. In order to allow

the creation of heterogeneous datasets, the SBML files and input parameters were slightly altered.

The precise model versions are made freely available in the SBML/PEtab format at Zenodo, under

https://doi.org/10.5281/zenodo.3556429 (59).

Artificial data was created by simulating the models with the parameter vectors reported in (20).

Additive Gaussian noise was added to the model simulations, using the noise levels which were reported

in (20) for each observable.

Data and Code availability

The employed models, datasets, and codes for parameter estimation and subsequent analysis are freely

available at Zenodo, under https://doi.org/10.5281/zenodo.3556429 (59) in the code versions, which were

used to generate the results. We refer users interested in using our implementations to the respective

Github pages, where more recent versions of the toolboxes are made freely available: https://github.com/ICB-

DCM/parPE/ (for the parallelized parameter estimation code, including the implementation of the mini-

batch algorithms), https://github.com/ICB-DCM/AMICI/ (for the implementation of the ODE solver,

likelihood and gradient computation using adjoint sansitivity analysis), and https://github.com/ICB-

DCM/PEtab/ (for the model and data format of the small to medium-scale examples). The SBML-model
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of the large-scale application example is available at https://github.com/ICB-DCM/CS_Signalling_ERBB_RAS_AKT,

the data is provided as hdf5 file.
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