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ABSTRACT 
 
Cis2-His2 zinc finger (C2H2-ZF) proteins are the largest family of transcription factors 
in human and higher metazoans. However, the DNA-binding preferences of many 
members of this family remain unknown. We have developed a computational method 
to predict these DNA-binding preferences. We combine information from crystal 
structures composed by C2H2-ZF domains and from bacterial one-hybrid experiments 
to compute scores for protein-DNA binding based on statistical potentials. We apply 
the scores to compute theoretical position weight matrices (PWMs) of proteins with a 
DNA-binding domain composed by C2H2-ZF domains, with the only requirement of an 
input structure (experimentally determined or modelled). We have tested the capacity 
to predict PWMs of zinc finger domains, successfully predicting 3-2 nucleotides of a 
trinucleotide binding site for about 70% variants of single zinc-finger domains of 
Zif268. We have also tested the capacity to predict the PWMs of proteins composed 
by three C2H2-ZF domains, successfully matching between 60% and 90% of the 
binding-site motif according to the JASPAR database. The tests are used as a proof of 
the capacity to scan a DNA fragment and find the potential binding sites of 
transcription-factors formed by C2H2-ZF domains. As an example, we have tested the 
approach to predict the DNA-binding preferences of the human chromatin binding 
factor CTCF. 
 
 
INTRODUCTION 
 
The identification of transcription factors (TFs) and the characterization of their binding 
sites is key to understand how gene expression is regulated. Experimental techniques 
such as ChIP1, PBM2, HT-SELEX3, MPRA4 or bacterial and yeast one-hybrid5,6 have allowed 
the characterization of TF-binding sites at large-scale. However, experimental techniques 
are expensive and time consuming, and yet the binding preferences of many TFs remain 
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unknown7,8. Given the current limitations, the usage of computational tools to 
complement experimental techniques is necessary. 
 
Cis2-His2 zinc finger (C2H2-ZF) proteins are the largest family of TFs in higher 
metazoans9. They represent around the 45% of all known human TFs, being the largest 
TF family in human TFs8. C2H2-ZF proteins are involved in a wide range of biological 
processes such as development10 or chromatin compartmentalization11. C2H2-ZF 
proteins have been related to many diseases12,13 and can be used as tools for precise 
gene editing14,15. At this point, knowing the binding preferences of C2H2-ZF proteins 
becomes crucial, despite for many are yet unknown8. Besides, many members of the 
C2H2-ZF do not have close homologs across metazoans and thus, sequence homology 
cannot be used to infer their binding preferences16. Still, all of them have the same 
structure in the DNA binding domain. DNA binding domains (DBD) of C2H2-ZF proteins 
are composed by small domains called zinc fingers arranged in tandem17. Each zinc finger 
is able to recognize DNA sequences of 3 nucleotides18 and, by combining adjacent zinc 
fingers, C2H2-ZF proteins are able to recognize long and complex DNA patterns19.  
Human C2H2-ZF proteins contain an average of around 10 domains, leading to binding 
sites of about 30 bases20.  
 
Several computational tools have been developed to predict the binding preferences of 
transcription factors and in particular C2H2-ZF proteins. Some tools are based on 
combining experimental data with the structure of the interaction between proteins and  
DNA. Among them, some approaches use different machine learning algorithms: 
random forest regression16, support vector machines21,22, single layer perceptrons23, 
hidden Markov models24 and other statistical models25,26; using residue-residue 
contacts16,21,22,26 or context dependencies and sequence similarities23,24,27,28. Other tools 
are based on the analysis of the structural patterns extracted from protein-DNA 
interactions25,29-32, or from the flexibility on the DNA chain, of which recent studies show 
the relevance of the DNA shape to consider the DNA-binding of a protein33.  Some of 
these structure-based tools use statistical potentials31,32. Statistical potentials (also 
known as knowledge-based potentials) are scoring functions derived from the analysis 
of contacts in a set of structures. Statistical potentials have been widely used to evaluate 
the quality and the stability of protein folds, protein-protein interactions and protein-
DNA interactions34. 
 
Here we present a computational tool to predict the binding preferences of C2H2-ZF 
proteins. We combine experimental bacterial one-hybrid (B1H) data with structural, 
three-dimensional, information of TF-DNA complexes. We use B1H data19 to model TF-
DNA interactions and increase the statistic power of the potentials by using 
computationally derived structural models for TF-DNA complexes with unknown 
structure. We use the potentials to predict the Position-Weight-Matrix (PWM) of the 
binding-site of C2H2-ZF domains35,36. We also predict PWMs for transcription factor 
proteins with three C2H2-ZF domains and compare them with their motifs in the JASPAR 
database 37. Finally, we apply statistical potentials to predict the binding preferences of 
human CTCF, a transcriptional repressor with a key role in genome 
compartmentalization11.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 29, 2019. ; https://doi.org/10.1101/859934doi: bioRxiv preprint 

https://doi.org/10.1101/859934
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
METHODS 
 
1. Software  
 
The following software was used in this study: DSSP (version CMBI 2006) 38 to obtain 
protein structural features; X3DNA (version 2.0) 39 to analyze and generate DNA 
structures; matcher and needle, from the EMBOSS package (version 6.5.0) 40, to obtain 
local and global alignments, respectively; BLAST (version 2.2.22) 41 to search homologs 
of a given query (target) protein sequence; MODELLER (version 9.9) 42 to construct 
structural models; and the programs FIMO and TOMTOM from the MEME suite43 to scan 
a DNA sequence with a Position-Weight Matrix and to compare two PWMs, respectively. 
 
