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20 Abstract

21 Chagas disease is caused by the parasite Trypanosoma cruzi and it is transmitted to 

22 humans by the triatomine bug Rhodnius prolixus. The main insect vector in the Andean 

23 countries presents sylvatic and domestic cycles involving humans, insects and 

24 reservoirs (e.g small mammals). It is commonly assumed that vectorial transmission is 

25 the main route for parasite spread between hosts. Recent studies have reported high 

26 percentages (21-80%) of infected opossums (Didelphis marsupialis) in the sylvatic 

27 cycle, raising the question of whether such a high proportion of infected could be only 

28 maintained by vectorial transmission, a seemingly inefficient pathway. To address this 

29 question, we formulated a mathematical model that describes the sylvatic transmission 

30 dynamics considering vectors and hosts and parametrized with field data. Our results 

31 show that vectorial transmission it is not sufficient to explain such high percentages of 

32 infected host-mammals reported in the literature. Here we propose oral transmission 

33 as an alternate route of transmission that may increase the number of infected 

34 individuals found in field studies. 

35

36
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37 Introduction

38 The transmission of the parasite Trypanosoma cruzi, etiological agent of Chagas 

39 disease, involves several pathways and results in 6 million infected people in Latin 

40 America [1]. Human infections are caused by multiple routes, the main suggested 

41 mechanism is vectorial transmission that occurs when triatomine insects feed on host 

42 blood (Sylvatic mammals and humand after a short period, the vector defecates 

43 releasing large amounts of parasites in the skin close to the wound allowing the 

44 parasite to reach the bloodstream [2-4]. Vertical transmission occurs in humans from 

45 an infected mother to a child; however, the ability of the parasite to cross the placenta 

46 of sylvatic reservoirs has not been fully demonstrated yet.  Oral transmission has been 

47 proved to cause more aggressive clinical symptoms in humans and to have a high 

48 mortality rate (8-35% compared to 5-10% by vectorial transmission) only two weeks 

49 post infection [5]. In sylvatic mammals, oral transmission has been reported when 

50 mammals feed on Rhodnius prolixus infected with T. cruzi were ingested [6]. Recent 

51 studies in central Brazil have demonstrated that both vertical and oral transmission are 

52 not a rare event in this biological system. In fact, a recent study in the Pantanal Region 

53 of Brazil, have demonstrated that both the vertical an oral transmission are likely to 

54 occur, depending on the encounter possibilities of the mammals and vectors [7]. 

55
56 In sylvatic mammals, particularly of the family Didelphidae, it has also been suggested 

57 that spraying from anal glands could be playing an important role in the transmission 

58 of T. cruzi. Opossums, mainly of the species D. marsupialis, have been proposed not 

59 only as a reservoir but also as a T. cruzi vector, since the parasite can multiply 

60 extracellularly in the anal glands of the animal [8-9]. This variety of transmission 

61 mechanisms and their relative importance in human infection compared to reservoir 

62 infection, suggests that parasites have different transmission cycles in the 

63 environment, sylvatic or domestic, that can be connected or isolated depending on the 

64 feeding behaviour of insect vectors. 

65
66 When insect vectors breed and feed inside the houses, a domestic cycle is occurring, 

67 involving human and domestic mammals as reservoirs [4,10]. On the other hand, the 

68 sylvatic cycle involves triatomine bugs living in the wild feeding on sylvatic mammals 

69 such as opossums and rodents that act as reservoirs. The connection between the two 

70 cycles occurs when insects migrate from the sylvatic to the domestic habitat attracted 

71 by light sources and domestic species presence combined with the increase in the 

72 number of domestic animals like dogs [11-14]. It must be considered that the ecological 
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73 interactions and encounters between vectors and reservoirs depend on the faunal 

74 composition, which is directly related with the landscape structure [15].

75
76 The domestic and peri domestic cycle has been the focus of many reports [12, 16-17] 

77 and control programs [4, 18-20], probably because is the easiest one to intervene and 

78 involves humans directly. However, understanding the sylvatic cycle is crucial because 

79 it is the source of infected insects that ultimately invade the houses. Furthermore, 

80 control programs in Colombia that used pyrethroid insecticides, that succeeded in 

81 countries like Chile and Uruguay in eliminating insects from houses [21], have shown 

82 limited effectiveness in Colombia due to a strong re-infestation phenomenon that 

83 occurs weeks after the application of the insecticide [22]. In addition, vector prevention 

84 and control activities have not been very efficient in endemic areas due to the lack of 

85 knowledge about the biological characteristics of the vector populations present in 

86 each region, leading to uncertainty about the most appropriate control measures in 

87 each transmission scenario [23]. Thus, we investigate in more detail the sylvatic cycle 

88 dynamics for the Colombian endemic department of Casanare a territory of high 

89 interest involving both Chagas disease transmission cycles and high T. cruzi natural 

90 infection in R. prolixus [24-27].

91
92 In rural areas of Colombia, particularly in the Orinoco region where the Casanare 

93 department is located, R. prolixus is considered the main vector of T. cruzi 

94 transmission. Its main habitat are palm trees, particularly the species Attalea 

95 butyracea, in a landscape where houses are scarce and well spread. This palm tree 

96 species is widely distributed and establishes a large faunistic reserve, where 

97 mammalian reservoirs are typically found in the crowns [23]. In this natural habitat, 

98 where triatomines and mammals coexist and interact, the vectorial pathway of parasite 

99 transmission between them has been demonstrated by many studies [2]. Few authors 

100 had documented the existence of both oral and congenital pathways [28-29]. This 

101 raises the difficulty of knowing whether vector transmission is acting as a sole route, 

102 or if multiple transmission modes act simultaneously.

