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Abstract 
The primary auditory cortex (A1) is an essential node in 

the integrative brain network that encodes the 

behavioral relevance of acoustic stimuli, predictions, 

and auditory-guided decision making. Previous studies 

have revealed task-related information being present at 

both the single-unit and population activity. However, its 

realization with respect to the cortical microcircuitry is 

less well understood. In this study, we used chronic, 

laminar current source density (CSD) analysis from the 

A1 of behaving Mongolian gerbils (Meriones 

unguiculatus) in order to characterize layer-specific, 

spatiotemporal synaptic population activity. Animals 

were trained to first detect and subsequently to 

discriminate two pure tone frequencies in consecutive 

training phases in a Go/NoGo shuttle-box task. We 

demonstrate that not only sensory but also task- and 

choice-related information is represented in the 

mesoscopic neuronal population code distributed 

across cortical layers. Based on a single-trial analysis 

using generalized linear-mixed effect models (GLMM), 

we found infragranular layers to be involved in auditory-

guided action initiation during tone detection. 

Supragranular layers, particularly, are involved in the 

coding of choice options during tone discrimination. 

Further, we found that the overall columnar synaptic 

network activity represents the accuracy of the opted 

choice. Our study thereby suggests a multiplexed 

representation of stimulus features in dependence of 

the task, action selection, and the behavioral options of 

the animal in preparation of correct choices. The 

findings expand our understanding of how individual 

layers contribute to the integrative circuit of the A1 in 

order to code task-relevant information and guide 

sensory-based decision making. 

 
Introduction 
A central function of the sensory neocortex is the 

integration of sensory stimulus features and cognitive 

aspects in behavioral contexts. However, the underlying 

integrative circuit mechanisms are still only partially 

understood. In the case of the auditory system, ample 

evidence has revealed that the primary auditory cortex 

(A1) integrates sensory information with other 

contextual and motor signals and further reflects higher 

cognitive demands responsible for prediction (Kumar et 

al., 2011; Parras et al., 2017; Town et al., 2018), choice 

accuracy (Niwa et al., 2012; Caras & Sanes, 2017), and 

auditory-guided decision making (Brosch et al., 2005; 

King et al., 2018; Ohl and Scheich, 2005; Tsunada et 

al., 2015). The salience of behaviorally relevant sounds 

further critically depends on the exact reinforcement 

regimes and task rules (Bagur et al., 2018; David et al., 

2012; Huang et al., 2019), which renders the auditory 

cortex a multifarious integrative circuit. These and other 

studies have described corresponding neural correlates 

on the level of single neuron or population activity 

recordings. Some studies have suggested layer-specific 

differences in the representation of auditory information 

along the vertical axis of the auditory cortex 

(Bandyopadhyay et al., 2010; Li et al., 2014; Tischbirek 

et al., 2019). In agreement, a growing body of human 

imaging studies has shown attention and task-related 

modulation of auditory processing in the A1 (Deike et 

al., 2015; Häkkinen and Rinne, 2018; Petkov et al., 

2004; Puschmann et al., 2017) based on gross neural 

or metabolic response measures. However, how the 

canonical principles of the columnar processing are 

reflected in the aforementioned multiplexed function of 

the A1 is very much unknown (Ohl, 2015; King et al., 
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2018). We lack a deeper understanding of the 

underlying neuronal observables on a mesoscopic level 

characterizing the contributions of whole populations of 

synaptic circuits across the cortical layers. 

Here, we utilized chronic laminar local field potential 

(LFP) recordings and the analysis of the corresponding 

current source density (CSD) distribution in the A1 in 

behaving Mongolian gerbils. Chronic CSD profiles allow 

the measurement of the spatiotemporal synaptic 

population activity and to characterize the mesoscopic 

cortical column physiology. In a first phase animals 

were trained to detect pure tones of two different 

frequencies and respond with a ‘Go’ response to both of 

them (‘Go’ contingency). After successful task 

acquisition, in a second phase the task rules were 

changed so that only one of the frequencies remained 

to be a ‘Go’ signal, while for the other frequency the 

‘NoGo’ response was then the correct choice (‘NoGo’ 

contingency). We found that cortical layers differentially 

contribute to represent the physical attributes of task-

relevant stimuli, the task rule, conditioned motor 

initiation, behavioral decision making, and the choice 

accuracy. Based on single-trial CSD data, we used 

generalized linear-mixed effect models (GLMM) with a 

logistic link function in order to effectively predict an 

animal’s behavior. During the initial detection task of two 

pure tone frequencies all cortical layers contributed to 

initiate an active avoidancebehavior. The rather task-

irrelevant sound frequency was not differentially 

reflected on a columnar response level. After switching 

to the more demanding discrimination task employing 

the same pure tone stimuli, synaptic circuits within 

mainly granular input layers and supragranular layers 

reflected the behaviorally observed discriminability 

between the stimulus classes ‘Go’ and ‘NoGo’. Hence, 

the task structure affected the columnar representation 

of auditory information to otherwise identical pure tones. 

Further, the columnar population activity differed 

strongly between correct hit responses and correct 

rejections, while it failed to predict the animal’s behavior 

during inadequate choices. Our study revealed that the 

relative contribution of cortical layers to the canonical 

columnar response is modulated by task-dependent 

features such as the behavioral relevance of the 

stimulus, its particular contingency and required action, 

as well as direct decision variables and the choice 

accuracy. Finally, this multiplexed information coded by 

the layer-specific cortical population activity 

emphasizes the integrative circuit function of the A1 as 

an instructive mediator between bottom-up routed task-

relevant sound features and top-down-controlled 

auditory-guided decision making. 

 

Materials & Methods 
Experiments were carried out with adult male Mongolian 

gerbils (Meriones unguiculatus, 4 to 8 months of age, 

70-90 g body weight, total n=9). All experiments 

presented in this study were conducted in accordance 

with ethical animal research standards defined by the 

German Law and approved by an ethics committee of 

the State of Saxony-Anhalt. 

 

Surgery and chronic implantation under 
electrophysiological control  
For chronical in vivo electrophysiological recordings a 

multichannel electrode (Neuronexus, A1x32-6 mm-50-

177_H32_21mm) was surgically implanted into the A1. 

Gerbils were initially anesthetized by an intraperitoneal 

(i.p.) injection (0.004 ml/g) consisting of 45% ketamine 

(50 mg/ml, Ratiopharm GmbH), 5% xylazine (Rompun 

2%, Bayer Vital GmbH) and 50% of isotonic sodium-

chloride solution (154 mmol/1, B. Braun AG). 

Anesthesia during the surgery was maintained with 

around 0.15 ml/g*h ketamine i.p. infusion. Anesthetic 

status was regularly checked (10-15 min) by the paw 

withdrawal-reflex and breathing frequency. Body 

temperature was continuously measured and kept 

stable at 34°C. The primary field A1 of the right auditory 

cortex was exposed by a small trepanation through the 

temporal bone (Ø 1mm). This avoids tissue damage 

and guarantees stable fixation of the implanted 

electrode on the skull. Another small hole for an initial 

reference wire (stainless steel, Ø 200-230 µm) was 

drilled into the parietal bone on the contralateral side. 

Animals were head-fixed with a screw-nut glued to the 

rostral part of the exposed nasal bone plate by UV-

curing glue (Plurabond ONE-SE and Plurafill flow, 

Pluradent) that was temporally attached to a metal bar. 

The recording electrode with a flexible bundle between 

shaft and connector was inserted perpendicular to the 

cortical surface into A1 via the small hole.  