2. Databases  
 
Atomic coordinates of protein complexes are retrieved from the PDB repository44 and 
protein codes and sequences are extracted from UniProt (January 2019 release)45. We 
generate an internal database of structures with all transcription factors of the C2H2-ZF 
family as defined in CIS-BP database (version 1.62)7 and known structures in PDB. 
Binding information of Zinc-finger family C2H2-ZF is retrieved from bacteria one-hybrid 
(B1H) experiments19. The experiment distinguishes between Zinc-finger domains at the 
C-tail (F3 domain) and inner domain (F2 domain). The experiment performs the 
screening of all 64 possible binding sites of 3 bases characteristic of a C2H2-ZF domain. 
The experiment tests the interactions with multiple large protein libraries based on 
Zif268, with six variable amino acid positions on each individual domains F2 and F346. 
 
3. Interface and triads of protein-DNA structures 
 
We define triads as a type of contacts between the protein and the double-strand DNA 
helix. Triads are formed by three residues: one amino acid and two contiguous 
nucleotides of the same strand. The distance associated with a triad is defined by the 
distance between the Cb atom of the amino acid residue and the average position of the 
atoms of the nitrogen-base of the two nucleotides plus their complementary pairs in the 
opposite strand of the helix34. The triad also has an associated amino acid residue 
number in the protein and a dinucleotide position in the DNA, defined by the sequence 
position of the first nucleotide of the dinucleotide (e.g. a 𝑡𝑟𝑖𝑎𝑑 with amino acid residue 
number 𝑝, dinucleotide in position 𝑞 and associated distance 𝑑 is represented as 
(𝑡𝑟𝑖𝑎𝑑, 𝑑, 𝑝, 𝑞)).  Specific features can be added on a triad, defining an extended-triad 
(etriad). These features are 1) for the amino acid: hydrophobicity, surface accessibility 
and secondary structure (determined with DSSP); and 2) for the dinucleotide: 
nitrogenous bases, the closest strand, the closest groove and the closest chemical group 
to the amino acid.   
 
4. Statistical potentials 
 
We use the definition of statistical potentials described by Feliu et al47 and Fornes et 
al.34 to define several scoring functions for the interaction between a protein and a DNA 
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binding site using contact triads. We use the distribution at distances up to 30 Å of triads 
to calculate the statistical potentials. The total potential of an interaction is calculated 
as the sum of the potentials of all triads, or triads with their environmental features 
(etriads). In the case of etriads, the completeness of the reference dataset is not 
sufficient to sample all possible combinations. We use interactions from B1H to extend 
the number of interacting triads (see further details and supplementary methods). 
Besides, we transform the statistical potentials into Z-scores (see further), to 
simultaneously identify the best distance associated with a triad and the best pair 
formed by one amino acid and one dinucleotide.  
 
5. Z-scores 
 
The optimal condition of a statistical potential often yields a minimum. However, the 
minimum is not necessarily negative. The variability of signs of the potentials affects the 
criterion of quality of the scores. We define Z-scores in order to follow a criterion that 
incorporates the sign. We wish that the Z-score identifies simultaneously the best 
distance associated with a triad and the best pair formed by one amino acid and one 
dinucleotide. Consequently, we construct a zscore function for any type of score using 
a standard normalization with respect the average of all amino acid types (see details in 
supplementary).  
 
6. Structural modeling of C2H2-ZF complexes 
 
We obtain the structure of a complex by means of homology modelling using the 
program MODELLER42. The DNA binding sequence of a member of the C2H2-ZF family 
composed by three finger domains (F1, F2 and F3) has a length of 9 nucleotides (e.g. for 
Zif268). For the selection of the binding sequences associated with each finger domain 
we use the same sequences as in the B1H experiment19. The structure of Zif268 binding 
DNA is modelled with 23 different template structures (see details in the supplementary 
extension of methods). We complete the complex by modeling the structure of the DNA 
binding sequence. The full DNA sequence of the experiment uses 29 bases. We embed 
the binding site in positions 11 to 19 of this sequence. The structure of the full DNA 
sequence bound by Zif268 is obtained with the program X3DNA39 by modifying the DNA 
structure in the complex. We also model several structures with the complex of Zif268 
binding a non-specific DNA region to be used as non-binding examples (or background). 
The non-binding sequence is obtained by selecting randomly a region of the sequence 
of the weak promoter GAL1 (see details in extended supplementary methods). 

