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Abstract 1 

Segmentation of high-resolution tomographic data is often an extremely time-consuming task and 2 

until recently, has usually relied upon researchers manually selecting materials of interest slice by 3 

slice. With the exponential rise in datasets being acquired, this is clearly not a sustainable workflow. 4 

In this paper, we apply the Trainable Weka Segmentation (a freely available plugin for the 5 

multiplatform program ImageJ) to typical datasets found in archaeological and evolutionary 6 

sciences. We demonstrate that Trainable Weka Segmentation can provide a fast and robust method 7 

for segmentation and is as effective as other leading-edge machine learning segmentation 8 

techniques. 9 

Introduction 10 

Three-dimensional imaging using micro CT scanning has rapidly become mainstream in the 11 

archaeological and evolutionary sciences. It enables the high-resolution and non-destructive analysis 12 

of internal structures of scientific interest. In archaeological sciences it has been used for a variety of 13 

purposes, from imaging pottery (Barron et al., 2017; Tuniz and Zanini, 2018) understanding soil 14 

compaction (McBride and Mercer, 2012) imaging early bone tools (Bello et al., 2013) and mummies, 15 

both human and animal (Charlier et al., 2014; Du Plessis et al., 2015; Romell et al., 2018). In 16 

evolutionary sciences, it is employed even more widely, from scanning hominin remains  for 17 

morphological reconstruction (Gunz et al., 2012; Hershkovitz et al., 2018, 2015; Hublin et al., 2017) 18 

to diagnosing ancient pathologies (Anné et al., 2015; Odes et al., 2016; Randolph-Quinney et al., 19 

2016). It is used extensively in vertebrate palaeontology (Abel et al., 2012; Chapelle et al., 2019; 20 

Hechenleitner et al., 2016; Laloy et al., 2013) and invertebrate palaeontology (Garwood and Dunlop, 21 

2014; Wacey et al., 2017) and increasingly, palaeopalynology (Collinson et al., 2016).  22 

In comparative anatomy, it is now part of the standard non-destructive analytical toolkit, alongside 23 

geometric morphometrics (GMM) and finite element analysis (FEA) (Borgard et al., 2019; Brassey et 24 

al., 2018, 2013; Brocklehurst et al., 2019; Cuff et al., 2015; Marshall et al., 2019; Polly et al., 2016). 25 

Unfortunately for researchers, if one wishes to quantify biological structures, the data does not 26 

simply appear from scanners ready to use. It requires processing through the segmentation of the 27 

structures of interest, followed (usually) by the generation of 3-dimensional models.  28 

There are 5 main approaches to image segmentation.  29 

• Global thresholding based upon greyscale values in scans.  30 

• Watershed based segmentation 31 

• Locally adaptive segmentation 32 
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• Manual segmentation of structures 1 

• Label based segmentation, in conjunction with machine learning.  2 

One can broadly classify greyscale segmentation and edge-based segmentation as passive 3 

approaches, as very little input is required from the user, and Region or label based segmentation as 4 

active, in that they require more explicit input from the user.  5 

Greyscale thresholding  6 

Greyscale thresholding is the oldest approach to the processing of tomographic data (Spoor et al., 7 

1993) and has been refined to the use of the half width, full maximum height approach based upon 8 

stack histograms (Spoor et al., 1993). This however is only useful for materials which have a single 9 

range of X-ray absorption and several passes are therefore required for the segmentation of multiple 10 

tissue types.  11 

Watershed based segmentation  12 

Watershed based segmentation has enjoyed a lot of popularity for segmenting complex structures 13 

such as brain folds but is also of some utility when segmenting fossil structures. A recent innovation 14 

has been the application of Ray-casting and similar techniques to the processing of data (Dunmore 15 

et al., 2018; Scherf and Tilgner, 2009) which helps to ameliorate problems with fuzzy data and 16 

automates the processing of this. A problem is that it is only feasible to process a single material 17 

(although the others are also detected) and an aspect of ‘re-looping’ the procedure is then required, 18 

which can create a bottleneck for scans where multiple materials are of equal interest (for example, 19 

mummies, where the skeleton, desiccated flesh and wrappings are all of equal scientific interest.  20 

Locally adaptive segmentation 21 

Locally adaptive segmentation is increasingly carried out using deep learning in an automated 22 

fashion. Algorithms use combinations of edge detection, texture similarity and image contrast to 23 

create rules for the classification of different materials. (Prasoon et al., 2013; Radford et al., 2015; 24 