During the implantation animals were placed in a 

Faraday-shielded acoustic soundproof chamber. 

Sounds were presented from a loudspeaker (Tannoy 

arena satellite KI-8710-32) in 1 m distance to the 

animal. For verification of the implantation site in A1, a 

series of pure-tones covering a range of at least 7 

octaves were presented (0.25–32 kHz; tone duration 

200 ms, inter-stimulus-interval (ISI) 800 ms, 50 

pseudorandomized repetitions, sound level 65 dB SPL). 

Stimuli were generated in Matlab (MathWorks, 

R2006b), converted into an analog signal by a data 

acquisition card (sampling frequency 1 kHz, NI PCI-

BNC2110, National Instruments), rooted through an 

attenuator (gPAHGuger, Technologies), and amplified 

(Thomas Tech Amp75). A measurement microphone 

and conditioning amplifier were used to calibrate 

acoustic stimuli (G.R.A.S. 26AM and B&K Nexus 2690-

A, Bruel&Kjaer, Germany). 

Tone-evoked LFPs were recorded with the multichannel 

array, pre-amplified 500-fold and band-pass filtered 

(0.7-300 Hz) with a PBX2 preamplifier (Plexon Inc.). 

Data were then digitized at a sampling frequency of 1 

kHz with the Multichannel Acquisition Processor 

(Plexon Inc.). Recordings of tone-evoked responses 
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were taken around 30 minutes after implantation and 

before the final fixation of the electrode. After 30 

minutes of laminar recordings, to allow for signal 

stabilization and verification of the tonotopic location, 

the electrode and connector (H32-omnetics) were glued 

onto the animal’s skull with UV-glue. Before enclosing 

the exposed A1 with UV-glue an antiseptic lubricant 

(KY-Jelly, Reckitt Benckiser-UK) was applied to the 

exposed cortex. After the surgery, the wounds were 

treated with the local antiseptic tyrothricin powder 

(Tyrosur, Engelhard Arzneimittel GmbH & Co.KG). 

Directly after the surgery and over the next 2 days, 

animals received analgesic treatment with Metacam 

(i.p. 2mg/kg bw; Boehringer Ingelheim GmbH) 

substituted by 5% glucose solution (0.2 ml). Animals 

were allowed to recover for at least 3 days before the 

first session of awake electrophysiological recording. 

 

Characterization of the recording location in A1 
during awake - passive listening 

After the recovery period, animals were placed in a 1-

compartment box in an electrically shielded and sound-

proof chamber in order to re-characterize the tuning 

properties of the chronically implanted electrode. 

Acoustic stimuli were presented in a pseudo-

randomized order of pure-tone frequencies covering a 

range of 7 octaves (0.25-16kHz; tone duration: 200 ms, 

ISI 800 ms, 50 pseudorandomized repetitions, sound 

level 70 dB SPL), while laminar LFP signals were 

recorded. Based on the measurements, we observed a 

rather flat frequency tuning (Suppl. Figure 2B). After 

each training phase (detection and discrimination) the 

frequency response tuning was recorded again.  

 
Shuttle-box training and behavioral paradigm  
Behavioral paradigm. Operant conditioning was 

trained in a two-way avoidance shuttle-box task (see 

Figure 1). The shuttle-box (E15, Coulbourn 

Instruments) was placed in an acoustically and 

electrically shielded chamber and contained two 

compartments separated by a hurdle (3 cm height). We 

trained animals (n=9) twice a day with a break of at least 

5 hours in between both training sessions. In each 

training session subjects were allowed to habituate for 

3 minutes within the shuttle-box. In the first training 

phase two pure tones with frequencies 1 kHz and 4 kHz 

were presented both as ‘Go’ conditioned stimuli (CS+). 

Subjects needed to detect any tone event and respond 

with a compartment change in order to avoid a mild foot 

shock (200-500 µA) presented as the unconditioned 

stimulus (US). We therefore call this phase the 

detection phase. Within each trial (12-15s), the CS+ 

tones were repeatedly presented (tone duration 200 ms, 

ISI of 1.5 s, 70 dB SPL) in a 6 s observation window 

during which subjects are required to change the 

compartment in order to make a correct ‘hit’ response. 

When subjects shuttled into the other compartment in 

response to the CS before US onset, this was counted 

as conditioned response (CR). In case animals did not 

show a CR within the 6 s observation window this 

defined a so-called miss trial. Here, the animal received 

an overlapping presentation of the CS+ and the US until 

an escape to the other compartment terminated the 

US/CS presentation. Subjects thereby learned to 

escape the aversive foot shock within a couple of trials 

(cf. Happel et al., 2015). In each session we presented 

each CS+ for 30 times in a pseudorandomized order. 

The time point at which we changed the task rule from 

detection to discrimination was oriented at the 

behavioral performance of each subject individually. For 

the detection task, which consists only of ‘Go’ trials, the 

overall task performance of each animal was derived by 

the d’ values for each session based on signal detection 

theory. We calculated the d’ as the differences of the z-

transforms of the hit rate and the z-transform of the 

relative inter-trial (ITS) derived from the inverses of a 

standardized normal distribution function (cf. Happel et 

al., 2015): 

                     𝑑′ = 𝑍(ℎ𝑖𝑡𝑠) − 𝑍(𝐼𝑇𝑆)                            (1) 

 

Once animals reached a stable performance of d’> 1 

(criterion threshold) for 3 consecutive training sessions, 

we introduced a change of the task rule and switched to 

a discrimination task by assigning the former 4 kHz ‘Go’ 

tone with a ‘NoGo’ (CS-) contingency (n=8; one subject 

excluded due to epileptic seizure during training). 

Subjects needed to report on the ‘NoGo’ condition by 

staying within the compartment to avoid an US, which 

we call a ‘correct rejection’ (Corr. Rej.). In ‘NoGo’ trials, 

animals had to stay in the compartment for 12-15 s, 

while the CS- was continuously played with an ISI of 1.5 

s to prevent animals from developing a time estimate of 

the observation window length over the long training 

period. If subjects incorrectly crossed within this 12-15 

s, the behavioral choice was counted as ‘false alarm’ 

(FA).  

Acoustic stimuli (CS). Stimuli were generated in 

Matlab (MathWorks, R2012b), converted into an analog 

signal by a data acquisition card (NI PCI-6733, National 

Instruments), rooted through an attenuator (gPAH 

Guger, Technologies), and amplified (Black Cube 

Linear, Lehman). Two electrostatic loud speakers 

positioned 5cm at both sides of the shuttle-box. A 

measurement microphone and conditioning amplifier 

were used to calibrate acoustic stimuli (G.R.A.S. 26AM 

and B&K Nexus 2690-A, Bruel&Kjaer, Germany).  

Unconditioned stimuli (US).  The mild foot-shock (US) 

was conditionally delivered by a grid floor and 

generated by a stimulus generator (STG-2008, Multi-

Channel Systems MCS GmbH). Depending on the 

individual animal sensitivity and performance the shock 

intensity was adjusted (starting at 200 µA) in steps of 
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50µA until the escape latencies were below 2s, in order 

to achieve a successful association of conditioned 

stimuli (CS) and US (cf. Happel et al., 2015). 

Data analysis. We record all compartment changes 

during the habituation phase and the training phase. 

Reaction times of CR’s, escape latencies and the 

number of inter-trial shuttles (ITS) were recorded. The 

choice outcomes were characterized as hit, miss, false 

alarm and correct rejection depending on the animals’ 

behavior and the contingency of the stimulus (see 

Figure 1A, right). To evaluate the training progress, we 

calculate the averaged conditioned response (CR) rates 

as a function of sessions (Figure 1B).  

