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Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the 

protein targets of bioactive compounds and aids in developing optimized small-molecule compounds. Current 

unbiased approaches cannot directly pinpoint the interaction surfaces between ligands and protein targets. To 

address his limitation we have developed a new drug target deconvolution approach based on limited 

proteolysis coupled with mass spectrometry that works across species including human cells (LiP-Quant). LiP-

Quant features an automated data analysis pipeline and peptide-level resolution for the identification of any 

small-molecule binding sites, Here we demonstrate drug target identification by LiP-Quant across compound 

classes, including compounds targeting kinases and phosphatases. We demonstrate that LiP-Quant estimates 

the half maximal effective concentration (EC50) of compound binding sites in whole cell lysates. LiP-Quant 

identifies targets of both selective and promiscuous drugs and correctly discriminates drug binding to 

homologous proteins. We finally show that the LiP-Quant technology identifies targets of a novel research 

compound of biotechnological interest. 

 

INTRODUCTION: Unraveling the mechanism of 

action and molecular target of small molecules 

remains a major challenge in drug development. 

Current strategies to address this are often laborious 

and indirect. Genetic screens are common, offering 

the advantage of probing all potential targets 

simultaneously but as they measure the sum of many 

effects, it is difficult to discriminate direct versus off-

target drug effects1-3. Direct target identification often 

requires additional time intensive steps such as 

compound modification or candidate protein 

purification, which in turn requires previous target 

evidence and can introduce confounding effects. 

Thermal proteome profiling (TPP) is an unbiased 

approach that can identify compound binding events 

in a complex proteome4-6 but it relies exclusively on 

alterations of a target’s thermal stability, involves 

complex melt curve analyses, and provides no 

structural information such as the compound binding 

site. This structural information is essential to 

understand bioactive compound interactions and to 

help on the development of optimized drug leads. 

Thus, the unbiased identification of drug-protein 

binding sites remains a challenge, especially in the 

context of its application to complex cellular systems. 

To overcome this challenge, we have developed a 

novel technology (LiP-Quant) that identify compound 

targets and off-targets in an unbiased manner and can 

also provide additional compound-protein interaction 

information such as binding affinity and binding 

sites7-9.  

RESULTS: We recently presented an effective 

method to map small molecule binding proteins and 

binding sites directly from whole cell lysates of 

microbial organisms (LiP-SMap)10. The approach 

uses limited proteolysis (LiP) with a non-sequence 

specific protease and quantitative proteomics analysis 

to detect differential proteolytic patterns produced 

upon small molecule binding. The analysis reveals 

peptide fragments that change abundance upon 

compound binding (LiP peptides), and allow the 

identification of potential protein targets without prior 

hypothesis. The position of LiP peptides within the 

protein structure provides evidence for the small 

molecule binding sites10. However, this approach was 

only appropriate for the study of simple 

microorganisms and significant improvements were 

required to allow its application to more complex 

eukaryotic proteomes (e.g. human). Here we further 
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developed LiP-SMap to enable the systematic 

investigation of protein-small molecule interactions in 

mammalian cell systems. To evaluate its performance 

we chose to focus on the identification of drug targets, 

an application of particular breadth and interest.  

Here we present a LiP workflow optimized for the 

analysis of drug targets within human proteomes, 

called LiP-Quant. In this pipeline, protein lysates are 

exposed to a dilution series of a minimum of 7 drug 

doses followed by limited protease cleavage with 

proteinase K. Proteolytic patterns of drug targets 

should be altered upon addition of the drug, at least at 

the binding site, and true target peptides should show 

a change in abundance that correlates with drug 

concentration (Figure 1A). 

We have previously defined LiP peptides based on the 

statistical significance of their relative abundance 

changes upon metabolite binding10. However, that 

simplified approach limited its application for the 

investigation of relative simple microbial proteomes. 

With LiP-Quant we built a composite score (LiP-

Quant score) based on machine learning of attributes 

that contribute to positive target identification. 

Several criteria (sub-scores) contribute to a peptide’s 

LiP-Quant score with the dominant component being 

correlation (R2) to a sigmoidal trend of the drug dose-

response profile (69% of the LiP-Quant score) 

(Figures 1B, S1A).  Sub-score weightings and an 

appropriate LiP-Quant score cutoff to distinguish 

target and non-target peptides were determined based 

on positive control experiments using drugs with 

known targets (Figure S4A) (see methods section). 

The combined LiP-Quant score enables direct 

 

FIGURE 1: LiP-Quant, a platform for drug target identification. 1A: Principle of LiP-Quant. Accessibility of 

proteinase K (PK) to structure specific cleavage sites in whole cell extracts changes depending on the fraction of drug 

molecules bound to target proteins, which increases with higher drug concentrations. This generates a population of 

LiP-Quant peptides at the PK cleavage sites that proportionally change abundance upon drug binding. Sample 

preparation for MS analysis follows a multiplexed workflow that is suitable for the processing of drug libraries. 1B: 

Schematic depicting our scoring system (LiP-Quant Score) to rank LiP-Quant peptides. The predominant 

component (69%) of the LiP-Quant score is the correlation coefficient to a dose-response sigmoidal model. 1C: 

Changes in peptide LiP-Quant score distribution for positive controls (drugs with known targets) enables the 

discrimination of target and non-target proteins. The distribution of LiP-Quant scores (Gaussian smoothed kernel 

density) from all HeLa experiments are shown, except that with the promiscuous binder staurosporine. 
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comparison of LiP peptides with each other and 

allows more robust discrimination of genuine targets 

from random hits. 

We observed that LiP-Quant scores show a bimodal 

distribution, with peptides from known target proteins 

clearly enriched in the high-scoring peak of the 

distribution (LiP-Quant score > 1.5), whereas non-

target peptides are enriched in the low-scoring peak 

with a median of approximately 0.8 (Figure 1C). 

Therefore, we defined putative LiP-Quant peptides as 

those with a LiP-Quant score above 1.5, which is the 

median score of non-target peptides plus three 

standard deviations. This threshold score ensures the 

presence of a minimal fraction of potential non-target 

peptides (Table S1) among candidates and a strong 

enrichment for genuine targets, with a Positive 

Predictive Value (PPV) of 31%, which is a three-fold 

increase in comparison to our previous LiP-SMap 

method (Figure S1B). Across our experiments, the 

PPV at the 1.5 LiP-Quant score threshold typically 

equates to that of the top 50 peptides (Figure S1C), 

yielding a ranked list of putative target peptides from 

the total of >100,000 peptides (5000 proteins) that 

were identified on average in each HeLa LiP-Quant 

experiment. By ranking peptides by LiP-Quant score, 

we prioritize peptides that are more likely to pinpoint 

the right target. The Top 10 peptides in the rank 

typically include 70% of true positives and the Top 

100 only 18% (Figure S1C).   

