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21 Abstract

22 Cancer origin determination combined with site-specific treatment of metastatic cancer 

23 patients is critical to improve patient outcomes. Existing pathology and gene expression-based 

24 techniques often have limited performance. In this study, we developed a deep neural network 

25 (DNN)-based classifier for cancer origin prediction using DNA methylation data of 7,339 patients of 

26 18 different cancer origins from The Cancer Genome Atlas (TCGA). This DNN model was 

27 evaluated using four strategies: (1) when evaluated by 10-fold cross-validation, it achieved an 

28 overall specificity of 99.72% (95% CI 99.69%-99.75%) and sensitivity of 92.59% (95% CI 91.87%-

29 93.30%); (2) when tested on hold-out testing data of 1,468 patients, the model had an overall 

30 specificity of 99.83% and sensitivity of 95.95%; (3) when tested on 143 metastasized cancer patients 

31 (12 cancer origins), the model achieved an overall specificity of 99.47% and sensitivity of 95.95%; 

32 and (4) when tested on an independent dataset of 581 samples (10 cancer origins), the model 

33 achieved overall specificity of 99.91% and sensitivity of 93.43%. Compared to existing pathology 

34 and gene expression-based techniques, the DNA methylation-based DNN classifier showed higher 

35 performance and had the unique advantage of easy implementation in clinical settings.
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45 Introduction

46  Identification of cancer origins is routinely performed in clinical practice as site-specific 

47 treatments improve patient outcomes [1-4].  While some cancer origins are easy to be determined, others 

48 are difficult, especially for metastatic and un-differentiated cancer. Cancer origin determination is 

49 typically carried out with immunohistochemistry panels on the tumor specimen and imaging tests, which 

50 need considerable resources, time, and expense. In addition, pathologic-based procedures have limited 

51 accuracy (66-88%) in determining the origins of metastatic cancer [5-8]. 

52 Several gene expression- or microRNA-based molecular classifiers have been developed to 

53 identify cancer origin. A k-nearest neighbor classifier based on 92 genes showed an accuracy of 84% in 

54 identifying primary site of metastatic cancer via cross-validation [9].  Pathwork, a commercially available 

55 platform based on similarity score of 1,550 genes between cancer tissue and reference tissue, achieved an 

56 overall sensitivity of 88%, an overall specificity of 99% and an accuracy of 89% in identifying tissue of 

57 origin [10, 11].  A decision-tree classifier based on 48 microRNA showed an accuracy of 85-89% in 

58 identification of cancer primary sites [12, 13], and an updated version, the 64-microRNA based assay, 

59 exhibited an overall sensitivity of 85% [14, 15]. A recent support vector machine-based classifier that 

60 integrated gene expression and histopathology showed an accuracy of 88% in known origins of cancer 

61 samples [16].  All these molecular platforms have shown better performance in identifying tissue of origin 

62 as compared to pathology-based methods.  However, gene expression- or microRNA-bases classifiers 

63 need to handle RNA that is unstable and less convenient in clinic settings.  In addition, these classifiers 

64 have performance of <90% accuracy, which may further limit their wide adoption in clinical settings. 

65 Hence, it is desirable to develop higher performance prediction tools for cancer origin determination, 

66 which can also be easily implemented in clinical settings. 

67 DNA methylation is a process by which methyl groups are added to the DNA molecule and 70-

68 80% of human genome is methylated [17].  It has been shown that DNA methylation is established in 

69 tissue specific manner during development [18, 19]. Though the genomes of cancer patients exhibit 
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70 overall demethylation, tissue specific DNA methylation markers might be conserved [19].  Indeed, a 

71 random forest-based cancer origin classifier using DNA methylation was reported to achieve a 

72 performance with 88.6% precision and 97.7% recall in the validation set [20], which demonstrated the 

73 usefulness of methylation data in cancer origin prediction.  Recently, deep learning technologies have 

74 rapidly applied to the biomedical field, including protein structure prediction, gene expression regulation, 

75 behavior prediction, disease diagnosis and drug development [21, 22]. Studies show that deep learning-