 
Multichannel recordings during training 

Multichannel recordings were performed with 

connecting the head-connector of the animal to a 

preamplifier (20-fold gain, band-pass filtered, HST/32V-

G20; Plexon Inc.) and a data acquisition system (Neural 

Data Acquisition System Recorder Recorder/64; Plexon 

Inc.). The cable harness was wrapped by a metal mesh 

for bite protection. Tension of the cable was relieved by 

a spring and a turnable, motorized commutator (Plexon 

Inc.) that permits free movement and rotation of the 

animal in the box. Broadband signals were recorded 

continuously using a preamplifier (Plexon REC/64 

Amplifier; 1Hz-6 kHz) during the training with a sampling 

frequency of 12 kHz. Local field potentials were 

sampled with 2 kHz, visualized online (NeuroExplorer, 

Plexon Inc. Recording Controller) and stored offline for 

further analysis. To avoid ground loops between 

recording system, shuttle-box and the animal we ensure 

proper grounding of the animal via its common ground 

and leave the grid floor on floating voltage.   

 

Analysis of electrophysiological data  
Current source density (CSD) analysis. Based on the 

recorded laminar local field potentials, the second 

spatial derivative was calculated yielding an estimate of 

the current-source density distribution, as seen in 

equation:   

    −CSD ≈  
δ2Φ(z)

δz2  =  
Φ(𝑧+𝑛𝚫z)− 2Φ(𝑧)+ Φ(𝑧−𝑛𝚫𝑧)

(𝑛𝚫𝑧)2                  (2)                              

 

where Φ is the field potential, z is the spatial coordinate 

perpendicular to the cortical laminae, 𝚫𝑧 is the spatial 

sampling interval, and n is the differential grid (Mitzdorf, 

1985). LFP profiles were smoothed with a weighted 

average (Hamming window) of 9 channels which 

corresponds to a spatial kernel filter of 400 µm (Happel 

et al., 2010).  

CSD distributions reflect the local spatiotemporal 

current flow of positive ions from extracellular to 

intracellular space evoked by synaptic populations in 

laminar neuronal structures. CSD activity thereby 

reveals the spatiotemporal sequence of neural 

activation across cortical layers as ensembles of 

synaptic population activity (Mitzdorf, 1985; Happel et 

al., 2010). One advantage of the CSD transformation 

that it is reference-free and hence less affected by far-

field potentials and referencing artifacts. It allows to 

observe the local synaptic current flow with high spatial 

and temporal precision (Kajikawa and Schroeder, 

2011). Current sinks thereby correspond to the activity 

of excitatory synaptic populations, while current sources 

mainly reflect balancing return currents. The CSD thus 

provides a functional readout of the cortical 

microcircuitry function, encompassing a wider, 

mesoscopic field of view than for instance single- or 

multi-unit approaches (Buzsáki et al., 2012). Early 

current sinks in the auditory cortex are therefore 

indicative of thalamic input in granular layers III/IV and 

infragranular layers Vb/VI (Happel et al., 2010; 

Szymanski et al., 2009). In order to describe the overall 

columnar processing, the CSD profiles were 

transformed by averaging the rectified waveforms of 

each channel: 

                       𝐴𝑉𝑅𝐸𝐶(𝑡) =  
∑ |𝐶𝑆𝐷𝑖|(𝑡)𝑛

𝑖=1

𝑛
                       (3) 

 

where n is the number of recording channels and t is 

time. The AVREC reflects the temporal overall local 

current flow of the columnar activity (Givre et al., 1994 ; 

Schroeder et al., 1998). 

Data Preprocessing. Single-trial data were analyzed 

via a custom-written graphical user interface 

(MathWorks, R2016a & R2017b) that visualized the 

LFP, CSD and behavioral parameters to inspect and 

mark two types of artifacts: 1) affected recording 

channels and 2) foot-shock or movement induced signal 

clipping and distortions. Affected channels were 

substituted by a linear interpolation method across 

neighboring, unaffected channels on the level of the 

LFP (Happel et al., 2010). Shock induced clipping was 

rejected from the overall signals. Trials with artifacts due 

to extreme movements were also discarded from further 

analysis.  

Extraction of signal parameters. Cortical layers were 

assigned to the recording channels based on the 

averaged auditory-evoked spatiotemporal CSD current 

flow in response to the first CS presented during a 

session and compared to the awake measurement 

before the training (Suppl. Figure 1). Early dominant 

current sinks in the auditory cortex are indicative of 

thalamic input in granular layers III/IV and infragranular 

layers Vb/VI (Happel et al., 2010; Szymanski et al., 

2009) and allow to identify supragranular layers I/II and 

infragranular layers Va and VI in the CSD recordings 

(Figure 1D). We determined trial-by-trial root-mean-

square (RMS) values of averaged CSD traces within 

each of the five cortical depths from tone onset of each 

CS presentation in a time window of 500 ms. Also, we 

calculated the RMS value of the AVREC within the 
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same time windows for the corresponding overall 

columnar response. We did not inspect the time-points 

after a CR, as the CS presentation was terminated. For 

statistical analysis, single-trial values were z-normalized 

across trials.  

 

Statistical Methods 
Statistical test of variance. Statistical difference 

between groups was tested by one-factorial repeated 

measures ANOVA (rmANOVA) to account for the 

hierarchical structure of the data using R Studio (R 

3.5.1.). We used an overall significance level of 𝛼 =

0.05 and paired-sample t-tests with a Holm-adjusted 

significance level (Holm, 1979) for post-hoc testing. 

Before testing, data was generally z-normalized within 

each animal and session. The generalized eta squared 

𝜂𝑔𝑒𝑛
2  is reported as measure of effect size calculated 

using the R package DescTools (Bakeman, 2005; 

Olejnik and Algina, 2003)  

Mixed-effects logistic regression. For statistical 

comparison between two-choice classes, parameters of 

interest were analyzed on a single-trial level using 

generalized linear-mixed effect models (GLMM) with a 

logistic link function (cf. Chang et al., 2018) GLMM 

calculation in in R Studio (R 3.5.1) was done with the 

lme4 package for model estimation and ggplot2 and 

sjplot for plotting.  

Logistic regression was used for predicting the 

probability of the binary (0/1) dependent variables  𝝅𝑖 =

𝐸(𝒚𝒊). The predictions were then wrapped by the logistic 

link function:  

                              𝑔(𝑥) =
1

1+exp (−𝑥)
                          (4)   

 

to map the predictions of the model to the interval 

between 0 and 1. In the mixed-effects logistic 

regression, random effects were additionally introduced 

to model subject-specific variance by:  

 

                     𝑔(𝐸(𝒚𝑖)) = 𝑿𝑖𝜷 + 𝒁𝑖𝝊𝑖 ,                      (5) 

 

where 𝒚𝑖 is the vector of all responses of the 𝑖𝑡ℎ animal, 

𝑿𝒊 and 𝒁𝒊 are design matrices, 𝜷 the fixed effects and 𝝊𝒊 

the animal-specific random effects. The parameters of 

the estimated model can be interpreted as logarithmic 

odds ratios 𝑙𝑜𝑔(
𝜋𝑖𝑗

1−𝜋𝑖𝑗
), where 𝜋𝑖𝑗 corresponds to the 

probability of the outcome to be 1 for animal 𝑖 in trial 𝑗. 