Suzani et al., 2015). It has become increasingly popular with the availability of massive datasets from 25 

healthcare providers and several recent reviews cover this suite of techniques in-depth (Greenspan 26 

et al., 2016; Litjens et al., 2017; Shen et al., 2017; Suzuki, 2017). A criticism of unsupervised methods 27 

such as convoluted neural networks is that they can demand huge computing resources while still 28 

often yielding false positives including  highlighting artefacts in data (e.g. ring artefacts in CT 29 

scans(Nguyen et al., 2015; Szegedy et al., 2013; Wang, 2016). Another set of related techniques 30 

include kmeans and c-means clustering algorithms. K-means is known as a ‘hard’ clustering 31 

algorithm, introduced independently by Forgy and MacQueen (Forgy, 1965; MacQueen, 1967). This 32 

method, and extensions of it, have been used widely in MRI processing (e.g. (Dimitriadou et al., 33 
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2004; Juang and Wu, 2010; Singh et al., 1996). An interesting note is that the original publication 1 

cautioned against using k-means clustering as a definitive algorithm, but as an aid to the user in 2 

interpreting clusters of data. Another popular clustering algorithm is that of fuzzy c-means (Bezdek, 3 

1980, 1980, 1975; Pham and Prince, 1999) which is an example of ‘soft’ clustering methods, where 4 

probabilities of group allocation are given. Again, this is popular for the automated segmentation of 5 

MRI data (e.g. Dimitriadou et al., 2004) and computational speed can be further improved by an 6 

initial clustering using k-means partitioning (Dunmore et al., 2018).  7 

Manual segmentation 8 

Manual segmentation is usually carried out using a graphics tablet and the contours of each material 9 

of interest are manually traced by a researcher who is familiar with the characteristics of the 10 

material of interest. This technique is intrinsically reliant on the skill of the researcher carrying out 11 

the segmentation and is also extremely time consuming for large datasets. 12 

Label based segmentation  13 

Label based segmentation is commonly used to ‘seed’ areas of interest and a contour is propagated 14 

until a significant difference in the material absorption is observed (within user set parameters such 15 

as kernel size and diffuseness of boundaries). In more recent applications, these approaches have 16 

been combined with machine learning, such as in (Arganda-Carreras et al., 2017; Glocker et al., 17 

2013). Most user guided approaches utilise a variant of the Random Forest Algorithm for training 18 

(Breiman, 2001; Tin Kam Ho, 1998). The Weka segmentation method is an example of supervised 19 

label based segmentation, augmented by machine learning and as such, is our preferred technique 20 

for the segmentation of complex anatomical and archaeological/palaeontological data which may 21 

suffer from artefacts in scanning and material inhomogeneity (defined here as differences in 22 

material x-ray absorption). It has previously been tested on ground truth images applicable to 23 

geological samples and found to perform at least as well as other leading algorithms (Berg et al., 24 

2018).  It provides an easy to interpret overlay on training datasets (see figure 1) and can be used to 25 

rapidly process multiple complex materials simultaneously.  26 

 27 
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 1 

Figure 1 An example of Weka segmentation.  A: Original slice B: Weka classification of rodent mummy showing previews of 2 
masking 3 

In summary, a significant roadblock to more rapid and precise advances in micro CT imaging in 4 

archaeological and evolutionary sciences is that the structures of interest are often non-5 

homogenous in nature and until recently, have required extensive manual processing of slices . 6 

Recent advances in machine learning, combined with user-friendly interfaces mean that an 7 

acceleration of data processing is seriously possible, especially when combined with the potential to 8 

process data through either clusters or multiple GPUs. In this article, we demonstrate for the first 9 

time the implementation of the Trainable Weka Segmentation (Arganda-Carreras et al., 2017), to 10 

typical micro CT data encountered in archaeological and evolutionary sciences. The Trainable Weka 11 

Segmentation is available through the FIJI fork of ImageJ (Schindelin et al., 2012). We demonstrate 12 

the efficacy of these algorithms as applied to six distinct examples: an entirely synthetic dataset; 13 

micro CT scans  of a machine wire phantom; a defleshed mouse tibia; a lemur vocal tract; a juvenile 14 