76 based models often achieved higher performance than traditional machine learning methods (e.g. random 

77 forest and support vector machine, etc.) in many settings, such as gene expression inference [23], 

78 transcript factor binding prediction [24], protein-protein interaction prediction [25], detection of rare 

79 disease-associated cell subsets [26], variant calling [27], clinic trial outcome prediction [28], among 

80 others. In this study, we trained and robustly evaluated a high-performance cancer origin predictive model 

81 by leveraging the large amount of DNA methylation data available in The Cancer Genome Atlas 

82 (TCGA) and the recent developments in deep neural network learning techniques. We demonstrated that 

83 our model performed better than traditional pathology- or gene expression-based models as well as 

84 methylation-based random forest prediction model.

85

86 Materials and methods

87 Datasets

88 DNA methylation data (Illumina human methylation 450k BeadChip) and clinical information of 

89 8,118 patients across 24 tissue types were obtained from in GDC data portal [29] using TCGAbiolink 

90 (Bioconductor package, version 2.5.12) [30].  We excluded six tissue types with less than 100 cases in 

91 TCGA to build robust cancer origin classifier. The final data include DNA methylation data and clinical 

92 information from 7,339 patients of 18 cancer origins.  TCGA data were used for both cancer origin 

93 classifier training and evaluation, which were randomly and stratified split into training set (n=4,403), 

94 development set (n=1,468) and test set (n=1,468) (Fig 1).  
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95 Fig 1.  Distribution of cancer samples in TCGA by tissue of origin. A total of 7339 patients were 

96 randomly and stratified split into train, dev and test sets according to 60:20:20.

97

98 In order to evaluate the classifier trained on TCGA dataset using independent data, we obtained 

99 11 DNA methylation datasets (Illumina 450k platform) from Gene Expression Omnibus (GEO) [31] 

100 using GEOquery (Bioconductor package, version 2.42.0) [32]. A total of 581 cancer patients covering 10 

101 cancer origins were obtained and the information for each dataset was described in Table 1. 

102

103 Table 1.  Characteristics of GEO datasets

GEO ID Disease Cancer origin Cancer type Num. of 
patients

GSE77871 Adrenocortical 
carcinomas

Adrenal gland Primary 18

GSE78751 Triple negative 
breast cancer

Breast Primary, 
metastatic

23
12

GSE101764 Colorectal cancer Colorectal Primary 112
GSE38268 Head and Neck 

Squamous Cell   
Carcinoma

Head and neck Primary 6

GSE89852 hepatocellular 
carcinomas

Liver Primary 37

GSE49149 Pancreatic cancer Pancreas Primary 167

GSE112047 Prostate cancer Prostate Primary 31
GSE38240 Prostate cancer Prostate Primary, 

metastatic
2
6

GSE73549 Prostate cancer Prostate Metastatic 18

GSE86961 Papillary thyroid 
cancer

Thyroid Primary 82

GSE52955 Urology cancer Kidney, Bladder, 
prostate

Primary 17, 25, 25

104

105 Feature selection
106 Only the training data (n=4,403) from TCGA were used for feature selection.  Currently, Illumina 

107 450K and 27K are two commonly used platforms for genome wide analysis of DNA methylation, which 

108 measure DNA methylation of around 450K and 27K CpG sites respectively.  DNA methylation level of 
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109 CpG site is expressed as beta value using the ratio of intensities between methylated and unmethylated 

110 alleles. Beta value is between 0 and 1 with 0 being unmethylated and 1 fully methylated. To make the 

111 model with good compatibility and also reduce the dimensionality, we firstly reduced CpG sites to 27K 

112 for 450K derived samples. To further remove the noise in the data, we used one-way analysis of variance 

113 (one-way ANOVA) to filter the CpG sites whose beta values are not significantly different (p > 0.01) 

114 among different tissues. Then we used the Tukey honest test to remove the CpG sites that maximal 

115 differences of their beta values are less than 0.15.  The input features used for model building consisted of 