We tested the macrolide immunosuppressive 

compound rapamycin with LiP-Quant, since the 

mechanism of binding to its known direct target 

(FK506-binding protein 1)11,12 is conserved across 

species. We quantified 30,209 peptides and 2618 

proteins in S. cerevisiae, and 110,668 peptides and 

5318 proteins in HeLa cells.  Multiple LiP-Quant 

peptides, including the 5 top-scoring peptides, 

mapped to the known target of rapamycin in both 

S.cerevisiae (FRP1) (Table S2) and HeLa cells 

(FKBP1A) (Figure 2A, 2B, S2A and S2B) (Table 

S1), showing the ability of LiP-Quant to identify drug 

targets and the equivalence of the approach in yeast 

and humans. 

 

FIGURE 2: Benchmarking LiP-Quant in human cells. 2A:  Dose-response curves showing relative intensities of 

LiP-Quant peptides LiP-Quant peptides after partial proteolytic digestion of aliquots of HeLa lysates over a rapamycin 

concentration range. Curves of the top 5 LiP-Quant peptides ranked by LiP-Quant score, all of which are from the 

expected direct target FKBP1A, are shown. 2B: LiP-Quant peptides ranking in positions 1-5 of the LiP-Quant 

experiment done with rapamycin in human cells. All 5 are FKBP1A peptides. 2C: Structural model of the holocomplex 

of FKBP1A (PDBid: 2dg3) with rapamycin (yellow), showing the top-ranking peptide GWEEGVAQMSVGQR 

(green) from LiP-Quant experiments with rapamycin and FK506 (the top ranking peptide is the same). The minimal 

distance between the ligand and the top LiP-Quant peptide is 3.5 A.  
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The two top-scoring LiP-Quant peptides in each 

experiment, GWEEGVAQMSVGQR (FKPB1A, 

human) and GSPFQCCNIGVGQVIK (FRP1, yeast) 

are positioned in the known binding sites of 

rapamycin. The tryptophan residue of the top ranking 

FKBP1A LiP-Quant peptide (Figure 2C) and two 

isoleucine and valine residues of the first ranking 

FRP1 LiP-Quant peptide (Figure S2C) are in very 

close proximity with the compound atoms.  

Beyond the known target of rapamycin FRP1 in yeast, 

we identified ARI1 and SYEC with high LiP-Quant 

scores (>2.5), which have not been previously 

characterized as targets of this compound (Figure 

S2D). They could represent alternative rapamycin 

binding proteins (off-target effects) or be proteins that 

undergo secondary structural effects upon activation 

of the TOR1 pathway in the cell lysate. In order to 

discriminate between these two cases, the same LiP-

Quant experiment was performed with lysates of a 

strain carrying a mutation in the tor1 gene and a 

deletion of the fpr1 gene (tor1-1 Δfpr1)13. In this 

strain, TOR signal transduction is impaired, including 

deletion of the direct receptor of the drug (FRP1), thus 

direct and secondary structural changes due to FRP1 

binding and pathway activation do not occur. In the 

tor1-1 Δfpr1 proteome, only peptide 

GDLVITEESWNK of ARI1 was detected as a hit. 

From this, we conclude that ARI1 is likely to be a 

secondary target of rapamycin (Figures S2E and 

S2F) (Table S2).  

After establishing an improved analysis pipeline, we 

benchmarked it by testing the macrolide 

immunosuppressant FK506 in HeLa cells, as FK506 

is known to target the same protein and binding site 

(FKBP1A) as rapamycin (Table S1). Target 

identification was very consistent between the 

compounds, with specific LiP-Quant peptides having 

similar scores and showing similar trends (i.e. fold 

increase or decrease) (Figure S2G). As for 

rapamycin, the highest ranking LiP-Quant peptide 

from FKBP1A (GWEEGVAMSVGQR) maps in very 

close proximity to FK506 (< 3Å) (Figure 2C, Table 

S3), confirming that LiP-Quant can consistently 

identify a known drug binding pocket. We identified 

three additional putative targets of both FK506 

(CALR, TM263 and TXRD1) and rapamycin in HeLa 

cells (Table S1), which could represent additional off-

target proteins of the two drugs in mammalian cells. 

Further work would be required to characterize the 

nature of these potential off-target interactions. We 

concluded that the quantitative LiP-Quant approach, 

with its associated data analysis pipeline, is suitable 

for drug-target deconvolution experiments in human 

cells with complex proteomes.  

Next, we focused on kinases and phosphatases as drug 

targets of particular pharmacological interest, given 

their frequent dysregulation in disease, particularly in 

cancer. One common issue with kinase inhibitors 

(KIs) is their variable selectivity, as some KI drugs 

have one or two kinase targets in the cell, while others 

target hundreds simultaneously, making it difficult to 

determine their specific mode of action14. We used 

LiP-Quant to characterize KIs by comparing 

staurosporine, the best-studied promiscuous kinase-

inhibitor, which binds the ATP binding sites of many 

kinases15,16, and the KI selumetinib, which 

specifically inhibits the MAP kinases MAP2K1 and 

MAP2K2 in different human cell lines 17. Amongst 

the top 25 peptides by LiP-Quant score we identified 

18 peptides that map to 13 protein kinases for 

staurosporine and exclusively detected peptides from 

MAP2K1/2 for selumetinib, indicating that LiP-

Quant can recapitulate the known selectivity profiles 

of the two compounds (Figures 3A, 3B). 

Interestingly, the protein NQO2 scored highly for 

both selumetinib (LiP-Quant rank #2) (Figures 3C, 

S3B) and staurosporine (LiP-Quant rank #8 and #14), 

which suggests it is a common off-target (Figure 

S3B). Although this finding is novel for these 

compounds, NQO2 is a confirmed off-target of 

several other kinase inhibitors including TBBz, 

DMAT and imatinib (Gleevec)15,18,19.   

An unique advantage of the LIP based approach is its 

ability to identify interactions at peptide level 

resolution. We previously reported that the position of 

LiP peptides predicts the position of a binding site10. 

Here we confirm this observation as the position of 

the LiP-Quant peptides identified in the LiP-Quant 

experiments with staurosporine and selumetinib were 

in very close proximity to the known kinase inhibitors 

binding sites and also correctly pinpoint allosteric 

sites of MAP2K1, in the case of selumetinib (Figures 

3D and S3A). 