The GLMM thus allows for an intuitive interpretation of 

its predicted values (choice probabilities) and its 

estimated coefficients (logarithmic odds ratios). As 

such, GLMMs are optimally suited to compare data on 

a trial-by-trial-level while accounting for within-subject 

variability. Random intercepts were introduced to 

account for the general variability in overall activity 

across subjects and random slopes to allow for the fixed 

effect to vary between animals. We z-normalized the 

AVREC RMS values for the GLMM to facilitate the 

estimation procedure. 

Evaluation of the model. Calculation of the marginal 

(R²m) and conditional (R²c) coefficient of determination 

was done using the MuMIn package (Barton, 2019). 

The R²m represents the variance in the dependent 

behavioral variable explained by the fixed effect of the 

respective CSD variable (across subjects), while the 

R²c reflects the total variance explained by the model’s 

fixed and random effects, respectively (Muff et al., 

2016). In a binary GLMM, the R2m is independent of 

sample size and dimensionless, which allows 

comparing fits across different datasets (Nakagawa and 

Schielzeth, 2013). 

 

Results 
Auditory decision making with change of the task 
rule in a shuttle-box 

We trained Mongolian gerbils in an auditory cued two-

way active avoidance shuttle-box task to respond to two 

pure tones (of frequencies 1 and 4 kHz) presented as 

conditioned stimuli, while recording local field potentials 

from the primary auditory cortex using laminar 

multichannel electrodes (Figure 1). Gerbils were trained 

in two separate phases. First, in a detection training 

phase, both CS were assigned with a ‘Go’ contingency 

and required subjects to change the compartment to 

actively avoid the unconditioned stimulus (mild electric 

foot shock). We trained animals over consecutive 

sessions until they reached a stable detection of both 

stimuli significantly above chance level (Figure 1A,B). 

Thereby, we yielded sufficient data for both behavioral 

choices. In the subsequent training phase, the 

contingency of the 4 kHz pure tone was changed to a 

‘NoGo’ stimulus (CS-), while 1 kHz was maintained as 

CS+ (or ‘Go’ stimulus). During this phase, animals 

needed to discriminate the two pure tones in order to 

avoid the US. Here, we classified behavioral choices 

depending on the response of the animal and the 

contigency as hit, miss, correct rejection, or false alarm 

(Figure 1A,B). Averaged conditioned response curves 

across training sessions for both training phases 

showed significant improvement of task performance 

(Figure 1B). During detection training averaged hit rates 

reach almost 80% for both ‘Go’-stimuli (1 kHz and 4 

kHz). During the initial discrimination phase, 

conditioned response rates dropped significantly for 

both stimuli (<10% hit rate). Hence, animals did not 

transfer the behavioral choice for the 1 kHz pure tone 

from the detection phase, but completely abandoned 

their detection-based avoidance strategy. They quickly 

re-associated the 1 kHz CS with a ‘Go’ contingency and 

showed increasing hit responses within 1-2 sessions, 

while false alarm rates in response to the ‘NoGo’ 4 kHz 

tone were significantly lower (~10-20%). Over the entire 
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training procedure, the reaction times were found to be 

mainly after the first CS presented within a trial. 

Compartment changes started to increase in response 

to the second CS and were equally distributed over the 

subsequent 4.5 seconds of the observation window 

(Figure 1C). This suggests that the task design allows 

the subjects to use at least the presentation of a second 

CS to evaluate their planned behavioral choice. 

 

Task rule impacts on the columnar representation 
of sound frequency 
Over the entire training, multichannel LFP recordings 

were obtained by single-shank silicon probes 

chronically implanted in the primary auditory cortex 

(Figure 1Error! Reference source not found.D). In an 

averaged CSD trace, the tone-evoked activity in 

response to the repetitive CS presentation, reflecting 

the spatiotemporal feedforward flow of sensory 

information across cortical layers in the A1 (Happel et 

al., 2010; 2014), marked the most prominent laminar 

response pattern. During detection, we generally 

observed highly similar CSD patterns in response to the 

two pure tones (both ‘Go’ stimuli) with respect to the 

spatiotemporal current flow (Figure 2A). Initial current 

sink activity was observed within granular layers III/IV 

and infragranular layer Vb reflecting cortical depths of 

main thalamocortical inputs from the ventral medial 

geniculate body. Subsequent synaptic activity is then 

routed to supragraular layers I/II and infragranular 

layers Va and VI. The overall columnar response 

exceeded the 200 ms duration of the pure tone 

presentation. In awake passive listening subjects CSD 

profiles were generally also very similar in response to 

both pure tones (Suppl. Figure 2A), which is due to 

considerably similar and flat frequency tuning properties 

across the entire group of animals measured (Suppl. 

Figure 2B).  

During the discrimination phase, however, the two 

physically identical stimuli evoked considerably different 

CSD patterns. While the overall tone-evoked columnar 

activity in Go-trials showed a marked increase, the 

activity in NoGo-trials was rather unchanged or slightly 

decreased (Figure 2).  In order to quantify the overall 

columnar activity strength, we compared the root mean 

square values of the AVREC (AVREC RMS; z-

normalized) calculated for the entire trace in each trial 

(Figure 2B). A one-way repeated-measures ANOVA 

(rmANOVA) revealed that during the detection phase 

the overall activity over the trial between the two CS+ 

did not differ (F1,8 = 0.20, p = 0.668). During 

discrimination, the CS+ evoked significantly more 

cortical overall current flow compared to the CS- (F1,7 = 

143.63, p < 0.001). Accordingly, our findings show that 

the activation strength of the auditory cortex in response 

to pure tones depends on the task rule (Figure 2B, grey 

insets).   

 
Auditory cortex represents behavioral choice and 
choice accuracy 

We further differentiated how the cortical recruitment 

depends on the decision taken by the animal. We 

compared AVREC RMS values during a 500 ms window 

beginning with each CS onset. At each of the CS+ 

presentation during detection training, one-way 

rmANOVAs consistently report a significant relation of 

the z-normalized AVREC RMS values to hits and 

misses at 1 kHz and 4 kHz (1st CS+: F3,24 = 5.71, p = 

0.004, 𝜂𝑔𝑒𝑛
2  = 0.40; 2nd CS+: F3,24 = 38.15, p < 0.001, 

𝜂𝑔𝑒𝑛
2 = 0.75; 3rd CS+: F3,24 = 34.36, p < 0.001, 𝜂𝑔𝑒𝑛

2  = 

0.74; 4th CS+: F3,24 = 28.02, p < 0.001, 𝜂𝑔𝑒𝑛
2  = 0.71; for 

details see Suppl. Table 1). Holm-corrected post-hoc 

pairwise t-tests revealed that the evoked AVREC RMS 

value (z-norm.) after the first CS presentation is similar 

for hit and miss trials, with only a small difference 

between hits and misses at 4 kHz. Consecutive CS+ 

presentations evoked significantly higher RMS values 

during hit trials compared to miss trials (Figure 3, left). 