Neanderthal humerus (Kostenki 2) and a small rodent animal mummy. These represent a range of 15 

the type of samples commonly encountered by researchers working in imaging in evolutionary 16 

sciences and each presents different segmentation challenges. To further demonstrate its efficacy, 17 

we compare this algorithm with other methods that have typically been used.  18 
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Materials and methods 1 

Synthetic Dataset 2 

A synthetic dataset of 12 images of white triangle outlines on a black background was made. The 3 

original was kept as the ground truth. To simulate partial volume averaging and scanner noise, the 4 

following filters were applied in ImageJ: Noise: Salt and Pepper; Gaussian Blur of radius 2.0 pixels; 5 

Shadow from south (base) of the image. The original data, the data with noise added, and, all 6 

segmentations are included in the supplementary material. A render is in figure 2 with an arbitrary 7 

voxel depth of 10.  8 

MicroCT scans  9 

A  wire phantom object from (Dunmore et al., 2018) . This is a coil of randomly crunched stainless 10 

steel wire of thickness 4mm. 11 

A wild type mouse proximal tibia and from (Ranzoni et al., 2018). 12 

Rodent mummy Manchester Museum number 6033. This is thought to be a shrew, based upon size 13 

of the wrappings and earlier medical X-Rays (Adams, 2015).  14 

Primate vocal tract-this is a scan of a wet preserved Nycticebus pygmaeus individual from the Duke 15 

Lemur Center, catalogue DLC_2901 and is more fully described in (Yapuncich et al., 2019).. 16 

A partial proximal humerus from a juvenile Neanderthal from the site of Kiik-Koba. It has been 17 

described in detail by (Trinkaus et al., 2016) and has matrix and consolidant adhering to it which 18 

obscure some more detailed aspects of its morphology.   19 

Full scan parameters are shown in Table 1 and volume renders of the tested datasets are shown in 20 

Figure 2.   21 
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Table 1. Scan parameters 1 

Object Reference 

number 

Scanned with KeV μA Voxel 

size/μm 

Filter Medium 

Rodent mummy in 

wrappings 

Manchester 

museum 6033 

Nikon XTH225 
   

Air 
 

Nycticebus pygmaeus 

vocal tract 

Duke Lemur 

Center  2901 

Nikon XTH225 155 110 35.47 None Air 

Kiik-Koba 2 juvenile 

neanderthal humerus 

KunstKamera 

Museum 

Custom MicroCT 

(microCT MPKT-

01) 

135 35 30 None Air 

Wild type mouse tibia Number 6 Skyscan1172 49 200 5.06 Aluminium 70% Ethanol 

10mm thickness 

machine wire artefact 

n/a SkyScan 1172 100 100 12.87 None Air 

 2 

 3 

Figure 2. Volume renders of items analysed. A: Synthetic dataset; B: Machine Wire; C: Wild mouse type tibia section; D: 4 
Nycticebus pygmaeus vocal tract; E: Kiik Koba 2 partial humerus; E: Mummified rodent 5 
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Sample processing 1 
All samples were subjected to segmentation using the Interactive Weka Segmentation editor plugin 2 

in ImageJ (Arganda-Carreras et al., 2017) with the following settings (adjusted after Somasundaram 3 

et al., 2018 who have applied this to medical images): Gaussian blur, Sobel Filter, Hessian Filter, 4 

Membrane projections (Thickness 1, patch size 10, difference of Gaussian filters, median filter 5 

(minimum sigma=1.0, maximum sigma=4.0); Kuwahara filter (Kuwahara et al., 1976). These filters 6 

help to counteract potential artefacts in the original scan slices and were found by (Somasundaram 7 

et al., 2018) to give the closest values to their ‘gold standard’ which was manual segmentation by a 8 

specialist.  9 

Individual slices which contained all the materials of interest were trained using the Weka 10 

segmentation plugin. Briefly, areas containing each material of interest were selected using a 11 

graphics tablet and areas at the interface between materials were also selected (e.g. where a bone 12 

came into contact with air, near the edge of the bone was selected and added to the ‘bone’ label 13 

and a part near the edge of the air was selected and added to the ‘air’ label). This helped the 14 

algorithm to effectively select the correct labels at interfaces between materials. To propagate this 15 

label selection across the whole image, the Random Forest Algorithm was used, with 200 hundred 16 

trees. Although the use of fewer trees is more computationally efficient, the tradeoff between 17 

efficiency and efficacy starts to plateau after ~250 trees (Probst and Boulesteix, 2018). All images 18 

were then segmented using the appropriate training dataset.  19 

All stacks were processed on of two machines with 32GB RAM, PCIeM2 SSD and either a 6 core i7 at 20 