Next, we focused on inhibitors of serine/threonine 

phosphatases PP1 through PP6 (Figure 3E)20. The 

catalytic subunits of these enzymes are highly 

conserved at the active site region, which is elongated 

in a Y-shaped groove on the surface, thus lacking a 

defined binding pocket21 (Figure 3F). We tested 

whether LiP-Quant could recapitulate the distinctive 

features of phosphatase inhibitors that bind only 

certain PP family members. Specifically, we tested 

calyculin A, which targets PP1 and PP2, and 

fostriecin, which binds PP2 and PP4 but not PP122,23. 

As expected the top 15, and 21 of the top 25, peptides 

by LiP-Quant score from calyculin A all map to either 

PP1 or PP2A/B. The compound’s high target 

selectivity was also recapitulated, as no peptides from 

PP2C were found as hits (Table S4). 
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FIGURE 3: Probing druggable targets: kinases and phosphatases. 3A: LiP-Quant captures druggable kinase 

targets with different specificity: Jitter-plots showing the distribution of LiP-Quant scores in LiP-Quant experiments 

done with the indicated kinase inhibitors. The blue dots show peptides assigned a Drug-score from any kinase, while 

gray dots show peptides assigned a LiP-Quant score from all classes of proteins. LiP-Quant peptides of MAPK 

proteins are shown in red. The LiP-Quant score cut-off for expected targets is shown with a dashed line. 3B: Radar 

plots showing the proportion of LiP-Quant peptides corresponding to protein kinases among peptides with a LiP-

Quant score higher or lower than the threshold score of 1.5. 3C: Dose-response curves showing the relative intensities 

of the LiP-Quant peptides VSHKPSGLVMAR of mitogen-activated protein kinase kinase (MAP2K1) and 

EEPOPCTAHWHFGQ of NQO2 over a concentration range of selumenitib. The extrapolated EC50 for these two 

peptides are 100 nM and 13.6 µM respectively (continue on the next page) 
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When we analyzed the structural location of the 6 

highest ranking LiP-Quant peptides from PP2 for 

calyculin A, we found that they overlapped over the 

atypical extended Y-shaped groove of the PP2A 

active site. More specifically, they map over the acidic 

groove and the hydrophobic groove regions that 

correspond to the areas in direct proximity to 

calyculin A (Figures 3F and 3G). Similar results 

were obtained with fostriecin, as we observed the 

same LiP-Quant peptides or peptides mapping to the 

same region as calyculin A from PP2A/B (Table S4).  

Finally, we investigated the ability of our new 

approach to provide binding affinity information. 

Since LiP-Quant yields a dose-response curve, it 

allows estimation of an EC50 value for a given 

compound (the concentration of drug at which we 

observe a variation of 50% of the maximum LiP 

signal). We asked whether these extracted EC50s 

matched the EC50 values previously reported in the 

literature. We used the kinase and phosphatase 

inhibitors assayed here (staurosporine, selumetinib, 

calyculin A and fostriecin) as test cases. The EC50 

values we extracted for selumetinib for the top 3 

peptides are 48.5, 53.2 and 100 nM, which are slightly 

above the EC50 of 41 nM measured with alternative 

methods (Figure 3D)17. Further, the inferred median 

EC50 values extracted from the top 5 peptides from 

PP2A/B and PP1 in the calyculin A LiP-Quant 

experiment are 18 nM and 63 nM, respectively and 

are approximately 10 fold higher to those measured in 

vitro (Figure S3C)24.  

Although EC50 values estimated from LiP-Quant are 

not expected to be precise in absolute terms (see 

Discussion), our results show that they recapitulate 

very well the known relative affinities of calyculin A 

and fostriecin for the different PP family members 

(Table S1). The ratio between the calyculin A EC50 

inferred by LiP-Quant for PP2A/B and PP1 closely 

reflects the previously reported 3.5-fold EC50 ratio 

difference between PP2A and PP124. Moreover, we 

extrapolate a median EC50 (from the top 5 peptides) 

for PP2A/B of 20 nM for fostriecin, which is similar 

to both the published affinities of fostriecin for PP2A 

directly (0.2 to 40 nM) and to the relative affinity of 

calyculin A for PP2A (0.5 to 20-fold the EC50 of 

fostriecin)25,26. This ability of LiP-Quant to 

approximate absolute EC50 values and to effectively 

discriminate relative affinities between drug targets 

should uniquely help determine preferential target 

proteins of compounds.  

In summary, we have shown that LiP-Quant assays 

are applicable to kinase inhibitors commonly used in 

cancer treatment. We correctly identify the targets of 

kinase inhibitors with different binding promiscuity, 

and predict possible off-targets as well as drug 

binding sites. LiP-Quant could differentiate highly 

homologous phosphatase proteins as targets of drugs 

with very subtle differences in specificity, illustrating 

the advantage of our peptide-centric approach beyond 

the mapping of binding sites.  

Given its demonstrated abilities to identify and 

characterize drug targets, we envision a prominent 

role for LiP-Quant in the drug discovery pipeline. To 

evaluate this, we applied the approach to a research 

fungicide compound (BAYE-B004) that in 

phenotypic screens was found to inhibit Botrytis 

cinerea cell growth (Figure 4A), a mold that can 

devastate commercial fruit crops. Using LiP-Quant, 

we identified several proteins of interest as potential 

targets of BAYE-B004, including Bcin06g02870 

(Figure 4B), predicted to be the B. cinerea homologue 

of casein kinase I. Only 7 peptides have a LiP-Quant 

score higher than 1.5. Among those, two LiP-Quant 

peptides from Bcin06g02870 have a low nanomolar 

EC50 of 6 and 5 nM (LiP-Quant rank #6 and #7), 

approximately 1000-fold lower than the EC50 of the 

rest of the LiP-Quant peptides above the 1.5 threshold 

(Table S5). We therefore tested further whether 

Bcin06g02870 was the primary target of the 

compound. 

 

  

3D: Structural model of the holocomplex of MAP2K1 with the substrate ATP (orange spheres) and the drug selumetinib 

(yellow spheres) located in the active site and allosteric site of the kinase, respectively (PDBid: 4u7z) and its assigned 

LiP-Quant peptides. The LiP-Quant peptide LCDFGVSGQLIDSMANSFVGTR is present in both MAP2K1 and 

MAP2K2. 3E: Phylogenetic tree (Clustal X neighbor joining tree) of the protein phosphatase (PP) family including 

subfamilies. The colors show the known sub-family selectivity of the compounds calyculin A and fostriecin. 3F: 

Structural model of calyculin A bound to the PP1-gamma catalytic subunit (PDBID: 1it6). The surface has been colored 

in pink or blue according to amino acid conservation. calyculin A (represented with orange sticks) occupies the 

hydrophobic groove and the acidic groove on the molecular surface and adopts an extended conformation on the surface. 