116 DNA methylation from 10,360 CpG sites.

117 Training a deep neural network (DNN) model for cancer origin 

118 classification

119 We used DNA methylation data from training set (n=4,403) to build a DNN model to predict 

120 cancer origins. Tensorflow [33], an open source framework to facilitate deep learning model training, was 

121 used for this purpose. Four well-established techniques were used to optimize the training process, 

122 including weight initialization by Xaiver method [34], Adam optimization [35], learning rate decay and 

123 mini-batch training. Xaiver method can efficiently avoid gradient disappearance/explosion that random 

124 initialization may bring. Adam, a combination of Stochastic Gradient Descent with momentum 

125 descendent [36] and RMSprop [37], makes training process faster. Exponential learning decay (decay 

126 every 1,000 steps with a base of 0.96) was used to improve model performance. Training was performed 

127 in 128 mini-batch of 30 epochs to efficiently use the data.  In addition, three hyperparameters (learning 

128 rate, number of hidden layer and hidden layer unit) were optimized to obtain best performance according 

129 to development set performance (1,468 patients with the same distribution of cancer origins as training 

130 set). 

131 Validating and testing DNN-based cancer origin prediction model

132 We used four strategies to evaluate the performance of the DNN cancer origin classifier: (1) 
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133 evaluation in the10-fold cross-validation in training dataset to obtain overall specificity, sensitivity, PPV 

134 and NPV as well as corresponding confidence intervals of this model; (2) evaluation in the hold-out 

135 testing dataset to obtain both the overall model performance and tissue-wise performance; (3) evaluation 

136 in the subset of metastatic cancer samples nested in testing dataset to assess the performance of the model 

137 in predicting the primary sites of metastatic cancer, which are often more difficult to be identified in 

138 clinical practice and more clinically relevant; (4) evaluation in independent datasets from GEO to test the 

139 robustness and generalizability of this DNN model. Metrics including specificity, sensitivity, positive 

140 predictive value (PPV) and negative predictive value (NPV) were reported. Receiver Operating 

141 Characteristic curve (ROC curve) was also calculated for each test data performance.

142 Source code, data availability, and reproducibility

143 Source code used in this study is publicly available in a Github repository 

144 (https://github.com/thunder001/Cancer_origin_prediction). We also shared a Jupyter Notebook to 

145 replicate all the machine learning experiments from data processing, model building and optimization to 

146 model evaluation. To execute this notebook, the environment needs to be firstly created according to a 

147 YAML file available in Github. In addition, we also created a Docker image available in Docker hub 

148 (https://hub.docker.com/r/thunder001/cancer_origin_prediction), where you can download it and run the 

149 container directly on your computer. 

150

151 Results

152 The overall performance of the DNN-based cancer origin classifier 

153 in 10-fold cross-validation setting

154 We used DNA methylation data of 7,339 patients from TCGA across 18 primary tissues to train 

155 and test a DNN-based cancer origin classifier. The sample distribution in different cancer origins were 
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156 shown in Fig 1. The final DNN architecture consists of one input layer (10,360 neurons), two hidden 

157 layers (64 neurons each layer) and one output layer (18 neurons) that represents 18 cancer origins (Fig 2). 

158

159 Figure 2.  Schematic representation of DNN architecture of cancer origin classifier. 

160

161 Evaluated in a 10-fold cross-validation setting, the model achieved an overall precision (positive 

162 predictive value, PPV) of 0.9503 (95% CI:0.9373-0.9633) and recall (sensitivity) of 0.9259 (95% 

163 CI:0.9187-0.9330) respectively. In addition, this model also achieved a high specificity of 0.9972 (95% 

164 CI:0.9969-0.9975) (Table 2). 

165

166 Table 2.  DNN model performance using 10-fold cross validation of training data.

Mean SD CI (95%)
Specificity 0.9972 0.0001 0.9969, 0.9975

Sensitivity (Recall) 0.9259 0.0032 0.9187, 0.9330
PPV (Precision) 0.9503 0.0057 0.9373, 0.9633

NPV 0.9973 0.0001 0.9970, 0.9976
167
168 Note:  PPV: positive predictive value; NPV: negative predictive value.