3.6GHz (4.2GHz at boost) or an 8 core AMD 2700 at 3.2 GHz (4Ghz at boost). Due to the way the Java 21 

virtual machine is configured, graphic card parameters are not currently relevant for this workflow.  22 

All datasets were also in ImageJ segmented with the following competing algorithms:  23 

• Greyscale thresholding (using the half-maximum-height algorithm) 24 

• K-means segmentation  25 

• C-means segmentation 26 

• Localised fuzzy c-means segmentation, with pre-selection through k-means clustering  27 

All variants of k-means and c-means segmentation used the ImageJ plugin available from 28 

https://github.com/arranger1044/SFCM. Spatial fuzzy c-means used the settings recommended by 29 

Dunmore et al. (2018).  30 
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For visual purposes, 3D renderings of each of the complete models were created using Avizo with no 1 

smoothing applied and the distances between the Weka segmentation and meshes generated with 2 

competing algorithms was visualised using the package Rvcg in R (Schlager, 2017).  3 

Statistical comparisons 4 
The effects of the varying segmentation algorithms on real world results is the most important 5 

consideration as it is sensible to anticipate that improvements will be made to the accuracy of these. 6 

In the case of the wire phantom and the tibia ROI it was also possible to compare average 7 

wire/trabecular thickness and thickness distribution of the samples (with the wire also having a 8 

ground truth thickness of 4mm). One further real-world test was a comparison of the ellipsoidness 9 

(after Salmon et al., 2015) and degree of anisotropy in the trabecular ROI, to demonstrate what 10 

effect the segmentation would have on biomechanical analyses. All thickness and anisotropy 11 

calculations were calculated with BoneJ 2 (Doube et al., 2010). We also assessed the degree of bone 12 

volume in the trabecular ROI, as many publications use this as a proxy for levels of bone formation in 13 

response to weight bearing or mechanical stimulation (e.g. Acquaah et al., 2015; Farooq et al., 2017; 14 

Li et al., 2016; Milovanovic et al., 2017; Turner, 2002).   15 
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Results 1 

Segmentation times 2 
Segmentation times for Weka segmentation are listed for representative individual slices from each 3 
stack in table 2.  4 

Table 2. Segmentation times for each dataset 5 

Scan Training 
time/ms 

Classification 
time/ms 

Bit 
depth 

Image x 
length 

Image y 
length 

No. 
materials 

Synthetic dataset 15 0.5 8 814 814 2 
Machine wire 
phantom 

18 6.8 32 3240 3240 2 

Mouse tibia 10 0.59 8 960 960 2 
Lemur larynx 50 4 16 1329 1271 3 
Kiik-Koba 49 0.3 8 480 576 3 
Rodent mummy 50 1.5 8 1117 1141 3 

 6 

Synthesised dataset 7 

 8 

Figure 3. Synthesised data results. A: Original non-modified data; B: Weka Segmentation; C: local c-means; D: k-means; E: 9 
Watershed. F-I comparisons of above meshes with original data. 10 

The majority of the data segmented relatively easily, but both k-means and local c-means struggled 11 

with the smaller triangles, where noise was closer to the dimensions of the object of interest.  12 

 13 

Figure 4. Closeups of the segmentations. Order as in Figure 3.  14 
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Wire phantom 1 

The Weka segmentation performed as well as the local c-means segmentation and improved some 2 

aspects of fine detail retrieval (figure 5).  3 

 4 

Figure 5. A: Original wire phantom scan; B: Weka segmentation. C: Local c-means segmentation; D: K-means segmentation; 5 
E: Watershed segmentation. Modified after Dunmore et al., (2018) Red circles indicate the areas highlighted by Dunmore et 6 

al., (2018) and blue are areas where Weka segmentation retrieves more fine detail. 7 