3G: Surface representation of a structural model of calyculin A bound to PP2A with the surfaces corresponding to the 

top 6 ranking peptides by LiP-Quant score of PP2A (calyculin A experiment) colored with different tones of blue. Since 

the catalytic subunits of the PP family are highly structurally similar, the PP1-gamma subunit has been used as a model 

of the complex between PP2A and the drug after aligning the PP2A peptides to their homologs of PP1-gamma (pdbID: 

1it6). 
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FIGURE 4: LiP-Quant of a novel fungicide. 4A: Inhibition of growth in Botrytis cinerea cells upon treatment with 

increasing concentrations of a novel compound (BAYE-B004). 4B: Dose-response curves showing relative intensities 

of the top two LiP-Quant peptides from Bcin06g02870, based on LiP-Quant score in the presence of increasing 

concentrations of a research fungicide.  Bcin06g02870 is a serine/threonine kinase predicted to be casein kinase I. 

The extrapolated average EC50 for this protein is 6 nM. 4C: The two top ranking LiP-Quant peptides (green) map 

directly to the predicted ATP-binding site (ATP in orange) of Bcin062870 predicted by homology modelling 

(template PDBid: 5cyz). 4D: Thermal stability of His-tagged Bcin06g02870 upon treatment with increasing 

concentrations of BAYE-B004. Western blots and the corresponding quantification of the soluble fraction of 

Bcin06g02870 at 56°C are shown.  4E: Structure of Bcin16g04330, a serine/threonine kinase, predicted by homology 

modelling (template PDBid: 4e7w), showing the position of the two top ranking LiP-Quant peptides for this protein 

(green) mapping outside the predicted ATP-binding site (ATP in orange). 4F: Dose-response curves showing relative 

intensities of the top two ranking LiP-Quant peptides for Bcin16g04330 (see Figure 4E) The extrapolated average 

EC50 for this protein is 1.6 µM. 4G: Proposed mechanisms of action by which inhibition of casein kinase I activity 

could inhibit cell growth. 
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Using a Botrytis cinerea cell line expressing a His-

tagged version of Bcin06g02870, cellular thermal 

shift assays (CETSA)5 demonstrated that this protein 

is thermally stabilized upon treatment with BAYE-

B004, confirming compound binding to 

Bcin06g02870 (Figure 4D). Based on structural 

modelling, both LiP-Quant peptides map very close to 

the predicted ATP-binding site of the predicted kinase 

(Figure 4C). Since this is a common binding site for 

kinase inhibitors, these data suggest that the 

compound is itself a kinase inhibitor (Figures 3 and 

S3). LiP-Quant also identified an additional kinase, 

Bcin16g04330, predicted to be the B. cinerea 

homologue of glycogen synthase kinase-3β (GSK-3b) 

(LiP-Quant rank #1 and #4, (Table S5) (Figure 4E, 

4F). This kinase is likely not the primary target of 

BAYE-B004 as the extrapolated EC50 is several 

orders of magnitude higher at 1.6 µM (Figure 4F). 

Interestingly, the top 2 peptides of Bcin16g04330 

map adjacent to each other but distal to the predicted 

ATP-binding site of the kinase, suggesting that the 

change in protease accessibility could be the result of 

either a compound binding-induced conformational 

change or a secondary binding or allosteric hindrance 

event (Figure 4E).  

We propose that the observed inhibition in fungal cell 

growth upon BAYE-B004 treatment (Figure 4A) is 

due to mechanisms that are consistent with kinase 

inhibition, possibly targeting the kinases 

Bcin06g02870 (which is Casein kinase I in Botrytis 

cinerea) and Bcin16g04330 (GSK-3b). Casein kinase 

I has been shown to be required for cell viability in 

both budding yeast and cryptococcus neoformans27,28. 

Based upon these known functions we propose that 

inhibition of casein kinase I ultimately leads to 

reduced fungal cell growth (Figure 4F). Thus, by 

identifying putative targets of an uncharacterized 

drug, we demonstrate the relevance of LiP-Quant to 

drug development.  

 

DISCUSSION: Devising new unbiased 

chemoproteomic strategies that do not require 

chemical modifications of compounds and that 

simultaneously probe whole-proteomes will make the 

drug development pipeline more efficient. Here, we 

present LiP-Quant, a quantitative and unsupervised 

approach for drug target identification, based on the 

deconvolution of altered proteolytic patterns upon 

drug binding. In this approach, we identify drug 

targets via the automated evaluation of target peptide 

responses in terms of the quality of fit to the expected 

shape of a dose-response curve over a range of drug 

concentrations. We show that LiP-Quant substantially 

enriches for drug targets and can help to identify 

potential off-targets in both human cell lines and 

yeast.  

LiP-Quant identifies peptides that undergo structural 

changes upon compound binding, identifying the drug 

binding sites for a benchmark set of protein kinase and 

phosphatase inhibitors. We could distinguish both the 

binding specificity and selectivity for the phosphatase 

inhibitors fostriecin and calyculin A, which interact 

with highly similar proteins that share a homologous 

binding site. This ability to accurately identify relative 

binding affinities for proteins, in particular among 

closely related protein families, is a highly beneficial 

feature when characterizing and refining drug leads.  

We have found that LiP-Quant based EC50 

calculations are typically consistent across different 

LiP-Quant peptides from a given target. However, 

EC50s estimated from LiP-Quant are often higher, by 

approximately an order of magnitude, than literature-

reported values.  EC50 values are generally measured 

in vitro with purified proteins, while those inferred 

from LiP-Quant are measured from lysates. The 

observed differences in EC50 values could thus 

simply be due to competition between different 

targets that occur in the lysate but not in vitro, or due 

to the effects of PTMs, protein-protein interactions, 

molecular crowding, binding of other small molecules 

or the presence of membranes.  The EC50 estimated 

with LiP-Quant may in fact be a more physiological 

indicator of drug-target binding affinity, since protein 

lysates are a better model for the crowded 

environment of the cell than recombinant proteins in 

vitro.   