  
7. Use of experimental TF-DNA interactions to calculate statistical potentials 
 
We use a mapping function that associates the amino acids of each hexamer sequence 
in the experiment of B1H with the amino acids in a template structure to derive 
interacting triads. Similarly, we also require a mapping between the nucleotides. For 
each finger (F2 and F3) and combination of 3 nucleotides, we collect all protein hexamer 
sequences producing significant binding signal in the B1H experiment. For the DNA 
sequence the mapping is on the trinucleotides of the binding-site, affecting 4 
dinucleotides, while for the protein it affects 6 amino acids (see details in 
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supplementary). Only the triads affecting the amino acids and nucleotides under test 
are considered for the calculation of the statistical potentials. We restrict each set of 
Zif268 sequences to those with highest signal of the B1H binding experiment. We define 
three thresholds based on the affinity percentile of a hexamer-sequence variant: 1) 
higher than 90%; 2) higher than 75%; and 3) higher than 50%. To calculate the affinity 
percentile of a variant we follow the same definition as the authors19. We force having 
around 500 DNA binding sequences per hexamer. A DNA binding sequence is repeated 
in proportion to the number of observations in the experiment. The contacts derived 
from the B1H experiment are limited to short distances (the largest contacts are around 
15-20Å). Therefore, we also use contacts extracted from other structures of the C2H2-
ZF family in the PDB, covering distances up to 30 Å. 
 
8. Scoring TF-DNA binding  
 
First, we calculate the interface and extract all etriads associated with distances shorter 
than 30Å. Then, the score of the interaction is defined as the sum of the scores (i.e. a 
specific potential) of all etriads with their associated distances. The same approach is 
applied for Z-scores. We can obtain the score of a TF without knowing the structure of 
the TF-DNA binary complex if it can be modelled (see details in supplementary).  
 
9. Construction of PWMs using Zif268 structural models. 
 
Given the modelled structure of Zif268-DNA complex, we obtain the PWM using scores 
or Z-scores (as example, without loss of generality, we use the Z-score of 𝐸𝑆3𝐷𝐶00  as 
defined in supplementary). We collect the set of etriads, their associated distances, and 
the associated amino acid and dinucleotide positions.  We obtain a test set with all 
possible DNA sequences of the binding site. We calculate the score of any sequence of 
the test using 𝑍𝐸𝑆3𝐷𝐶00   (see details in supplementary for a heuristic approach when 
the binding size is longer than 9 bases). We normalize the scores as: 
 
 𝑛𝑜𝑟𝑚𝑎𝑙(𝑠𝑐𝑜𝑟𝑒9:;) =

9=>?:@ABCDEF	({9=>?:@AB})
DJKLM9=>?:@ABNOCDEF	({9=>?:@AB})

 

         
Where 𝑠𝑐𝑜𝑟𝑒9:; = −𝑍𝐸𝑆3𝐷𝐶00   and {𝑠𝑐𝑜𝑟𝑒9:;}  is the set of all scores in the “test set”. 
Eventually, the normalized scores range between 0 and 1. Then, we rank the normalized 
scores and select only the DNA sequences producing the top scores over a cut-off 
threshold (i.e. 0.95). This produces an alignment and we use it to calculate the PWM, 
which we name theoretical PWM. 
 
10. Construction of the experimental PWM  
 
The experimental PWM of a Zif268 sequence obtained from B1H, with a specific 
hexamer fragment on F2 or F3, is calculated based on its affinities for different binding 
sites. The DNA strand of a binding site is formed by trinucleotides flanked by two fixed 
nucleotides (G and A for F2, and two A for F3). All binding sites targeted by a specific 
hexamer-fragment with affinity higher than a threshold are stored and gapless aligned 
to construct the PWM (e.g. the top 20% threshold uses all DNA-bound sequences with 
affinity percentile higher than 80%, while for a threshold of 100% we use all detected 
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sites with any not null affinity percentile). We construct experimental PWMs for top 
10%, top 25%, top 50% and for all targeted sites. These experimental PWMs are also 
named hexamer-specific PWMs, to distinguish from PWMs obtained with other 
experiments or with a different approach. 
 
RESULTS 
 
1. Analysis of the statistical potentials 

 
We have constructed several statistical potentials to describe the interaction between 
the finger domains (F2 and F3) and the DNA. We have applied a Z-score modification 
(see methods and further details in supplementary) on top the classical definition of 
potential48 (named PAIR). Figures 1 (A to D) show the PAIR and ZPAIR potentials between 
asparagine (Asn) and the dinucleotide with bases guanine-cytosine (GC) in finger 
domains F2 and F3. This example shows that the Z-score function preserves the 
optimum shortest distance, but different between domains F2 and F3. Figures 1 (E to H) 
show the ZPAIR potential of arginine (Arg) interacting with dinucleotides with bases 
adenine-guanine (AG) and cytosine-thymine (CT). Supplementary figures showing the 
potential PAIR and ZPAIR for all amino acids and dinucleotides can be accessed in 
http://sbi.upf.edu/C2H2ZF_repo. We use a set of hexamer sequence-fragments yielding 
affinity percentiles higher than 90%, 75% or 50% to construct the potentials. We observe 
that the potential is symmetric for the reversed dinucleotide (i.e. the potential resulting 
for the interaction of Arg with AG in Figure 1E and 1G is the same with CT in Figure 1F 
and 1H). However, the finger-domain has the ability to distinguish forward and reverse 
dinucleotides depending on structural and topological features of the DNA helix. In 
previous works we already developed a topological-dependent potential named ES3DC 
(see details in supplementary methods and in Fornes et al.34). The limitation of such 
specific potential is the completeness of the dataset, as the large number of 
combinations to be sampled is very high and thus requiring a large number of 
observations. The use of experimental data from B1H is a good opportunity to populate 
many triads in close distance (shorter than 20 Å) between the finger domain and the 
DNA binding site19,46. Figure 2 shows the increase of different types of contacts produced 
with the help of B1H data with respect to those obtained only with structures of the 
C2H2-ZF family in PDB44. Still, only some topological features of both DNA and protein 
conformation highlight the increase, as they are specific of the C2H2-ZF family.    