These findings were independent of the actual 

stimulation frequency (1 or 4 kHz). In the discrimination 

phase, we found a differential recruitment of auditory 

cortex columnar activity depending on frequency and 

choice of the subjects at all CS presentations (1st CS+: 

F3,21 = 8.75, p < 0.001, 𝜂𝑔𝑒𝑛
2  = 0.50; 2nd CS+: F3,21 = 

29.44, p < 0.001, 𝜂𝑔𝑒𝑛
2 = 0.77; 3rd CS+: F3,21 = 25.32, p < 

0.001, 𝜂𝑔𝑒𝑛
2  = 0.73; 4th CS+: F3,21 = 34.94, p < 0.001, 𝜂𝑔𝑒𝑛

2  

= 0.76 ;  Suppl. Table 1) (Figure 3A, right). Cortical 

activation in the 500 ms time window around the first CS 

showed only minor differences in the post-hoc tests and 

was significantly lower during correct rejection trials 

compared to hit and false alarm trials. During later CS 

presentations throughout the trial, we found a stable 

pattern of columnar activity. During hit trials, cortical 

activation was significantly highest compared to all 

other classes. Correct rejections showed the lowest 

cortical recruitment. In contrast, cortical activation 

during miss and false alarm trial did not differ at any CS 

presentation throughout the trial. Note that cortical 

recruitment was generally stronger during trials in which 

animals reported a compartment change for both CS 

individually, comparable to findings in the detection 

phase. However, as the cortical activity during incorrect 

miss trials and false alarm trials did not differ 

significantly, the variability of cortical activation in our 

data seemed to not be explained by a mere correlate of 

motor responses or motor planning, but also depended 

on the contingency of a stimulus. Indeed, the strongest 

difference observed was between the two correct 

choice options of the animal, namely between hits and 

correct rejections. Hence, cortical recruitment during 
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detection was influenced to a larger degree by the 

behavioral action taken by the animal, rather than the 

physical stimulus characteristic of tone frequency. 

During discrimination, cortical recruitment was 

influenced by both, the frequency, coding for the 

contingency of the stimulus, and the choice accuracy of 

the taken action (Figure 3B). For a further substantiation 

of this finding, see the following paragraph. 

 

Representation of contingency is layer-specific 
and differs with task rule  
In order to investigate the contribution of cortical layers 

to the observed effects, we analyzed binary classes on 

a single-trial level using generalized linear-mixed effect 

(GLMM; Chang et al., 2018). The GLMM analysis 

revealed that in the detection phase, the AVREC trace 

RMS (z-norm.) was not dependent on the presented 

frequency of the two conditioned stimuli (left, R²m = 0, 

ns.; Figure 4, left). During the discrimination phase, an 

increase in the AVREC trace RMS was a reliable 

predictor that the 1kHz ‘Go’ stimulus was presented 

(R²m = 0.17, p < 0.001; Figure 4, right).  Hence, the 

columnar activity in auditory cortex in response to the 

same conditioned stimuli differed in dependence of the 

task and was only separable when both had contrasting 

contingencies. We further applied the GLMM to the 

RMS value measured over the entire trace activity 

within single cortical layers (I/II, III/IV, Va, Vb, VI) in 

order to reveal the source of the aforementioned results 

on a layer-specific level (Figure 4). In the detection 

phase, the two CS+ used as binary class in the GLMM 

could not predicted significantly for any particular 

cortical layer. When we applied the GLMM for the two 

conditioned stimuli during the discrimination phase, now 

reflecting the distinct contingency of CS+ and CS-, we 

observed a moderate prediction of the model with an 

R2m of 0.12 for only the granular input layers. Detailed 

results for each model are reported in Suppl. Table 2. 

In a next step, we used the GLMM to predict the 

behavioral choices rather than the stimulus frequency 

(Figure 5). Therefore, we compared the AVREC RMS 

values (z-norm.) of the 500 ms windows around the tone 

presentation that preceded an active avoidance 

response of the animal (hit/false alarm) or around the 

last CS in the observation window in trials without a CR 

(miss/cor. rej.). During the detection phase, a higher 

AVREC RMS was a robust predictor for trials with a 

correct hit response compared to miss trials with lower 

overall cortical activity (R²m = 0.32, p < 0.001; Figure 

5A, left). In order to test the contribution of distinct 

cortical layers to the coding of different behavioral 

choices, GLMM predictions were calculated for RMS 

values of each layer separately. We found that during 

the detection phase, cortical activity in infragranular 

layers were good predictors (R²m = 0.25 – 0.35, p < 

0.001), while supragranular and granular layer were 

less accurate (R²m = 0.11 – 0.19, p < 0.001; Figure 5B, 

left; cf. Suppl. Table 3).  

During the discrimination phase the AVREC RMS was 

also predicting the choice outcome during ‘Go’-trials 

(hits vs. misses) with a moderate effect size (R²m = 

0.18, R²c=0.38, p < 0.001; Figure 5A, right). For ‘NoGo’-

trials the GLMM was able to predict the outcome with a 

high effect size: false alarms were effectively predicted 

by stronger cortical recruitment than measured during 

correct rejections (R²m = 0.27, p < 0.001; Figure 5A, 

right). During discrimination, granular and 

supragranular layers appear to be important for the 

differential representation of the behavioral choice in 

‘Go’-trials (R²m = 0.14-0.18). During ‘NoGo’-trials, the 

RMS value of all cortical layers except of layer VI were 

good predictors for the trial outcome (R²m =0.10-0.17, 

p<0.001), while supragranular layers were also the best 

predictor between false alarms and correct rejections 

(see Suppl. Table 3).  

 

Choice accuracy is robustly represented 
throughout cortical layers  

In a last step we compared correct and incorrect choice 

options of the subjects showing that only correct 

choices lead to a distinguishable cortical circuit 

activation (Figure 6). The AVREC RMS could predict 

the outcome in correct trials with a high effect size: 

Correct ‘hit’ responses can be predicted by higher RMS 

values of the AVREC trace in the time window before 

the actual decision compared to the time window at the 

trial end during correct rejections (R²m=0.45, p<0.001). 

In contrast, the two incorrect choices `false alarms’ and 

’miss’ were not predictable by the GLMM (R2m=0.04; 

n.s.; Figure 6A). The layer-specific analysis further 

revealed that particularly supragranular layer activity 

contributed to the differential cortical activation between 

the correct choice classes (R²m=0.18-0.51; p<0.001; cf. 

Suppl. Table 4; Figure 6, left). Nevertheless, all cortical 

layers were recruited in a distinct way, so that the whole 

cortical column differs in activity during correct hit and 

correct rejection choices. In accordance with the 

insignificant GLMM result on the overall columnar 

activity measured by the AVREC RMS, also no cortical 

layer activity could predict the two incorrect choices 

(false alarm/miss; Figure 6, right). 

 

Discussion  
In this study, we chronically recorded local field 

potentials and calculated current source density (CSD) 

distributions from the primary auditory cortex of 

Mongolian gerbils. Animals were trained to first detect 

and then to discriminate two pure tone frequencies in 

two consecutive training phases in a Go/NoGo shuttle-

box task. Based on the laminar distribution of CSDs, we 

demonstrate that not only sensory but also task- and 

choice-related information is represented in the 
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neuronal population activity distributed across cortical 

layers. The frequencies of two pure tones used as 

conditioned stimuli were only differentially represented 

in the A1 when they differed in their contingency, i.e. 

when their discrimination was behaviorally relevant for 

the task. Cortical activity also differed with action 

selection generally showing a higher recruitment during 

trials where the animal initiated a compartment change. 

During the detection phase, infragranular layers 

contributed most to those differences. In contrast, 

recruitment of synaptic activity in supragranular layers 

was the most robust predictor for choice outcomes 

during the discrimination phase (Figure 5). We further 

found a robust representation of the choice accuracy 

independent of the actual action selection of the animal. 

While all cortical layers showed a stronger recruitment 

during correct hit trials compared to correct rejections, 

we did not observe differences between false alarms 

and misses (Figure 6). Hence, our findings argue for a 

multiplexed representation of stimulus- and task-related 

features distributed across the cortical layers.  