We used LiP-Quant to discover the potential targets 

of a research fungicide, demonstrating the power of 

the approach when no prior target information is 

available. Our findings were corroborated by an 

additional target deconvolution approach and 

importantly, provide an explanation for the previously 

unknown mode of action of the drug. Interestingly, for 

the casein kinase-1 homologue, our approach suggests 

that the compound binds at the predicted ATP-binding 

pocket, a mechanism consistent with many well 

characterized kinase inhibitors. However, the top two 

peptides identified for another putative target, the 

glycogen synthase kinase-3β homologue, do not map 

to the predicted ATP-binding site. This illustrates that 

although binding site prediction is a powerful attribute 

of the method, such predictions should be 

orthogonally validated.  

Collectively, this work demonstrates that LiP-Quant 

can be used to effectively identify protein drug-targets 

and characterize their binding properties across drug 

classes and species. These capabilities make LiP-

Quant a powerful target deconvolution strategy with 

the potential to become an essential part of the drug 

development pipeline. 
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METHODS 

Experimental model and subject details 

Saccharomyces cerevisiae cells were grown at 30°C 

in YPD media to early log phase from a single colony 

picked from a fresh YPD plate. Cells were harvested 

by centrifugation and carefully washed three times 

with ice-cold lysis buffer (100 mM HEPES pH 7.5, 

150 mM KCl, 1 mM MgCl2). Cell pellets were 

resuspended in lysis buffer, and cell suspensions were 

extruded from a gauge needle to produce drops that 

were immediately flash frozen in liquid nitrogen. 

Botrytis cinerea (clone BO47), both wild-type and 

CK1 His-tagged, cells were cultured in potato 

dextrose agar (39 g/L, Oxoid #CM0139) at 21°C for 

10 days. After 10 days growth the cells were 

suspended in 10 ml of GYPm liquid media (14.6 g/l 

D(+)-glucose monohydrate (VWR #24370.320), 

yeast extract (Merck #1.03753.0500), mycological 

peptone (Oxoid #LP0040)) and filtered (100 µm, 

Corning cell strainer) to harvest spores (final solution 

of 5 x106 spores/ml). This liquid culture was 

incubated for 24h at 110 rpm at 21°C. Cell mycelium 

was pelleted by centrifugation (5 min, 16,000 g, 

21°C), media was removed and the pellet snap frozen 

in liquid nitrogen. 

Whole-proteome preparation for MS analysis 

Saccharomyces cerevisiae: Liquid-nitrogen frozen 

beads of cell suspensions in lysis buffer (100 mM 

HEPES pH 7.5, 150 mM KCl, 1 mM MgCl2) were 

mechanically ground in cryogenic conditions with a 

Freezer Mill (SPEX SamplePrep 6875). Cell debris 

was removed by centrifugation (10 min, 20,000 g, 

4°C). The sample preparation procedure was 

performed at 4°C.  

HeLa and Botrytis cinerea cells: All biological 

samples were kept on ice through sample preparation. 

HeLa cell pellets (5 x 107 cells) and Botrytis cinerea 

mycelium (3 x 107 cells) were resuspended in 800 µl 

LiP buffer (100mM HEPES pH 7.5, 150mM KCl, 

1mM MgCl2) and lysed by passing completely 

through a BD Precision glide syringe needle (27G) ten 

times, followed by 20 minutes incubation on ice. 

Lysate was cleared by centrifugation (16,000g at 4°C) 

for 4 minutes. Supernatant was retained in a new 

Eppendorf tube and the pellet was resuspended in 400 

µl of LiP buffer for repeated lysis under the 

aforementioned conditions, including incubation and 

centrifugation. After centrifugation, supernatants 

were combined and protein amount was determined 

using a Pierce BCA Protein Assay Kit (cat #23225) 

according to manufacturer's instructions. 

Limited Proteolysis under native conditions for 

global analysis of small molecule binding events 

Saccharomyces cerevisiae: Cell lysates from at least 

three independent biological replicates were aliquoted 

in equivalent volumes containing 100 ug of proteome 

sample and incubated for 10 min at 25°C with the drug 

of interest. Proteinase K from Tritirachium album 

(Sigma Aldrich) was added simultaneously to all the 

proteome-metabolite samples with the aid of a 

multichannel pipette, at a proteinase K:substrate mass 

ratio of 1:100, and incubated at 25°C for 4 min. 

Digestion reactions were stopped by heating samples 

for 5 min at 98°C in a thermocycler followed by 

addition of sodium deoxycholate (Sigma Aldrich) to a 

final concentration of 5%. Samples were then heated 

again at 98°C for 3 min in a thermocycler. These 

samples were then subjected to complete digestion in 

denaturing conditions as described below. 

HeLa and Botrytis cinerea cells: 100 µg of protein 

lysate was aliquoted from a lysate pool for each of 

four independent replicates and incubated at room 

temperature (RT) with the compound of interest for 

10 minutes. Proteinase K (1:100 ratio of enzyme to 

protein) was added and samples were incubated for a 

further 4 minutes. Samples were transferred to a heat 

block at 98°C for 1 minute, at which time proteinase 

K activity was quenched with an equal volume of 10% 

deoxycholate (to a final concentration of 5%) and 

incubated for a further 15 minutes at 98°C.  

Proteome preparation in denaturing conditions  

Samples were removed from heat and reduced for 1 

hour at 37°C with 5mM tris(2-

carboxyethyl)phosphine hydrochloride followed by a 

30 minute incubation at RT in the dark with 20 mM 

iodoacetamide. Subsequently, samples were diluted in 

2 volumes of 0.1M ammonium bicarbonate (final pH 

of 8) and digested for 2 hours at 37°C with lysyl 

endopeptidase (1:100 enzyme: substrate ratio). 

Samples were further digested for 16 hours at 37°C 

with trypsin (1:100 enzyme: substrate ratio). 

Deoxycholate was precipitated by addition of formic 

acid to a final concentration of 1.5% and centrifuged 

at 16,000 g for 10 minutes. After transferring the 

supernatant to a new Eppendorf tube an equal volume 

of formic acid was added again and the centrifugation 

repeated. Digests were desalted using C18 MacroSpin 

columns (The Nest Group), or Sep-Pak C18 cartridges 

or into 96-well elution plates (Waters), following the 

manufacturer's instructions and after drying 

resuspended in 1% acetonitrile (ACN) and 0.1% 

formic acid. The iRT kit (Biognosys AG, Schlieren, 

Switzerland) was added to all samples according to 

the manufacturer's instructions. 