 
2. Prediction of PWMs in domains F2 and F3 of Zif268 
 
To evaluate the quality of the theoretical PWMs we compare them with the results of 
B1H experiments19. We construct two types of PWMs: hexamer-specific PWMs and 
trinucleotide-specific PWMs. Hexamer-specific PWMs are the experimental PWMs as 
defined in methods, obtained by aligning all DNA trinucleotides targeted by the same 
amino acid hexamer. Different hexamer-specific PWMs are made for fingers F2 and F3. 
Trinucleotide-specific PWMs are artificial PWMs containing the combination of 3bp 
nucleotides (64 in total) with 100% weight in each specific position. These trinucleotides 
are flanked by nucleotides also specific of each assayed zinc finger (G and A for F2 and 
two A for F3).  
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We create the hexamer-specific and theoretical PWMs with the DNA binding sites of the 
hexamer sequences tested by B1H.  We use B1H results with affinity percentiles higher 
than 90%, 75% and 50%. For each hexamer fragment of a finger domain, we select the 
binding site with highest affinity in the B1H experiment and assume that these are the 
three bases binding-specific of the hexamer. Theoretical PWMs are obtained by 
combining homology modeling and Z-scores 𝑍𝐸𝑆3𝐷𝐶00. Structural models of the 
variants of Zif268 are constructed using 23 different templates (see supplementary). 
Hence, there are 23 theoretical PWMs for each amino acid hexamer sequence. 
 
When comparing the theoretical PWM with the trinucleotide-specific PWMs we check 
the ranking position of the correct trinucleotide-specific PWM. When comparing with 
the experimental PWMs we use the number of nucleotide-matches to evaluate the 
quality. We define the number of nucleotide-matches as the number of positions where 
two compared PWMs share the same nucleotides with higher frequencies. Since we are 
focused on the trinucleotides of the binding site, we are only interested in the number 
of central nucleotide matches, which ranges between 0 and 3. 
 
Using an affinity threshold of 90%, we find 131 hexamers for F2 and 82 for F3 with at 
least one theoretical PWM ranking the correct binding site on the top. This represents 
at least one hexamer sequence in 28 (for F2 domain) and 32 (for F3 domain) 
trinucleotide combinations out of 64. Table 1 shows the number of hexamers with three, 
two or one nucleotide-matches with the hexamer-specific PWM for each trinucleotide 
in F2 domain. Supplementary table S1 shows the results for domain F3 and additional 
details. Considering three or two nucleotide matches, we are able to find at least one 
theoretical PWM for 71% of the hexamer variants in F2 and 74% in F3. This proves that 
for most hexamers we are able to find a theoretical PWM with an almost perfect match 
with the corresponding hexamer-specific PWM. However, the selection of the template 
(or templates) is crucial to predict the specific binding site of a single domain. The 
comparisons of PWMs of all hexamer sequences tested in F2 and F3 domains with 
affinity percentile higher than 90% is shown in supplementary table S2. 
 
The results obtained using affinity percentile higher than 75% and 50% are similar to use 
90%. The main difference is in the number of trinucleotide combinations with successful 
predictions. Using an affinity threshold of 75%, around 40 trinucleotide combinations 
have one or more hexamers with at least one theoretical PWM ranking on top the correct 
trinucleotide-specific PWM, while using an affinity threshold of 50% this is around 50. 
Around 65-75% hexamers of F2 domain (and 75-85% for F3 domain) have 3 or 2 
nucleotide-matches between the theoretical and the hexamer-specific PWM, which are 
similar to our previous analysis for affinity percentile higher than 90%. Details are shown 
in supplementary tables S1 and S2. The comparison of all PWMs are shown in 
http://sbi.upf.edu/C2H2ZF_repo. The fact that the quality of the theoretical PWMs is the 
same for all affinity percentiles analyzed suggests that our method is not able to 
distinguish high from low affinity binding sites; but it allows to identify approximately 
the TF binding site regardless of the affinity (see annex 1 in supplementary material and 
Figure S1). 
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In Figure 3 we show the comparison of some examples of hexamer-specific and 
theoretical PWMs grouped by zinc finger domain (all theoretical and experimental 
PWMs and their comparisons can be retrieved from http://sbi.upf.edu/C2H2ZF_repo). 
Among these examples we observe some theoretical PWMs that, although different 
than their expected binding sites, share common trends of the nucleotide frequencies 
of the experimental PWM. For example, for the binding site ATG in domain F2 by the 
SQSGCN hexamer (top left PWM in figure 3A), we observe similar nucleotides underlying 
lower frequencies between theoretical and experimental PWMs. Similarly, other 
examples are shown in Figure 3 with combinations of nucleotides of binding sites 
displaying nucleotide matches with underlying lower frequencies.  
 