169

170 DNN-based cancer origin classifier shows high performance in 

171 testing dataset

172 We tested the classifier using test dataset, which includes 1,468 samples with similar distribution 

173 with training set (Fig 1). Cancer origin classification and a confusion matrix for all samples were shown 

174 in S1 and S2 Tables respectively. Model performance metrics were shown on Table 3. The specificity and 

175 negative predictive value (NPV) in individual cancer origin prediction were consistently higher than 0.99. 

176 The overall precision (PPV) and recall (sensitivity) reached 0.9608 and 0.9595 respectively. For many 

177 cancer tissue origin predictions, including brain, colorectal, prostate, skin, testis, thymus and thyroid, this 
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178 DNN model achieved a precision of 100% (Table 3) and an average AUC of 0.99 (Fig 3).

179 Table 3.  DNN model performance in test set.

CANER ORIGIN SPECIFICITY SENSITIVITY 
(RECALL)

PPV 
(PRECISION)

NPV

AG 0.9993 0.9787 0.9787 0.9993
BLADDER 0.9986 0.9878 0.9759 0.9993
BRAIN 1.0000 1.0000 1.0000 1.0000
BREAST 0.9977 1.0000 0.9810 1.0000
COLORECTAL 1.0000 0.9861 1.0000 0.9993
ESOPHAGUS 0.9909 0.7410 0.7579 0.9902
HN 0.9971 0.9099 0.9619 0.9927
KIDNEY 0.9993 1.0000 0.9925 1.0000
LIVER 0.9993 0.9851 0.9851 0.9993
LUNG 0.9984 0.9740 0.9894 0.9961
PANCREAS 0.9979 1.0000 0.9167 1.0000
PROSTATE 1.0000 1.0000 1.0000 1.0000
SKIN 1.0000 1.0000 1.0000 1.0000
SOFT TISSUE 0.9993 0.9825 0.9825 0.9993
STOMACH 0.9921 0.9375 0.8721 0.9964
TESTIS 1.0000 1.0000 1.0000 1.0000
THYMUS 1.0000 0.8889 1.0000 0.9979
THYROID 1.0000 1.0000 1.0000 1.0000
OVERALL 0.9983 0.9595 0.9608 0.9983

180 Note:  PPV: positive predictive value; NPV: negative predictive value; AG: Adrenal Gland; HN: Head 
181 and Neck
182

183 Fig 3.  AUCs for individual cancer origin prediction in TCGA test set.

184

185 There are some variations in precision and recall in different cancer origin predictions.  The 

186 lowest performance occurred in esophagus origin prediction with a precision of 0.7579 and a recall of 

187 0.7410. A total of 10 of 39 esophagus origins were incorrectly predicted as stomach origins (S1 and S2 

188 Tables). Given that esophagus is a broad area, if a tumor is located at the border of stomach and 

189 esophagus, it might be difficult for the classifier to distinguish these two tissues.  In addition, tissues from 

190 adjacent regions may have similar methylation profiles so that the methylation-based prediction model 

191 has difficulty in differentiating cancers with adjacent origins (e.g., esophagus vs stomach). 

192
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193 DNN-based cancer tissue classifier shows high performance in 

194 determining the origins of metastasized cancers

195 We evaluated the performance of the classifier in determining the origins of metastatic cancers 

196 that nested in our test data. Our data contained 701 samples from distantly metastasized cancers and 558 

197 of them have been used for model development. We then used remaining 143 samples from 12 cancer 

198 origins with various sample sizes for evaluation (Fig 4A). Cancer origin predictions and corresponding 

199 confusion matrix were shown in S3 and S4 Tables. Model performance metrics and ROC curves were 

200 shown in Table 4 and Fig 4B. Consistently, DNN model showed robust high performance in predicting 

201 metastatic cancer origins.