High pH reversed phase fractionation 

Equal amounts of peptides were taken and pooled 

from the final LiP reaction digests for each treatment 

(e.g. 7 µg from each replicate for each condition), 
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resulting in approximately 200 µg of total digest. This 

digest pool was fractionated into 10-12 fractions using 

high pH reversed phase chromatography with a 

Dionex Ultimate 3000 HPLC (Thermo Fisher, 

Waltham, United States) and an ACQUITY UPLC 

CSH C18 column (1.7 µm x 150 mm) from Waters 

(Milford, United States). In brief, a 25% ammonium 

hydroxide solution was used to adjust the pH of the 

digest pool to 10. The lysate was run on a 30-minute 

non-linear gradient, increasing from 1 to 40% ACN, 

at a flow rate of 0.3 ml per minute and a micro-

fraction size of 30 seconds. After drying the 

individual fractions were resuspended in 1% ACN 

and 0.1% formic acid and Biognosys' iRT kit was 

added. 

Mass spectrometric acquisition 

Samples generated from HeLa and Botrytis cinerea 

cells:  

For DIA (Data Independent Acquisition) runs, 2 µg of 

LiP reaction digest from each sample was analyzed 

using an in-house analytical column (75 µm x 50cm). 

PicoFrit PicoTip Emitters (SELF/P Tip 10 µm) were 

packed with ReproSil-Pur C18-AQ 1.9 µm phase (Dr. 

Maisch, Ammerbuch-Entringen Germany) and 

connected to an Easy-nLC 1200. All experiments 

were run on a Q-Exactive HF mass spectrometer 

(Thermo Scientific) with the exception of the 

calyculin A data set, which was acquired on a Q-

Exactive HF-X. Peptides were separated by a 2-hour 

segmented gradient at a flow rate of 250 nl/min with 

increasing solvent B (0.1% formic acid, 85% ACN) 

mixed into solvent A (0.1% formic acid, 1% ACN). 

Solvent B concentration was increased from 1% after 

3 minutes according to the following gradient: 4% 

over 3 minutes, 5% for 3 minutes, 7% for 4 minutes, 

9% for 5 minutes, 11% for 8 minutes, 16% for 19 

minutes, 26% for 41 minutes, 29% for 9 minutes, 31% 

for 6 minutes, 33% for 5 minutes, 35% for 4 minutes, 

38% for 4 minutes, 40% for 3 minutes, 44% for 3 

minutes, 55% for 3 minutes and 90% in 10 seconds. 

This final concentration was held for 10 minutes 

followed by a rapid decrease to 1% over 10 seconds, 

which was then held for 5 minutes to finish the 

gradient. A full scan was acquired between 350 and 

1650 m/z at a resolution of 120,000 (ACG target of 

3e6 or 7 ms maximal injection time). A total of 37 

DIA segments on HF were acquired at a resolution of 

30,000 (ACG target of 3e6 or 47 ms maximal 

injection time) and 42 on the HF-X (ACG target of 

3e6 or 55 ms maximal injection time). The normalized 

collision energy was stepped at 25.5, 27, 30. First 

mass was fixed at 200m/z. 

For DDA (Data Dependent Acquisition) runs, 

peptides were separated by the same 2-hour 

segmented gradient as utilized above for DIA runs 

with the exception that the final 1% solvent B flow 

was held for 4 minutes and 40 seconds (rather than 5 

minutes). All experiments were run on a Q-Exactive 

HF mass spectrometer (Thermo Scientific) with the 

exception of the rapamycin (Q-Exactive HF-X) and 

FK506 data sets (Q-Exactive). A top 15 method was 

used across a scan range of 350 to 1650 m/z with a 

full MS resolution of 60,000 (ACG target of 3e6 or 20 

ms injection time). Dependent MS2 scans were 

performed with a resolution of 15,000 (ACG target of 

2e6 or 25 ms injection time) with an isolation window 

of 1.6 m/z and a fixed first mass of 120 m/z. 

Peptide samples generated from Saccharomyces 

cerevisiae were analyzed on an Orbitrap Q Exactive 

Plus mass spectrometer (Thermo Fisher Scientific) 

equipped with a nano-electrospray ion source and a 

nano-flow LC system (Easy-nLC 1000, Thermo 

Fisher Scientific). MS data acquisition in DDA and 

DIA modes was essentially carried out as in Piazza et. 

al. 2018.  

Mass spectrometric data analysis 

DIA spectra were analyzed with Spectronaut X 

(Biognosys AG)29 using the default settings. In brief, 

retention time prediction type was set to dynamic iRT 

(adapted variable iRT extraction width for varying 

iRT precision during the gradient) and correction 

factor for window 1. Mass calibration was set to local 

mass calibration. The false discovery rate (FDR) was 

estimated with the mProphet approach30 and set to 1% 

at both the peptide precursor and protein level. 

Statistical comparisons were performed on the 

modified peptide level using fragment ions as 

quantitative input. The DDA spectra were analyzed 

with the SpectroMine (Biognosys AG) software using 

the default settings with the following alterations. 

Digestion enzyme specificity was set to Trypsin/P and 

semi-specific. Search criteria included 

carbamidomethylation of cysteine as a fixed 

modification, as well as oxidation of methionine and 

acetylation (protein N-terminus) as variable 

modifications. Up to 2 missed cleavages were 

allowed. The initial mass tolerance for the precursor 

was 4.5 ppm and for the fragment ions was 20 ppm. 

The DDA files were searched against the human 

UniProt fasta database (updated 2018-07-01) and the 

Biognosys' iRT peptides fasta database (uploaded to 

the public repository). The libraries were generated 

using the library generation functionality of 

SpectroMine with default settings. 

Establishing criteria to be used for positive target 

identification in LiP-Quant  

All HeLa data sets were first analyzed for 

differentially regulated peptides between the highest 

drug concentration and vehicle using Spectronaut’s 

statistical testing performed on the modified peptide 
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sequence level using fragment ions as the smallest 

quantitative units. This candidate peptide list was 

filtered based upon q-value < 0.01 and an absolute 

log2 fold-change > 0.58. Each peptide in this filtered 

list was then subjected to dose response correlation 

testing (using the "drc" package (https://www.r-

project.org)) on all peptides (modified sequence with 

fragments ions as quantitative units) at every drug 

concentration to establish a sigmoidal correlation 

coefficient. 

As the ground truth (target proteins) was known for 

the drugs tested in HeLa lysates each protein 

identified in each data set was annotated as either a 

known target or non-target and from this a 

contaminant database, or LiP-protein frequency 

library (PFL), was built. To do so, the same 

statistically filtered list of differentially regulated 

peptides as above was used and proteins that were 

present but not specific for the drug being tested were 

quantified and assigned a PFL (contamination) score. 