3. Examples of binding site prediction of C2H2-ZF transcription factors. 
 
We compare the theoretical PWMs with the PWMs retrieved from JASPAR37 for several 
TFs. We use some members of the C2H2-ZF family, composed by 3 finger-domains, with 
a known PWM (coded as motif) in JASPAR37, for which the structure of the complex with 
DNA is known or it can be modelled, to obtain the theoretical PWM (see supplementary 
table S3 and other details in supplementary material). We obtain two PWMs using 
statistical potentials ZES3DCdd calculated with variant sequences in F2 domain 
(ZES3DCF2) and in F3 (ZES3DCF3) of the B1H experiment. We compare the theoretical 
PWMs of each TF using all contacts under 30Å, then we repeat the comparison by 
decreasing this threshold down to 15Å.  
 
Figure 4 shows the JASPAR PWMs of some selected TFs, compared with the theoretical 
PWMs calculated with a distance threshold of 30 Å (see supplementary table S4 for more 
details). All theoretical PWMs and structural models can be downloaded from 
http://sbi.upf.edu/C2H2ZF_repo. We are able to find at least one PWM significantly 
similar to its motif in JASPAR (P-value <0.05 with TOMTOM) for almost all TFs (27 out of 
29). The PWMs of some TFs are compared with more than one possible motif in JASPAR, 
often associated by some relationship in evolution (i.e. among orthologs and paralogs 
of different species, see details in supplementary).  
 
We further test if the similarity of the TFs with the sequence of Zif268, from which the 
statistical potentials are derived, affects the quality of the results. We calculate the 
similarity as the percentage of identical residues aligned (%id) between the sequence of 
the TF and the sequence of Zif268. Certainly, the theoretical PWMs of TFs very similar to 
Zif268 are significantly similar to their motif in JASPAR. However, we also obtain 
theoretical PWMs for sequences with low similarity with Zif268 that significantly match 
with their corresponding motif in JASPAR (see supplementary). Similar conclusions are 
obtained when comparing the sequences of the TFs and the templates used to construct 
their PWMs. The bias on the statistical potential, caused by structures of close homologs 
to each TF query is studied in the supplementary. The main conclusion is that the bias is 
avoided by using contacts shorter than 18Å to construct the theoretical PWMs. We test 
for each TF the capacity to predict a motif in JASPAR without biases using a modification 
of the statistical potentials. We generate specific statistical potentials for each TF by 
removing the contacts of close homologs (%id >50). After avoiding the bias, we are still 
able to find at least one PWM significantly similar to its motif in JASPAR for almost all 
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TFs. Also, between 11 and 14 TFs have more than 50% of the theoretical PWMs 
significantly similar with their motif in JASPAR, being most of them the same TFs whether 
close homologs are removed or not in the statistical potential (see supplementary table 
S4). 
 
Not all models produce PWMs significantly similar with their corresponding motifs. For 
some TFs this can be explained by the low number of models produced: only one model 
is constructed with the length of 3-4 finger domains for Q86T24 and Q8GYC1. A detailed 
analysis shows that many theoretical PWMs, not significantly similar with their motif, 
are still able to match more than 50% nucleotide-matches with their JASPAR motif. The 
average ratio of identic nucleotides using all models varies between 60% and 88% for 
the majority of TFs (see table S4), and it is only slightly reduced after avoiding the bias.  
 
 
4. Application to CTCF 
 
We apply statistical potentials to predict the binding preferences of human CTCF. The 
DNA binding domain of human CTCF is formed by 11 zinc-finger domains of the C2H2 
family (residues 266 to 577). Different DNA binding motifs have been proposed for this 
domain: one for the central part, flanked by one upstream and one downstream 
motifs49. The central part of human CTCF binding domain has a well-defined motif in 
JASPAR (MA0139.1). The structure of the complete sequence of human CTCF is 
unknown. However, several structures have been obtained by crystallography of 
different fragments bound to DNA (structures with PDB codes 5K5H, 5K5I, 5K5J, 5T00, 
5T0U, 5YEL, 5YEH, 5YEF, 5UND, 5KKQ). We construct a structural model of the almost 
complete sequence of the binding domain of human CTCF (see supplementary figure 
S3). The model is constructed by superimposition of the structures 5T0U (zinc-finger 
domains 2-7) and 5YEL (zinc-finger domains 6-11), using the overlapping fragment of 
fingers 6 and 7 and removing the redundant amino acids and nucleotides from 5YEL 
(amino acid fragment from 455 to 512, highlighted in red in figure S3). Finger domains 
are shown in the protein sequence alignment and in the alignments of DNA sequences 
taken from the PDB structures. The C-terminal domains, taken from 5YEL, bind on the 5’ 
region, while the N-terminal domains from 5T0U bind on the 3’ site, thus the alignment 
of the DNA fragment is shown in reverse orientation with respect to the finger-domains.  
 