 8 

Wild type mouse tibia 9 

The Weka segmentation performed better than the other types of segmentation, with improved 10 

quality on fine features.  11 

 12 

Figure 6. Comparisons of segmentations of the tibia. A: Weka; B: Local C-means; C: K-means; D: Watershed. E-G: heatmap 13 
comparisons of the above specimens with Weka segmentation. Blue to red scale, Blue indicates values which are concave 14 

compared with Weka; Red indicates areas that are concave compared with Weka. 15 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2019. ; https://doi.org/10.1101/859983doi: bioRxiv preprint 

https://doi.org/10.1101/859983
http://creativecommons.org/licenses/by/4.0/


12 
 

 1 

Figure 7. Comparisons of segmentations of ROI. A: Weka; B: Local C-means; C: K-means; D: Watershed. E-G: heatmap 2 
comparisons of the above specimens with Weka segmentation. Blue to red scale, Blue indicates values which are concave 3 

compared with Weka; Red indicates areas that are concave compared with Weka. 4 

Violin plots indicate that alternative segmentation methods have subtly different distributions in 5 

terms of distance from the Weka segmentation. All suffer from arbitrary spiking in the data. 6 

  7 

Figure 8. Violin plots of mesh distances. Cut off at 1e-2 to illustrate the main trends in the data 8 
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It is also apparent that differing segmentation techniques have a marked effect on the degree of 1 

anisotropy detected in trabecular bone, with Weka tending towards more anisotropic structures. 2 

This may be because of the lack of spiking in the resulting segmentation when compared with the 3 

other methods here. The Ellipsoid Factor (a replacement for the Structure model index (Doube, 4 

2015; Salmon et al., 2015) also varies considerably, with a difference of almost 4% between Weka 5 

and watershed segmentation.  It is noticeable also that Weka segmentation classifies a relatively low 6 

percentage of bone and also trabecular thickness.  7 

Table 3 Comparison of the morphometric measures of the tibia ROI 8 

 9 

Lemur scan  10 

The Weka segmentation was able to account for the ring artefacts in the scan and successfully 11 

segmented the materials of interest. It was also more successful at segmenting the finer structures 12 

in the larynx (see Figure 8). It also generated much cleaner data than all other segmentations. 13 

 14 

Figure 9. Comparison of Nycticebus pygmaeus scan segmentations.  A: Weka; B: Local C-means; C: K-means; D: Watershed. 15 
E-G: heatmap comparisons of the above specimens with Weka segmentation. Blue to red scale, Blue indicates values which 16 

are concave compared with Weka; Red indicates areas that are concave compared with Weka. 17 

Segmentation 
technique 

Degree of 
anisotropy 

% of foreground volume 
filled with ellipsoids 

% of ROI 
classified as bone 

Tb 
thickness/µm 

Tb. Th 
S.D. /µm 

Weka 0.44 14.32 12.7 35.1 12.7 

Local c-means 
binarized 

0.38 14.39 15.1 39.2 12.6 

K-means 0.39 16.52 15.2 40.9 13.2 

Conventional 
watershed 

0.41 18.28 15.3 41.0 13.2 
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Kiik-Koba Neanderthal humerus 1 

The Weka segmentation was able to track trabecular structure successfully, without eroding the 2 

material. It also was able to take into account the slight ‘halo’ effect on the bone/air interface, which 3 

conventional segmentation used to create an external border of the matrix material. The c-means 4 

and k-means segmentation both created this ‘halo’ like border (Figure 11).   5 

 6 

Figure 10. Kiik-Koba 2 reconstructions. 7 
A: Weka; B: Local C-means; C: K-means; D: Watershed. E-G: heatmap comparisons of the above specimens with Weka 8 
segmentation. Blue to red scale, Blue indicates values which are concave compared with Weka; Red indicates areas that are 9 
concave compared with Weka. 10 
 11 
 12 

 13 
Figure 11. Orthoslice from Kiik-Koba microCT scan. A: Original scan; B: Weka; C: Local C-means; D: K-means; W: Watershed 14 

 15 

16 
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Rodent Mummy 1 

The Weka segmentation was able to detect the majority of the skeletal features and also 2 

discriminate the mummified tissues from the outer wrappings. There were a few artefacts around 3 

the front paws and mandible which would require some manual correction to fully delineate the 4 

structures. The smoothing steps introduced in the segmentation were able to remove many of the 5 

scanning artefacts which made borders of materials harder to resolve with conventional methods. K-6 

means segmentation was able to discriminate materials relatively well also, although it did 7 

misclassify several slices. Localised C-means was unsuccessful in several slices, missing bone material 8 

entirely, where other segmentation techniques succeeded.  9 

 10 

 11 

Figure 12. Rodent mummy 3D model reconstructions. Order as before. Second row are closeups showing extra detail 12 