For example, a protein that showed differential 

regulation in 9 of 11 ground truth experiments 

(several experiments were performed more than once) 

was assigned a contamination score of 9/11 or 81.8% 

(Table S6), proteins that never appeared as 

contaminants in any experiment were not included in 

the PFL-library. This library enabled the quantitative 

down-weighting of proteins that were frequently 

present in LiP experiments but not specific for the 

drug being tested. We observed high correlation 

between proteins identified as likely contaminants in 

the PFL of our LiP-Quant experiments (Table S6) and 

those previously identified as common contaminants 

in affinity purification mass spectrometry (such as 

chaperone and structural proteins) (Mellacheruvu et 

al., 2013). 

To establish the criteria that contribute to the 

identification of drug targets, we split our dose 

response experimental data (filtered based on q-value 

and log2 fold-change and PFL annotated as mentioned 

above) into two independent data sets to train our 

classifier; training set A included the drugs calyculin 

A, rapamycin and staurosporine and training set B 

included FK506, selumetinib and fostriecin (Figure 

S4A). For each training set the data was combined and 

we used linear discriminant analysis (LDA) to build 

classifiers based upon all potential unique 

peptide/protein features (e.g. dose-response 

correlation, PFL frequency, protein coverage, etc). 

For each training set, known drug targets were 

selected as a positive training set, resulting in 95 

modified sequences for training set A and 33 for 

training set B. We also randomly sampled 400 

background modified sequences as a negative training 

set from each training set. The features were 

calculated and stabilized to a defined range between 0 

and 1. The LDA-based machine learning was 

performed five times for each training data set with 

resampling of the negative training set each time. The 

identified criteria were consistent across all LDA 

analyses (Figure S1A) and the contribution weights 

for each of the features from the five LDA analyses 

was averaged. The relative contributions of each 

parameter to the LiP-Quant score was very stable 

across the training sets (Figure S4B). We termed the 

linear classifier the "LiP-Quant Score" in this study. 

The weights were adjusted such that the combined 

linear classifier could reach a maximum value of 6. 

These weightings were incorporated into the analysis 

pipeline (see below) and verified independently on the 

other positive control data sets (i.e. training set A was 

verified on the data sets comprising training set B and 

vice versa) (Figure S4A). LiP rankings using both 

training set analysis parameters were similar across all 

data sets (Figure S4C). 

Using this approach, we established four classifiers 

that contribute to positive drug target identification 

(Figure S1A): (I) correlation of fit with a dose 

response binding model, (II) the presence of the 

identified protein in the LiP-protein frequency library, 

(III) the number of peptides from an identified protein 

showing regulation that are in the top ten percent of 

all peptides ranked by q-value in the Spectronaut 

filtered statistical test (see above) and (IV) the 

statistical significance (q-value) of the relative 

peptide abundances between drug and vehicle-treated 

samples. As training set A contained a larger positive 

training set (i.e. there were more known drug target 

peptides identified) the weightings calculated for this 

training set were used for all subsequent analyses. 

Automated peptide/protein ranking of LiP dose 

response experiments 

Using the criteria and weightings established from our 

training data sets we wrote in-house scripts in R to 

calculate in an unbiased manner the individual peptide 

sub-scores for each LiP-Quant experiment. As these 

experiments contained on average over 100,000 

peptides, peptides were first filtered based upon 

differential abundance from the Spectronaut statistical 

testing table (q-value < 0.01 and an absolute log2 fold-

change > 0.46) using statistical comparisons against 

vehicle control for a range of drug concentrations 

(IC50 through 1000-fold the IC50, or the range closest 

to this). Each peptide in this narrowed down putative 

candidate list was then subjected to full LiP-Quant 

analysis using the four weighted criteria (Figure S1A) 

described above and a final LiP-Quant score for each 

peptide was calculated. 

This final analysis pipeline enabled the selection and 

ranking of the most relevant peptides and proteins per 

experiment. The combined LiP-Quant score enables 

https://www.r-project.org/
https://www.r-project.org/
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direct comparison of LiP peptides with each other and 

allows more robust discrimination of genuine targets 

from random hits. Ranking on the protein level was 

performed using the best LiP-score per protein, only. 

All half maximal effective/inhibitory concentrations 

(EC50/IC50) were calculated using the "drc" package ( 

https://www.r-project.org). 

Criteria used for establishing a LiP threshold 

score 

Aggregating results from five positive control 

experiments (rapamycin, calyculin A, selumentinib, 

FK506 and fostreicin) conducted in HeLa lysate and 

analyzed with our LiP-Quant pipeline, we found that 

LiP scores show a bimodal distribution. Staurosporine 

was excluded from the threshold calculation as it 

shows a level of promiscuity (binding potentially 

hundreds of kinases) that is rare among drugs, making 

it difficult to ascertain if low scoring peptides are 

genuine targets that were not detected or kinases that 

are not bound by the drug. As this difficulty in 

interpreting non-target peptides could bias the 

threshold calculation the data set was excluded. 

Peptides from known target proteins show a clear 

enrichment in the high-scoring peak of the 

distribution (LiP-Quant score > 1.5), whereas all other 

peptides are enriched in the low-scoring peak of the 

distribution with a median of approximately 0.8 

(Figure 1B). We defined a threshold score of 1.5 by 

taking the median LiP-Quant score from the 

aforementioned experiments, plus three standard 

deviations, to ensure minimal (< 1%) non-target 

peptide presence (Table S1). Although the approach 

ensures a strong enrichment for genuine targets, it 

should be noted that some peptides from these targets 

are expected below a LiP-Quant score of 1.5 as both 

LiP-Quant and non-LiP-Quant peptides can be 

expected from genuine target proteins.  

Structural models  

The amino acid conservation in the structural model 

of calyculin A bound to the PP1-gamma catalytic 

subunit has been calculated using the ConSurf 

algorithm (Landau 2005). 

Definition of Positive Predictive Value (PPV) 

We defined the positive predictive value (PPV) as 

the ratio between the number of true positive 

peptides and the sum of false positives (FP) and true 

positives (TP) identified by LiP-Quant (TP/ (TP + 

FP)).  

Cellular thermal shift assay (CETSA) 

Botrytis cinerea BO47 (CK1 His-Tagged) cell 

suspension was adjusted to 1 x 106 sp/ml GYPm and 

incubated for 24h at 21°C (110 rpm). 12.5 x 106 cells 

were treated with BAYE-B004 (at various 

concentrations from 0.0001 to 67.5 µM) or control 

(1% DMSO) for the final 20 minutes of the 24h 

growth period. Cells were harvested by filtration (100 

µm) and rinsed with 15 ml of ice cold HEPES buffer 

(0.1 M HEPES, 50 mM NaCl, pH 7.5). Harvested 

mycelium was resuspended in 3.5 ml HEPES buffer 

and kept on ice. 500 µl of each concentration was 

transferred to a 2 ml Eppendorf tube and heated to 

56°C on a thermoshaker for 3 minutes, an additional 

aliquot from each concentration was left unheated. 