Following our previous approaches, we obtain the theoretical PWM with each structure 
using contacts up to 30Å and the potentials ZES3DCF2 and ZES3DCF3. The PWM based 
on experimental data is retrieved from JASPAR, with profile motif MA0139.1, and 
compared with the theoretical PWMs (see details in supplementary table S5). We show 
in Figure 5 the logos of the JASPAR profile aligned with the logos of the theoretical 
PWMs. We observe a profile pattern preserved for many theoretical PWMs in which we 
recognize a central common region that corresponds with the JASPAR profile MA0139.1. 
This is the core profile of CTCF, located between nucleotides 8-22 in the forward chain 
(oriented form 5’-3’) of the modelled structure. Because structures such as codes 5YEL 
or 5UND are formed mostly by zinc-finger domains at the C-terminal region, the 
theoretical PWMs constructed with them match incompletely the core profile. 
Consequently, it is more difficult to align these PWMs, resulting in lower scores (higher 
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P-values of TOMTOM) and small overlap. Interestingly, the profiles obtained with PDB 
codes 5UND, 5YEL and the 5’ site of the profile of our model, identify a pattern that has 
some similarities with the upstream motif mentioned by Nakahashi et al. 49. Motifs of 
flanking sites recognized by finger-domains 1-2 and 8-11 are not well-defined. Despite 
they are important for the recognition of the binding sites of CTCF, the current tools for 
motif discovery have not unraveled both downstream and upstream profiles. 
Consequently, we cannot test the quality of the alignments between the theoretical 
PWMs and many of the proposed motifs of the flanking regions, because there is no 
consensus.  
 
DISCUSSION 
 
We have developed a method to predict the binding preferences of C2H2-ZF proteins 
using their structures, either experimentally known or modelled, to obtain one or several 
PWMs. Clearly, this approach is limited by the amount of structural data available.  We 
require the structures of templates to model the proteins of the C2H2-ZF and predict the 
PWMs. The number of models depends on the number of templates. Consequently, the 
number of theoretical PWMs is larger for sequences with many templates than for those 
with few and this affects the capacity of the prediction.  
 
Our analyses show that, using the scoring function 𝑍𝐸𝑆3𝐷𝐶00  (other potentials hint 
towards the same conclusions), the percentage of nucleotide matches in binding sites of 
single-domains between theoretical and experimental PWMs is independent of the 
experimental affinity percentile. Therefore, although we can roughly distinguish binding 
from non-binding sites, we cannot distinguish intermediate degrees of affinity. This is 
relevant on the prediction of the effect of mutations affecting the binding strength of 
zinc-finger domains.  
 
Given that our method provides several theoretical PWMs for the same TF, it entails an 
additional problem: selecting the correct or best PWM. However, rather than finding the 
best PWM from a set of theoretical PWMs, we bring the opportunity to select one 
among many potential solutions and help finding the binding site of a transcription 
factor in a DNA sequence. We proof that, for a relevant number of transcription factors 
that can be modelled, the number of PWMs significantly similar to an experimental 
PWM is larger than 50% (and the proof is valid after removing biases due to the similarity 
between the query sequence and the dataset used to construct the prediction). 
Therefore, by scanning with several theoretical PWMs of a TF, the majority of regions 
detected and predicted to bind will correspond with its actual binding, hitting around 
the right location of the binding site. 
 
Furthermore, our approach also suggests that perhaps the same TF recognizes more 
than one binding site depending on its conformation. When constructing theoretical 
PWMs with different structures, each structure is a snapshot of the interaction between 
the TF and the DNA. Therefore, by using many structures we introduce the dynamic 
nature of proteins as an additional feature. This can be useful for C2H2-ZF proteins that 
may interact with DNA using different conformations or different arrangements of zinc 
fingers, such as CTCF. It is known that CTCF has a central binding motif plus two flanking 
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motifs, one in downstream and another upstream49. CTCF binding sites display different 
combinations of downstream-central-upstream motifs that can be spaced by a variable 
number of nucleotides. Therefore, searching binding sites with many PWMs obtained 
from different conformations of CTCF-DNA complexes may be more informative of the 
whole conformational space of CTCF than a single model. 
 