202

203 Fig 4.  Performance of the DNN-based cancer origin classifier in metastatic cancer samples from 

204 TCGA test set.  (A) Distribution of metastatic cancer samples by tissue of origin. (B) AUCs for 

205 individual cancer origin prediction

206 Table 4.  DNN model performance in metastatic cancer samples.

CANER ORIGIN SPECIFICITY SENSITIVITY 
(RECALL)

PPV 
(PRECISION)

NPV

ADRENAL GLAND 1.0000 1.0000 1.0000 1.0000
BLADDER 1.0000 0.9643 1.0000 0.9914
BREAST 0.9929 1.0000 0.7500 1.0000
COLORECTAL 1.0000 1.0000 1.0000 1.0000
ESOPHAGUS 0.9504 1.0000 0.2222 1.0000
HEAD AND NECK 1.0000 0.8833 1.0000 0.9222
KIDNEY 1.0000 1.0000 1.0000 1.0000
LIVER 0.9929 1.0000 0.6667 1.0000
LUNG 1.0000 0.6667 1.0000 0.9929
PANCREAS 1.0000 1.0000 1.0000 1.0000
STOMACH 1.0000 1.0000 1.0000 1.0000
THYROID 1.0000 1.0000 1.0000 1.0000
OVERALL 0.9947 0.9595 0.8866 0.9922

207 Note:  PPV: positive predictive value; NPV: negative predictive value.
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208 We noticed that performance metrics in several cancer origin predictions were poor:  a precision 

209 of 0.22 for esophagus origin prediction, a precision of 0.67 for liver origin prediction and a recall of 0.67 

210 for lung prediction.  The poor performance in these three cancer origin predictions may be due to small 

211 sample size. As mentioned above, metastatic cancer samples comprise only a small subset of test dataset 

212 in TCGA, the majority of which are primary tumors.  Only 2, 2 and 3 metastatic cancer samples from 

213 esophagus, liver and lung origin respectively were included in test dataset (Fig 4A).  The classifier mis-

214 classified 6 out of 60 head and neck cancers as esophagus origin and 1 of 3 of lung cancers as liver 

215 cancers (S4 Table).  Due to small sample sizes for esophagus, liver and lung cancers, a few mis-

216 classifications had significant impacts on the precision metrics.

217

218 DNN-based cancer tissue classifier shows high performance in 

219 independent testing datasets

220 The DNN model was trained using DNA methylation data from TCGA. We then tested it in 

221 independent datasets of 11 data series consisting of 581 tumor samples covering 10 tissue origins 

222 downloaded from Gene Expression Omnibus (GEO). The sample distribution was shown in Fig 5A and 

223 cancer origin predictions were listed in S5 Table. Evaluated using these independent datasets, the DNN 

224 model achieved high performance with an overall precision and recall of 98.69% and 93.43% respectively 

225 (Table 5). High performance was also achieved in individual cancer origin predictions (Table 5) with an 

226 average AUC of 0.99 (Fig 5B). Importantly, the model achieved 100% accuracy in predicting the origins 

227 of metastatic cancers in these datasets, including 24 prostate cancer that metastasized to bone, lymph node 

228 or soft tissue and 12 breast cancer that metastasized to lymph node (see Table 1 for these samples).

229

230 Fig 5.  Performance of the DNN-based cancer origin classifier in GEO dataset.  (A) Distribution of 

231 cancer samples obtained from GEO by tissue of origin. (B) AUCs for individual cancer origin prediction

232
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233 Table 5. DNN model performance using independent cancer samples (GEO)

CANER 
ORIGIN

SPECIFICITY SENSITIVITY 
(RECALL)

PPV 
(PRECISION)

NPV

ADRENAL GLAND 1.0000 0.7778 1.0000 0.9929
BLADDER 1.0000 1.0000 1.0000 1.0000
BREAST 0.9963 0.9714 0.9444 0.9982
COLORECTAL 1.0000 0.9643 1.0000 0.9915
HEAD AND NECK 1.0000 0.8333 1.0000 0.9983
KIDNEY 1.0000 1.0000 1.0000 1.0000
LIVER 0.9945 1.0000 0.9250 1.0000
PANCREAS 1.0000 0.8084 1.0000 0.9283
PROSTATE 1.0000 1.0000 1.0000 1.0000
THYROID 1.0000 0.9878 1.0000 0.9980
OVERALL 0.9991 0.9343 0.9869 0.9907