After heating, cells were kept on ice for 3 minutes, 

snap frozen in liquid nitrogen, lyophilised overnight 

and then stored at -80°C until protein extraction. 

Lyophilised mycelium was lysed using a Retsch 

mixer mill (MM 400) with 3 mm tungsten carbide 

beads (30 Hz for 3 seconds, two cycles), then 500 µl 

of cold protein extraction buffer (50 mM HEPES, 50 

mM NaCl, 0.4% NP-40) was added. Lysate was 

incubated for 10 minutes at 25°C, centrifuged (10 

minutes, 14,000g) and the supernatant was retained. 

The lysate was further centrifuged (20 minutes, 

73,400g) to eliminate insoluble proteins. The 

supernatant was collected and protein concentration 

was determined using the Qubit protein assay kit 

(#Q33211) and stored at -20°C. 

Target engagement was assessed by western blot. In 

brief, 17 µg of protein per treatment was loaded onto 

a TGX (4-20%) stain free gel (Bio-Rad, #4568094) 

and run at 250V for 25 minutes. Proteins were 

transferred to a nitrocellulose membrane using the 

Trans-Blot Turbo system according to the 

manufacturer’s instructions (Bio-Rad, # 1704271). 

The membrane was probed using a monoclonal anti-

polyhistidine-peroxidase antibody (1:2000, clone 

HIS-1, Sigma, A7058). The membrane (target 

protein) and gel (loading control) were imaged using 

a ChemiDocXRS camera and quantified using ImageJ 
31  

Cell viability (IC50) assay 

Botrytis cinerea BO5.10 (2 x 103 cells/ml) mycelium 

in GYPm liquid media (200 µl) was cultured at 21°C 

without shaking in a micro-titer plate. Optical density 

was measured at 620 nm (Tecan M1000 plate reader) 

at the beginning of the culture period (day 0) and 

immediately inoculated with 2 µl of BAYE-B004 to 

obtain final concentrations (µM) of 1.2234, 0.40745, 

0.13582, 0.04527, 0.01509, 0.00168, 0.00056, 

0.00019 and 0 respectively. The culture was grown for 

three days at 21°C after inoculation at which point the 

optical density was measured again. Inhibition of cell 

growth was calculated at each.

 

https://www.r-project.org/
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MATERIALS 

Frozen HeLa cell pellets were purchased from Ipracell (Belgium). All chemicals and compounds were 

purchased from Sigma-Aldrich unless specified otherwise. Pierce BCA Protein Assay Kit was purchased 

from Thermo Fisher Scientific. Lysyl endopeptidase was purchased from Wako Pure Chemical Industries. 

Selumetinib and staurosporine were purchased from Lubio Science and Cell Guidance systems respectively. 

Fostrecin was purchased from AdipoGen. BAYE-B004 was produced by Bayer Crop Science. Sequencing 

grade trypsin was purchased from Promega. 

 REAGENT OR RESOURCE SOURCE IDENTIFIER 

   

Chemicals 

   

TCEP (tris(2-carboxyethyl)phosphine 

hydrochloride) 

Pierce 20490 

Selumetinib  Lubio Science  AZD6244 

Staurosporine Cell Guidance 

systems 

SM-97 

Fostrecin AdipoGen AG-CN2-0057-C010  

Calyculin A   

Rapamycin LC laboratories R-5000 

BAYE-B004 Bayer Crop 

Science 

Proprietary compound 

Iodoacetamide  Sigma-Aldrich I1149 

Ammonium bicarbonate Sigma-Aldrich 09830 

Formic acid 98-100% AppliChem A38580500 

HEPES (4-(2-hydroxyethyl)piperazine-1-

ethanesulfonic acid, N-(2-

Hydroxyethyl)piperazine-N′-(2-

ethanesulfonic acid) 

Sigma-Aldrich H4034 

Potassium chloride Merck K41042236-032 

Magnesium chloride hexahydrate  Fluka 63072 

Sodium deoxycholate Sigma-Aldrich D6750 

BCA protein assay Pierce 23228 

Sep-Pak Vac, tC18 Cartridges   Waters WAT054960 

   

   

   

DL-Dithiothreitol  Sigma-Aldrich D0632 

Trizma-base Sigma-Aldrich T1503 

   

   

TCEP (tris(2-carboxyethyl)phosphine 

hydrochloride) 

Pierce 20490 

   

   

Recombinant proteins and peptides 

Proteinase K (PK) from Engyodontium 

album 

Sigma Aldrich P2308 

Lysyl endopeptidase Wako Pure 

Chemical 

Industries 

125-05061 

Trypsin: sequencing-grade modified 

trypsin 

Promega V5111 

HeLa cell pellets Ipracell CC-01-10-10 
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iRT kit  Biognosys AG Ki-3002 

   

Experimental models, strains 

S.cerevisiae BY4742: S288C 

isogenic yeast strain. Genotype: MATα 

his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 

Euroscarf http://www.euroscarf.de/se

arch.php? 

name=Order 

S.cerevisiae W303: Genotype: 

MATa/MATα {leu2-3,112 trp1-1 can1-

100 ura3-1 ade2-1 his3-11,15} [phi+] 

Ralser M, et al. 

(2012) 

 

S.cerevisiae derivative of W303. MATα 

tor1-1 

fpr1::loxP-LEU2-loxP  

RPL13A-2×FKBP12::loxP-TRP1-loxP 

Haruki, et al. 

(2008) 

Euroscarf HHY224 

   

B. cinerea B05.10 wild-type: benomyl 
derivate of SAS 56 

Buettner, et al. 

1994 32 

 

B. cinerea B05.10 wild-type: CK1-His Cloned in-house 

(Bayer SAS) 

 

Software and algorithms 

Rstudio Rstudio https://www.rstudio.com 

R version v. 3.6.0 The R Foundation https://www.r-project.org/ 

Drc package for R Christian Ritz https://www.r-project.org/ 

PyMol v.2.1. Schrödinger https://www.pymol.org/ 

Proteome discoverer v. 2.2 ThermoFisher 

Scientific 

https://www.thermofisher.c

om 

Xcalibur v. 4.1 ThermoFisher 

Scientific 

https://www.thermofisher.c

om 

Spectronaut X Biognosys AG https://biognosys.com/ 

 