To sum up, we have developed a computational tool to predict the DNA binding 
preferences of C2H2-ZF proteins. With the help of homology modeling, we are able to 
predict PWMs for TFs for which we only know their amino acid sequence. We have tested 
our method by comparing theoretical PWMs with their motifs in JASPAR. We have used 
our approach to test PWM predictions of different regions of human CTCF and predicted 
a PWM to cover domains 2 to 11 of the DNA binding domain of CTCF (from downstream 
to upstream motifs). We offer a repository with the results and also a server to calculate 
the PWM using the structure of a TF as input. We think our approach may also be applied 
to predict the PWM of amino acid sequences of C2H2-ZF proteins that bind a specific 
DNA fragment. However, because of the lack of specificity on the prediction of binding 
affinities, further research is still needed on this goal. 
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LEGENDS TO FIGURES AND TABLES 
 
Figure 1. Statistical energy profiles PAIR and ZPAIR obtained with F2 and F3 domains. 
(A) Profile of Asn – GC PAIR score using F2. (B) Profile of Asn – GC ZPAIR score using F2. 
(C) Profile of Asn – GC PAIR score using F3. (D) Profile of Asn – GC ZPAIR score using F3. 
(E) Profile of Arg – AG ZPAIR using F2. (F) Profile of Arg – CT ZPAIR using F2. (G) Profile 
of Arg – AG ZPAIR using F3. (H) Profile of Arg – CT ZPAIR using F3.  
 
Figure 2. Heatmap plots of the number of amino acid – dinucleotides and their 
environments (etriads) at distance shorter than 30A in a logarithmic scale. Detailed view 
of a cell of the heatmap is shown in the right side of each heatmap.  Each square inside 
the cell shows the number of extended-triads (in logarithmic scale) for a specific amino 
acid – dinucleotide (the example uses valine, Val, and adenosine-cytosine, AC) and their 
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environments. Amino acid environments are: hydrophobicity (P as polar, N non polar), 
surface accessibility (E if exposed, B if buried) and secondary structure (E for b-strand, 
H for helix and C for coil). Dinucleotide environments are: type of nitrogenous bases (U 
for purine, I for pyrimidine), closest DNA strand (F for forward, R for reverse), closest 
DNA groove (A for major, I for minor) and closest chemical group  (B if phospho-ribose 
backbone atoms, N if nucleobase). (A) Extended-triads obtained from PDB structures. 
(B) Extended-triads obtained from PDB structures and B1H experiments of the F2 
domain. (C) Extended-triads obtained from PDB structures and B1H experiments of the 
F3 domain.  
 
Figure 3. Comparison of PWMs. We compare theoretical PWMs with experimental 
PWMs of the same hexamer sequence variants. For each comparison we show the 
amino acid hexamer sequence (highlighted in bold) used to calculate the experimental 
PWM, the DNA binding site with highest affinity of the hexamer sequence (highlighted 
in red), and the PDB code of the structure used as template to obtain the theoretical 
PWM. (A) Comparison of PWMs for domain F2. (B) Comparison of PWMs for domain F3. 
 
Figure 4. Comparison between theoretical PWMs of some members of the C2H2-ZF 
family and their motifs in JASPAR database. We use ZES3DCF2 statistical potentials for 
each TF with contacts under 30 Å, using all PDB structures of the C2H2-ZF family or 
avoiding those of its close homologs. A and B show examples rich on G and C 
nucleotides, while in C are shown examples rich on A and T nucleotides. JASPAR motifs 
are shown at the top of each comparison. PDB codes of the templates used to construct 
the theoretical PWMs are also indicated. (A) Examples of transcription factors P08046 
and P18146. (B) Examples of transcription factors Q06889, P11161, Q05215 and P08152. 
C) Examples of P32432, Q9FFH3 and Q8H1F5. 
 
Figure 5. Comparison between experimental and theoretical PWMs of CTCF. The PWM 
on top of the figure is the experimental PWM, retrieved from the JASPAR database 
(MA0139.1). The rest of logos show the theoretical PWMs obtained with the model or 
the structures selected from PDB. The PDB code and the numbers of the zinc-finger 
domains corresponding to the human CTCF DNA-binding domain are shown on the right 
side. 
 
Table 1. Results of the prediction of PWMs in domain F2. BS is the trinucleotide 
combination of the DNA binding site. 3M, 2M and 1M show the number of hexamers 
with at least one theoretical PWM having 3, 2 or 1 nucleotide matches with the 
experimental PWM, respectively. #HEXAMER is the total number of hexamers having as 
main binding the trinucleotide of the row. HEXAMER and TEMPLATE show the hexamer 
sequence and the code of the structure used as template for the theoretical PWM, this 
combination yields the highest match of nucleotides of the corresponding trinucleotide 
in the same row. <M> shows the average ratio of nucleotide matches of all theoretical 
PWMs and hexamer sequences with the same binding site of the row. RANK shows the 
best ranking position of the correct trinucleotide-specific PWM among all hexamers with 
the same binding site of the row. TOP shows the number of hexamers with at least one 
theoretical PWM ranking on the top the correct trinucleotide-specific PWM of the row. 
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Table 1 
 