 

Supragranular layer activity better classifies the 
stimulus contingency than the presented tone 
frequency 

We use auditory instrumental conditioning with 

detection and consecutive discrimination of two pure 

tone frequencies centered within the optimal hearing 

range of the gerbil. After successful detection, animals 

had to abandon their initially learned strategy and ‘re-

associate’ one of the two CS with a new meaning during 

the discrimination phase. We found that such a switch 

of the task rule caused the animals to completely 

abandon the previous but still valuable ‘knowledge’ 

about parts of the stimulus representation and to re-

learn a new set of behavioral action-outcome 

contingencies (Figure 1B).  

We found that during discrimination stimulus-dependent 

features between Go- and NoGo-stimuli are repre-

sented differentially, as the sound frequency gathered a 

behavioral relevance due to the shift of the task rule. A 

GLMM analysis revealed that the representation of two 

different pure tone frequencies is distinguishable on the 

level of the A1 population activity only if there is the 

behavioral need to discriminate both stimuli. These 

task-dependent representations emerge as accumu-

lating evidence throughout the trial and are most 

strongly represented right before a behavioral choice of 

the animal (see Figure 3). During the discrimination 

phase, animals needed to differentially represent the 

sound frequency of the two conditioned stimuli to 

successfully perform the task. Henceforth, during this 

training phase, the need of spectral integration was 

likely to be behaviorally more important. Here, we found 

that particularly input layers III/IV and supragranular 

layers I/II were more strongly recruited during trials that 

led to an active conditioned response. Activity during 

hits and false alarms was higher compared to misses 

and correct rejections, respectively. This might reflect 

the need for more crosscolumnar communication within 

supragranular layers in order to integrate the spectral 

content of a presented CS necessary to promote the 

correct behavioral choice (Hickmott & Merzenich, 1998; 

Sakai & Suga, 2002; Happel et al., 2014; Francis et al., 

2018).  

Therefore, we propose that the representation of 

stimulus features in sensory cortex, such as tone 

frequency in A1, does not depend alone on the 

transmission process of the sensory information via the 

primary sensory pathways, but is significantly 

modulated by the behavioral need and the behavioral 

relevance of a stimulus. Such influence is based 

presumably on higher order top-down inputs from, for 

instance, parietal and frontal areas (Caras and Sanes, 

2017; Polley et al., 2006; Rodgers and DeWeese, 2014; 

Runyan et al., 2017; Steinmetz et al., 2019). 

 

Correlates of motor initiation dominate A1 
population activity during detection 

Motor initiation has been reported before to enhance or 

suppress sensory-driven activity in other (primary) 

sensory cortices depending on region, system and task-

engagement (Busse et al., 2017; Steinmetz et al., 

2019). From our data we hypothesize, that, during the 

detection, the tone-evoked activity in the primary 

auditory cortex may be modulated by auditory-guided 

motor initiation (Brosch et al., 2015; Huang et al., 2019; 

Niwa et al., 2012a). The distinct sound frequency of a 

pure tone seems less determining on the activity 

strength. Deep output layer activity (layers Va-VI) 

showed a significant increase of activity during hit trials. 

This is in accordance with the findings that neurons in 

these layers convey information to downstream motor 

centers, as the basal ganglia or the striatum, which play 

an important role for the control of motor decisions by 

the sensory cortex (Xiong et al., 2015; Znamenskiy and 

Zador, 2013). Further, the selection of an appropriate 

action might also be conveyed directly to motor cortex 

via direct anatomical projections (Matyas et al., 2010; 

Huang et al., 2019). Ample evidence argues that our 

findings reflect a motor-related modulation of the 

cortical physiology, rather than a movement artifact. In 

our data, auditory cortex activity reflected the initiation 

of motor actions during detection learning most 

prominently in deeper layers. Hence, motor-related 

signals were reflected on a layer-specific level while 

showing a conserved spatiotemporal profile of the tone-

evoked CSD, which is in strong favor of a motor-related 

modulation of the cortical physiology. A muscle 

correlate, as a far field artifact, would have affected all 

recording channels. We controlled this by a trial-by-trial 

analysis excluding such trials (cf. Figure 2A). Here, the 
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reference-free CSD measurement might be an effective 

filter. During discrimination, the cortical activity was less 

accurate in predicting motor response initiation but was 

more accurate during correct choice options (Figure 5 

and 7). Cortical population activity did not differ during 

false alarm and miss trials. However, cortical activity 

was elevated between the consecutively presented CS 

during hit trials. This argues for an accumulative 

evidence about the stimulus contingency that the 

animals kept persistently over the trial, which was 

instructive for an auditory-guided action. These 

differences between hit and false alarms argue that the 

motor-related preparatory signal cannot fully explain the 

variability in our data set. Rather, we find a 

combinatorial representation of stimulus contingency, 

task rule, selection accuracy, and motor initiation that 

accumulates in its richness over the experimental 

procedure of the actual decision. 

 

Choice accuracy is represented throughout the 
cortical column  
The modulation of the cortical activity by contingency 

and motor initiation reflects a cortical correlate of choice 

accuracy: in the discriminant Go/NoGo-paradigm, we 

found all cortical layers to be more strongly activated 

during correct hits compared to correct rejections 

(Figure 6). In contrast, cortical activity during false 

alarms and misses did not differ. Hence, the cortical 

representation of spectral information during 

discrimination training (see Figure 3) is further 

dependent on the accuracy of the promoted behavior. 

While several studies also observed an enhanced 

representation of target stimuli that initiated an auditory-

guided motor response in various Go/NoGo 

discrimination tasks (Bagur et al., 2018; Fritz et al., 

2003; Gold et al., 1999), others found higher cortical 

recruitment during correct rejections compared to hit 

trials in a Go/NoGo task in the macaque A1 (Huang et 

al., 2019). Previous findings demonstrate the potentially 

inherent neuronal variability comprised of the exact task 

design at hand, aversive or appetitive reinforcing 

regimes, and stimulus characteristics  which may 

partially explain contradictory findings (David et al., 

2012; Osmanski and Wang, 2015) and needs further 

evaluation. Another relevant aspect is the temporal 

relation of the observed effects to the repetitive tone 

presentation throughout the trial in our task design. We 

focused our analysis on time windows of 500 ms around 

the consecutively presented CS which covered the 

sensory-dominated columnar response (Figure 2A) and 

preceded the behavioral choice. Other reports of 

choice-related activity in the auditory cortex during 

discrimination of tone events also reported that such 

representation accumulates until the animal’s decision 

(Bizley et al., 2013; Niwa et al., 2012). We further 

analyzed a time window of 500-1000 ms after each 

stimulus presentation in order to separate the relative 

modulation of cortical layer activity by sensory-driven 

effects from the task-related, but potentially temporally 

distributed information (data not shown). This analysis 

revealed that the choice accuracy is represented across 

all cortical layers as accumulating evidence across the 

entire trial length (cf. Bizley et al., 2013) and hence is 

present also independently from the stimulus-

dominated auditory response.  

Altogether, our study demonstrates that the auditory 

cortex population activity reflects the task complexity at 

hand, as well as the choice accuracy of the animal. 

Motor initiation has a stronger impact on cortical activity 

during detection training, where other task-dependent 

features, such as coding of the contingency, are absent. 

During the more complex discrimination task, other 

factors also affect cortical activity. Overall, our results 

show that the layer-specific population activity in the 

sensory cortex is highly dependent on the behavioral 

task and accordingly reflects the performance of the 

individual subject within different task phases. 