234 Note:  PPV: positive predictive value; NPV: negative predictive value.

235

236 Discussion

237 We developed a deep neural network model to predict the cancer origins based on large amount 

238 of DNA methylation data from 7,339 patients of 18 different cancer origins.  By combining DNA 

239 methylation data with deep learning algorithm, our caner origin classifier achieved high performance as 

240 demonstrated in four different evaluation settings.  Compared with Pathwork, a commercially available 

241 cancer origin classifier based on gene expressions [10], our DNN model showed higher precision (95.03% 

242 vs 89.4%) and recall (92.3% vs 87.8%) and comparable specificity (99.7% vs 99.4%). Compared with 

243 DNA methylation-based random forest model, our DNN model achieved higher PPV (precision) (95.03% 

244 in cross validation and 96.08% in test vs 88.6%) and comparable specificity, sensitivity and NPV.  In 

245 addition, we showed that our DNN model is highly robust and generalizable as evaluated in an 

246 independent testing dataset of 581 samples (10 cancer origins), with overall specificity of 99.91% and 

247 sensitivity of 93.43%. Therefore, high performance both in primary and metastatic cancer origin 

248 prediction and the potential for easy implementation in clinical setting make the methylation-based DNN 

249 model a promising tool in determining cancer origins. 
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250 DNA methylation is established in tissue specific manner and conserved during cancer 

251 development [19], which makes DNA methylation profile a very useful feature in cancer origin 

252 prediction. Deep neural networks (DNNs) excels in capturing hierarchical features inherent in many 

253 complicated biological mechanisms. Our study indicates that the trained DNN model may be able to 

254 capture hierarchical patterns of cancer origins from the DNA methylation data.  While Interpretation of 

255 deep learning-based models is a rapidly developing field and we expect that our model can be explained 

256 in a meaningful way in the future.

257 Our DNN model has potential in predicting origins of Cancer of Unknown Primary origin (CUP). 

258 CUP is a sub-group of heterogenous metastatic cancer with illusive primary site even after standard 

259 pathological examination [38].  It is estimated that 3-5% metastatic cancers are CUP and the majority of 

260 CUP patients (80%) have poor prognosis with overall survival of 6 -10 months [38].  Identifying primary 

261 site of CUP poses challenges for treatment decisions in clinical practice. Currently, intensive pathologic 

262 examination still leaves 30% of them unidentified [39, 40]. High performance of our DNA methylation-

263 based DNN model may provide an opportunity in this scenario when pathology-based approach fails. 

264 However, due to the limited CUP data in both TCGA and GEO, we currently are unable to test the DNN 

265 models in predicting the origins of CUP. Our future direction is to collaborate with hospital to collect 

266 DNA methylation data from CUP patients to test our model. One challenge is to obtain the true primary 

267 sites for these patients. Due to unknown property of CUP, true primary sites may be established in later 

268 cancer development [20]. Another is through the post-mortem examination of patients since 75% of 

269 primary sites of CUP were found in autopsy [41]. 

270 One limitation of this study is that small sizes of metastatic cancers in our data. Two resources of 

271 metastatic cancer were used in this study: TCGA and GEO. TCGA has 701 metastatic cancer samples (12 

272 tissues) with available methylation data from Illumina Human Methylation 450K platform. While the 

273 model achieved an overall specificity of 99.47% and sensitivity of 95.95% in cross-validation using 

274 TCGA data, we were unable to robustly test it using independent dataset since methylation data of 

275 metastatic cancers is limited in GEO.  Further independent validation of our DNN-based model in 
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276 predicting origins of metastatic cancers, especially poorly differentiated or undifferentiated metastatic 

277 cancer samples, is needed. 

278
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