 13 

  14 
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Discussion 1 

The Weka segmentation algorithm generated improved results when compared with standard tools 2 

available in Avizo and was especially good at tracking fine structures throughout the samples. It is 3 

interesting that all algorithms apart from Weka seem to struggle to differentiate between materials 4 

as contrast is low and details approach the resolution of the scans (e.g. they struggle with details 5 

that are around 10 microns in size, when the scan is 5 microns in resolution). Although it did not 6 

perfectly segment out the bone in the rodent mummy sample, it is a noted improvement on current 7 

methods, and is extremely easy to implement. It compared favourably with the MCIA data and has 8 

the added advantage that ImageJ is widely available, easy to learn and platform independent. It also 9 

has the advantage over the MCIA algorithm in that it is able to compensate for the material interface 10 

artefacts in scans (Dunmore et al., 2018). A suggestion for further processing of data from especially 11 

noisy scan data is that the user applies the ‘despeckle’ filter in imageJ, either on the original data, or 12 

the resulting segmentation.  13 

Our results with the trabecular ROI add to those of Verdelis et al., (2011), who caution that inter 14 

system microCT results at high resolutions may not necessarily be entirely comparable. We would 15 

add an extra caution to this and would suggest that segmentation choice should be explicitly 16 

referred to as this can also have a large effect on results. It also appears to contradict the results of 17 

Christiansen, (2016) who found that different watershed methods did not really affect results at high 18 

resolutions. This is definitely an area which warrants more investigation.  19 

The Weka algorithms can be applied to a wide range of image types, as it was originally developed 20 

for microscopy (Arganda-Carreras et al., 2017). We have tested this on image datasets from 8 to 32-21 

bit depth. Given workflow constraints, most images used in everyday analysis will be either 8 or 16-22 

bit. DICOM data requires the conversion to TIFF or other standard image formats to processing with 23 

Weka. ImageJ/Weka segmentation is multi-platform and has a user-friendly GUI. This make it an 24 

ideal toolbox to teach researchers (who may be unfamiliar with the subtleties of image processing) a 25 

fast and free way to process their CT data. Key parameters t observe are to use a fast CPU with 26 

multiple cores, which will enable users to fully leverage multi-threading; as well as the use of fast 27 

hard drives (preferably Solid State Drives) if working on a desktop. Training the segmentation using 28 

fine structures will also improve delineation of edge features. Finally, the use of a graphics tablet is 29 

also recommended.  30 

A major disadvantage currently is that the Weka algorithms are extremely CPU intensive but in 31 

ImageJ, do not utilise the GPU. K-means and fuzzy c-means algorithms are also extremely CPU 32 

intensive, regardless of if they are written in ImageJ or Matlab.  Interestingly, the MCIA algorithms 33 
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are very RAM intensive (Dunmore, pers. comm.). Implementation of the Weka algorithm, either 1 

through virtualised clusters (e.g. FIJI archipelago,) or through GPU optimisation (either through CLIJ 2 

(Haase et al., 2019) or Matlab bridging) may work to ameliorate bottlenecks in processing speed 3 

somewhat. The yield in minimising user time in segmentation (as once trained, segmentation can 4 

process independently of the user) does however make the current implementation an ideal 5 

approach for the first pass segmentation of structures in archaeological and evolutionary studies. 6 

Localised C-means segmentation in both ImageJ and Matlab also tend to flip the order of labels in 7 

some images, which then necessitates further steps of interleaving different stacks to obtain one 8 

segmentation. This is probably fairly straightforward to address by a forcing of order of labels in the 9 

algorithm but is beyond the scope of this paper.  10 

Conclusions 11 

For the first time, we have presented the implementation of the Weka Machine learning library to 12 

archaeological and palaeontological material. It yields results that are the equal of leading edge-13 

based methods and superior to conventional segmentations produced by commercial packages. The 14 

implementation of Weka segmentation is fast, with no software cost to the end user and it enables 15 

an easy introduction to both image segmentation and machine learning for the inexperienced user. 16 

Future work will seek to apply this algorithm to larger and more varied samples, as well as exploring 17 

the possibility of increasing the speed of computation, either through GPU based acceleration or use 18 

of virtual clusters.  19 
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