 

Conclusions 

Previous work and the current study show that neuronal 

activity already in the primary auditory cortex encodes 

sounds in ways that are directly relevant to behavior. 

We found that the entire ensemble activity of the A1 

columnar circuits closely represented task-relevant 

stimulus features, the task rule and behavioral choice 

variables suggesting its instructive role for auditory-

guided decision making. While infragranular layers 

dominated the cortical processing modes during action 

selection within a detection context, supragranular 

layers gained relevance when stimulus features needed 

to be integrated during discrimination. Our study 

thereby expands our understanding of the layer-specific 

cortical circuit processing modes which code task-

relevant information in order to guide sensory-based 

decision making and behavioral adaptation during 

strategy change. We have now begun to reveal the 

functional computations performed by single neurons 

and of the local and long-range cortical networks they 

are integrated in (cf. Happel, 2016). Future studies will 

enunciate the more widespread brain networks for 

mediating perceptual decision making, in which the A1 

circuitry reflects only one important hub.  
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Figures  
 

 
 

Figure 1:  Experimental design, learning curves and chronic CSD recording during auditory-

based decision making in a shuttle-box. A. Illustration of the two-way avoidance shuttle-box training 

with chronic recordings in behaving Mongolian gerbils. Subjects were trained to respond to two different 

pure tone frequencies (1 kHz and 4 kHz; conditioned stimulus - CS) in a Go/NoGo task design to avoid 

an unconditioned stimulus (US - mild foot shock). During the discrimination phase the contingency of 

the CS can be either ‘Go’ (CS+) or ‘NoGo’ (CS-) leading to four possible behavioral outcomes (hit, miss, 

correct rejection – Corr. Rej., false alarm - FA). Right, Illustration of consecutive CS within a trial, length 

of the observation window (6 s), inter-stimulus interval (1.5 s) and behavioral choices. B. Averaged 

conditioned responses to both CS in the detection and discrimination phase as a function of training 

sessions. During detection (grey area), hit rates reach almost 80% for both ‘Go’-stimuli (1kHz and 4kHz). 

At the beginning of the discrimination phase (yellow area), conditioned responses dropped for both 

stimuli (<10% hit rate). The performance gradually increased reaching again almost 80% for the hit rates 

and significantly stayed around 20% for the false alarm rates. C. Histogram with distributions of the 

averaged CR reaction times over all trials separately for the detection (top) and discrimination (bottom) 

phase and hits (red) and false alarms (blue). The majority of CR’s happen after the second CS 

presentation. D. In vivo multichannel LFP recordings were obtained by single-shank silicon probes 

chronically implanted perpendicular to the surface of the auditory cortex targeting all cortical layers (I – 

VI). From laminar LFP signals single-trial current source density (CSD) distributions were calculated 

(here shown is a CSD averaged over 30 repetitions). During CS-presentation (200 ms) tone-evoked 

CSD components appeared as current sink (in blue) and source (in red) activity reflecting the well-known 

feedforward information flow of sensory information in the A1 (Happel et al , 2010; 2014) 
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Figure 2: Stimulus-related activity during different training phases A. Representative example of 

an averaged CSD profile across all trials of the detection (left) and discrimination (right) phase of one 

subject. The CSD profiles show the tone-evoked activity after the first presentation of both conditioned 

stimuli within a trial (top: 1 kHz, bottom: 4 kHz; tone duration: 200 ms; indicated by dashed bar in upper 

left panel). Evoked CSD patterns between the two pure tones frequencies showed no obvious 

differences during the detection phase but yielded considerably different CSD patterns during 

discrimination for the CS+. B. RMS values of the AVREC (time window of 500 ms beginning at each 

tone presentation and z-normalized) shown for each of the four consecutive CS and separated by the 

different behavioral outcomes during the two task phases. Box plots represent median (bar) and 

interquartile range, and bars represent full range of data. Significant bar indicate differences revealed 

by pairwise testing. Schematic illustration of the evoked cortical activity in dependence of stimulus 

frequency and task rule are shown in grey inserts. 
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Figure 3: Behavioral choices and contingency are both reflected in population activity of the A1. 

Averaged AVREC RMS values (500 ms window at CS onsets) plotted with respect to the conditioned 

stimuli and behavioral choice. A. Left, During the detection phase evoked activity was significantly higher 

during hit trials compared to miss trials independent of the stimulation frequency. Right, In the 

discrimination phase, cortical activity was strongest during correct hit trials and lowest during correct 

rejections. During trials of incorrect behavioral choices (miss/false alarm) tone-evoked activity was 

characterized by intermediate amplitudes and did not differ. Box plots represent median (bar) and 

interquartile range, and bars represent full range of data. Dots represent outliers. Significant bars 

indicate differences revealed by a one-way rmANOVA (see Suppl. Table 1) B. In summary, cortical 

activity was generally higher in trials in which animals showed a conditioned response in comparison to 

trials where animals stayed in the compartment. Cortical activity differed strongest between correct 

behavioral choices, namely hits and correct rejections. 
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Figure 4: Representation of contingency, not frequency revealed in synaptic population activity 

of granular input layers. Parameters of interest were analyzed on a single-trial level using generalized 

linear-mixed effect models A. Logistic regression curves show the probabilities of the presented CS 

(1kHz and 4kHz as the dependent variable) for individual subjects (gray) and as an average (blue). The 

boxplots above and below the curves represent the mean (bar), interquartile range (box) the full range 

of data (whiskers). The AVREC trace RMS did not predict the frequency of the conditioned stimuli (1 

kHz and 4 kHz) during the detection phase (left, R²m=0, R²c=0, ns.). During discrimination an increase 

in the AVREC trace RMS significantly indicated that the 1 kHz ‘GO’ stimulus was played (R²m=0.16, 

R²c=0.30, p<0.001). Hence, auditory cortical activity in response to the same conditioned stimuli differed 

in dependence of the task. B. GLMM’s were applied to RMS values measured within single cortical 

layers (I/II, III/IV, Va, Vb, VI). The illustration of the cortical column below indicates the GLMM 

predictability based on data from corresponding layers to the binary behavioral choice combinations. 

The color illustrates the effect size for the model-based R²m (grey= no effect to red=strong effect). The 

top R2m value (R2max) depicts the best fit result for all layers tested. In the detection phase, the two 

CS+ used as binary class in the GLMM revealed no significant prediction for any particular cortical layer. 

During the discrimination phase we observed a moderate prediction of the model with R2m = 0.12 for 

the granular input layers. The detailed results for each GLMM are reported in Suppl. Table 2. 
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Figure 5: Layer-specific contribution to behavioral choice. A. GLMM and logistic regression analysis 

was used to predict the behavioral choice of the subjects. Left, During the detection phase RMS values 

of the AVREC (z-norm.) in the 500 ms time window around the CS presentation which was initiating a 

hit response was significantly higher compared to the fourth CS during miss trials (R²m=0.32, p<0.001). 

Middle, this was also true for the discrimination phase, although with only a moderate effect size 

(R²m=0.18, p<0.001). When comparing data from ‘NoGo’ trials, false alarm and correct rejections could 

be predicted with a high effect size (R²m=0.27; p<0.001). B. GLMM predictions for each layer showed 

that cortical activity from all layers were good predictors (R²m=0.1-0.35), especially higher effect we 

observed at deeper layers Va, Vb, and VI, for the two possible choices (hit/miss). This finding was 

independent of the actual spectral content of the presented stimulus (1 kHz/4 kHz; see Figure 3). During 

the discrimination phase, granular and supragranular layers appear to be important for the differential 

representation of the behavioral choice in ‘Go’-trials (R²m=0.14-0.18). For ‘NoGo’-trials, the GLMM 

revealed that false alarms are accompanied by significantly higher activity in all cortical layers except of 

layer VI compared to correct rejections (R²m=0.17, p<0.001). Supragranular layers were also the best 

predictor between false alarms and correct rejections classes. The detailed results for each GLMM are 

reported in Suppl. Table 3. 
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Figure 6: Representation of choice accuracy across layer-specific population activity in A1. A. 