BS 3M 2M 1M #HEXAMER TEMPLATE  HEXAMER <M> RANK TOP 
AAA 0 3 1 4 5ke9_A SPGSHN 0,65 2 0 
AAC 1 7 24 32 2wbu_A WHSSVH 0,66 1 1 
AAG 0 5 10 15 5ke9_A RSDYTM 0,55 4 0 
 AAT 4 3 1 8 1g2d_C FQSNVS 0,39 1 3 
ACA 1 8 16 25 1a1i_A QQSTSR 0,68 4 0 
ACC 0 8 0 8 5ke8_A HPSTSH 1,04 4 0 
ACG 4 21 0 25 1a1j_A WASSSN 0,80 1 10 
ACT 3 37 10 50 1p47_A FSSSSA 0,79 1 3 
AGA 0 2 0 2 1zaa_C SSGSWN 0,70 1 1 
AGC 7 4 0 11 5ke8_A WHSSIH 0,74 1 6 
AGG 0 22 7 29 5ke6_A RKDHTN 0,82 3 0 
AGT 0 8 14 22 1a1i_A YHSNLS 0,31 2 0 
ATA 0 1 0 1 1a1i_A NAHNCL 0,37 9 0 
ATC 1 6 5 12 5ke7_A SSSGLH 0,68 1 1 
ATG 0 1 11 12 4r2c_A WHSGLN 0,40 9 0 
ATT 0 7 11 18 5keb_A FQSGSS 0,29 1 1 
CAA 0 1 1 2 1zaa_C TKGNTQ 0,57 3 0 
CAC 0 11 0 11 5keb_A DPSNRS 0,94 2 0 
CAG 0 15 16 31 1p47_A TKWNTS 0,75 2 0 
CAT 3 4 5 12 5ke7_A AQSNSS 0,57 1 3 
CCA 0 3 0 3 5keb_A QLSTNY 0,80 4 0 
CCC 3 0 0 3 1zaa_C TRRDRR 2,42 1 3 
CCG 1 1 0 2 1zaa_C RKDTRD 1,78 1 1 
CCT 0 7 0 7 1zaa_C RKQDSR 1,25 1 1 
CGA 2 1 0 3 2wbu_A QYGHST 0,77 1 2 
CGC 0 3 0 3 5keb_A SRPNLG 1,59 2 0 
CGG 22 8 1 31 5keb_A RASHSD 1,43 1 23 
CGT 0 20 3 23 5keb_A MSHHRD 0,99 2 0 
CTA 1 2 0 3 4r2c_A SQSGCQ 0,78 1 1 
CTC 3 0 0 3 1p47_A SRSGCH 1,04 1 3 
CTG 0 4 1 5 1p47_A RKFIIE 0,79 2 0 
CTT 0 1 7 8 5ke9_A YRHVSD 0,76 1 1 
GAA 1 0 9 10 1jk1_A TKGNTR 0,56 2 0 
GAC 1 17 1 19 1zaa_C WASSSR 0,95 3 0 
GAG 0 35 3 38 5keb_A TRFNLR 0,78 1 1 
GAT 0 8 1 9 4r2a_A FASNRR 0,65 2 0 
GCA 1 2 0 3 5ke9_A QLATNR 0,97 3 0 
GCC 7 0 0 7 5keb_A WLTNRR 2,21 1 7 
GCG 9 15 0 24 5ke9_A RRDTAN 1,41 1 20 
GCT 11 4 0 15 5ke8_A FRSTSR 0,97 1 11 
GGA 0 6 2 8 1a1i_A QLSTKY 0,74 4 0 
GGC 4 1 0 5 2kmk_A WQSSIK 1,10 1 1 
GGG 19 27 0 46 5ke7_A RNAHLN 1,32 1 20 
GGT 0 8 3 11 5ke7_A FQSNLR 0,84 1 1 
GTA 0 2 2 4 1a1h_A TKGSTR 0,71 7 0 
GTC 0 7 0 7 2kmk_A HASSSR 0,84 5 0 
GTG 0 38 4 42 5ke9_A RKAITD 0,87 4 0 
GTT 0 5 1 6 5kea_A FLSSSR 0,72 1 2 
TAA 1 0 1 2 1zaa_C MYIDYY 0,91 1 1 
TAC 0 2 3 5 5ke7_A LKGNTK 0,71 7 0 
TAG 2 1 5 8 5ke9_A RKWTDL 0,53 1 2 
TAT 0 6 4 10 5ke9_A WLTSNV 0,26 9 0 
TCA 0 0 2 2 5ke7_A HNIYHH 0,37 23 0 
TCC 0 6 0 6 5ke8_A TKASTP 1,26 6 0 
TCG 1 3 0 4 1a1h_A RKESVI 1,31 5 0 
TCT 0 7 4 11 5keb_A WSSSAI 0,81 3 0 
TGA 1 1 1 3 5ke9_A WASSHY 0,49 1 1 
TGC 0 2 0 2 2kmk_A WPNSKA 0,78 2 0 
TGG 0 37 11 48 1a1k_A RNAHSE 0,81 3 0 
TGT 0 17 23 40 5ke9_A WASSSS 0,27 5 0 
TTA 0 1 0 1 5keb_A CIHYNN 0,35 17 0 
TTC 0 2 0 2 5ke7_A SASGSH 0,62 3 0 
TTG 0 5 6 11 5keb_A RKWTML 0,69 2 0 
TTT 0 0 3 3 5ke9_A YRWIRD 0,36 4 0 
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Figure 3 
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Figure 4 
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