Predictability of correct (left) and incorrect (right) choices during the discrimination phase were modelled 

by GLMM and logistic regression. Correct ‘hit’ responses can be predicted by higher RMS values of the 

AVREC trace in the time window before the actual decision compared to the time window at the trial end 

during correct rejection responses (R²m=0.45, p<0.001). In contrast, the two incorrect choices `false 

alarms’ and ’miss’ were not predictable by the GLMM (R2m=0.04; n.s.). B. Activity from all cortical layers 

contributed to the differential cortical activation between the correct choice classes, while the largest 

effect size was found for supragranular layers (R²m=0.51; p<0.001). In accordance with the insignificant 

GLMM result on the overall columnar activity measured by the AVREC, also no cortical layer activity 

could predict the two incorrect choices (false alarm/miss). The detailed results for each GLMM are 

reported in Suppl.Table 4. 
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Supplemental Information 

 

 

 
 
Supplementary Figure 1: Long-term stability CSD recordings from all cortical layers in A1. 

Representative example of an averaged CSD profile from one subject of the first training session 

(detection; left) and the last discrimination session (right). Based on the averaged auditory-evoked 

activity in response to the first presentation of the conditioned stimuli within a trial (time window: 1500ms; 

tone duration: 200 ms; indicated by the black frames) we assign the cortical input layers (I/II – VI) to the 

respective recording channels (indicated with the dashed lines). The example illustrates the stability of 

the electrode positioning over the course of the training. 
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Supplementary Figure 2: Characterization of tuning properties in the recording location A1. A. 

Representative example of an averaged CSD profile during the first awake, but passively listening 

measurement before the actual start of the behavioral training (see Methods and Materials; n=1). CSD 

activity is shown for the two pure tone frequencies also used during the later training, namely 1 kHz, left 

and 4 kHz, right (tone duration: 200 ms, ISI 800 ms, 50 pseudorandomized repetitions, sound level 70 

dB SPL). B. Tuning curves of layer-specific CSD RMS amplitudes receiving early thalamocortical inputs 

(III/IV and Vb; n=9). Mean of CSD RMS values (averaged over 50 trials per frequency) of cortical layers 

III/IV and Vb are plotted as a function of stimulation frequency revealing flat frequency tuning in awake, 

passively listening subject (cf. Deane et. al (2019) bioRxiv; doi:https://doi.org/10.1101/810978). 
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Suppl. Table 1 (cf. Figure 3) : rmANOVA of choice-
related contingencies AVREC RMS  

Detection    

1st stimulus F3,24 = 5.710 p = 0.004 𝜂𝑔𝑒𝑛
2  = 0.40 

2nd stimulus F3,24 = 38.15 p < 0.001 𝜂𝑔𝑒𝑛
2  = 0.75 

3rd stimulus F3,24 = 34.36 p < 0.001 𝜂𝑔𝑒𝑛
2  = 0.74 

4th stimulus F3,24 = 28.02 p < 0.001 𝜂𝑔𝑒𝑛
2  = 0.71 

Discrimination    

1st stimulus F3,21 = 8.750 p < 0.001 𝜂𝑔𝑒𝑛
2  = 0.50 

2nd stimulus F3,21 = 29.44 p < 0.001 𝜂𝑔𝑒𝑛
2  = 0.77 

3rd stimulus F3,21 = 25.32 p < 0.001 𝜂𝑔𝑒𝑛
2 =  0.73 

4th stimulus F3,21 = 34.94 p < 0.001 𝜂𝑔𝑒𝑛
2 =  0.76 

 

Suppl. Table 2 (cf. Figure 4B) : GLMM layer specific  
applied to the conditioned stimuli 1 kHz vs 4 kHz 

Detection ‘1 kHz vs 4 KHz’ 

Layer I/II R²m = 0 R²c = 0 p = 0.549 

Layer III/IV R²m = 0 R²c = 0 p = 0.649 

Layer Va R²m = 0 R²c = 0 p = 0.703 

Layer Vb R²m = 0 R²c = 0 p = 0.836 

Layer VI R²m = 0 R²c = 0 p = 0.754 

Discrimination ‘1 kHz vs 4 KHz’ 

Layer I/II R²m = 0.065 R²c = 0.080 p < 0.001 

Layer III/IV R²m = 0.121 R²c = 0.219 p < 0.001 

Layer Va R²m = 0.095 R²c = 0.175 p < 0.001 

Layer Vb R²m = 0.076 R²c = 0.118 p < 0.001 

Layer VI R²m = 0.034 R²c = 0.058 p = 0.001 

 

Suppl. Table 3 (cf. Figure 5B) : GLMM layer-specific 
applied to the behavioural choices 

Detection ‘Hit vs Miss’ 

Layer I/II R²m = 0.113 R²c = 0.537 p = 0.056 

Layer III/IV R²m = 0.190 R²c = 0.406 p < 0.001 

Layer Va R²m = 0.351 R²c = 0.624 p < 0.001 

Layer Vb R²m = 0.258 R²c = 0.569 p < 0.001 

Layer VI R²m = 0.200 R²c = 0.396 p < 0.001 

Discrimination ‘Hit vs Miss’ 

Layer I/II R²m = 0.144 R²c = 0.240 p < 0.001 

Layer III/IV R²m = 0.188 R²c = 0.361 p = 0.001 

Layer Va R²m = 0.007 R²c = 0.149 p = 0.216 

Layer Vb R²m = 0.049 R²c = 0.152 p = 0.001 

Layer VI R²m = 0.033 R²c = 0.212 p = 0.118 

Discrimination ‘False alarm vs Correct Rejection’ 

Layer I/II R²m = 0.164 R²c = 0.465 p < 0.001 

Layer III/IV R²m = 0.170 R²c = 0.318 p < 0.001 

Layer Va R²m = 0.192 R²c = 0.480 p = 0.003 

Layer Vb R²m = 0.105 R²c = 0.263 p < 0.001 

Layer VI R²m = 0.096 R²c = 0.239 p < 0.001 
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Suppl. Table 4 (cf. Figure 6B) : GLMM layer specific 
applied to the choice accuracy 

Discrimination ‘Hit vs Correct rejection’ 

Layer I/II R²m = 0.517 R²c = 0.607 p < 0.001 

Layer III/IV R²m = 0.435 R²c = 0.573 p < 0.001 

Layer Va R²m = 0.181 R²c = 0.426 p = 0.001 

Layer Vb R²m = 0.378 R²c = 0.479 p < 0.001 
Layer VI R²m = 0.193 R²c = 0.287 p < 0.001 

Discrimination ‘Miss vs False Alarm’ 

Layer I/II R²m = 0.164 R²c = 0.465 p = 0.104 

Layer III/IV R²m = 0.170 R²c = 0.318 p = 0.004 

Layer Va R²m = 0.192 R²c = 0.480 p = 0.202 

Layer Vb R²m = 0.105 R²c = 0.263 p = 0.058 

Layer VI R²m = 0.096 R²c = 0.239 p = 0.322 
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