103
104 Regardless of the transmission route, the question of how severe is the infection in 

105 sylvatic reservoirs has appeared repeatedly and several studies have reported the 

106 proportion of different infected mammals. This is important because high levels of 

107 reservoirs infection suggest higher probabilities for human infection. For example, bats 

108 can play an important role in transmission scenarios, because their high mobility allows 

109 the parasite to migrate between the sylvatic and domestic habitat. Studies carried out 
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110 in Casanare in different bat species reported infection indexes of T. cruzi from 6.5% to 

111 51% [26, 30].  Moreover, Didelphis marsupialis has been considered one of the main 

112 reservoirs of the parasite and previous studies suggest infection rates ranging from 5 

113 to 90% [31-32]. More recent studies have reported 80% and 89% infected mammals 

114 in an area with similar ecological characteristics to the department of Casanare [33-

115 34. Finally, the results from our studies showed an infection rate of 21% in D. 

116 marsupialis. Hypothetically if vectorial transmission is acting alone, host reservoirs will 

117 become infected only if after a blood meal the insect defecates on the skin and then 

118 the parasites find their way into the bloodstream, and insects would become infected 

119 if they suck blood from an infected mammal. This poses the question of whether 

120 vectorial transmission is sufficient to sustain more than 21% of infected hosts in a 

121 population, as reported before. 

122
123 Several mathematical models of Chagas disease have been proposed in the last two 

124 decades to study its epidemiology and more recently its ecology. Among the first 

125 models we can find general analysis of vector and host dynamics [35], the 

126 incorporation of acute and chronic stages [36] or models accounting for congenital 

127 transmission [37], spatially explicit models [38], age-structure models [39], and 

128 stochastic models [40]. On the ecological side, more recent models have investigated 

129 the role of dogs [41] and synantropic animals in human infection [42], and the sylvatic 

130 cycle dynamics in different habitats varying in their host communities [43]. However, 

131 none of these models has evaluated if the assumed mechanisms of transmission could 

132 explain the sylvatic host infection that is observed in the wild.   

133
134 Here we investigate if vectorial transmission per se is capable to maintain the 

135 transmission observed in the data by using a mathematical modeling approach. By 

136 exploring the model, we will address if the well-known vectorial transmission is enough 

137 to support the high infection rates among sylvatic reservoirs and, if so, to propose 

138 entomological control strategies that would be adequate to reduce the risk of infection 

139 to humans.

140

141 Methods and Results

142 We formulate different epidemiological models to recreate the sylvatic transmission 

143 cycle and establish the interactions between vectors and reservoirs. In the model, we 

144 consider hosts ( ) and vectors ( ) to represent the population of D. marsupialis and 𝐻 𝑉

145 R. prolixus respectively, and the model was set to represent the dynamics in the region 
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146 of Casanare, Colombia composed by large palm plantations. The results are 

147 normalized per palm as a study unit. The total number of hosts, , is divided into 𝑁𝐻

148 susceptible ( ) and infected class ( ). Similarly, the total population of vectors , is 𝑆𝐻 𝐼𝐻 𝑁𝑉

149 divided into susceptible ( ) and infected ( ). Our first model depicted in figure 1A, the 𝑆𝑉 𝐼𝑉

150 vectors become infected at a rate ( ) that reflects the transmission of the parasite 𝛽𝐻𝑉

151 from an infected host to a susceptible vector due to biting. Then the host become 

152 infected at a rate ( )  that reflects the transmission of the parasite from an infected 𝛽𝑉𝐻, 0

153 vector to a susceptible host due to biting. Likewise, ( ) is the transmission rate by 𝛽𝑉𝐻, 1

154 ingestion (consumption or predation) of the infected vector by the reservoir. In this way 

155 , , and  consider triatomine – host contact rate by the probability of 𝛽𝐻𝑉 𝛽𝑉𝐻, 0 𝛽𝑉𝐻, 1

156 infection from the one to the other.  The second model, in figure 1B, considers the 

157 same routes of transmission as the previous model and includes a new rate reflecting 

158 the possibility of susceptible host acquiring the parasite from an infected host ( ).  𝛽𝐻𝐻

159

160

161

A B

162 Figure 1. A) Shows the Vector-host model. Vector-host model with transmission 

163 between hosts

164
165 The two models are summarized by the equations:

166

167
𝑑𝑆𝑉

𝑑𝑡  =  𝜇𝑉𝑁𝑉 ‒  𝛽𝐻𝑉𝐼𝐻𝑆𝑉 ‒  𝜇𝑉𝑆𝑉

168

169
𝑑𝐼𝑉

𝑑𝑡  =  𝛽𝐻𝑉𝐼𝐻𝑆𝑉 ‒  𝜇𝑉𝐼𝑉

170

171
𝑑𝑆𝐻

𝑑𝑡  =  𝜇𝐻𝑁𝐻 ‒  (𝛽𝑉𝐻, 0 +  𝛽𝑉𝐻, 1)𝐼𝑉𝑆𝐻 ‒  𝜇𝐻𝑆𝐻

172
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173
𝑑𝐼𝐻

𝑑𝑡  =  {(𝛽𝑉𝐻, 0 +  𝛽𝑉𝐻, 1)𝐼𝑉 +  𝛽𝐻𝐻𝐼𝐻}𝑆𝐻 ‒  𝜇𝐻𝐼𝐻 

174
175
176 Where the model with no transmission between hosts (Figure 1A) is obtained by 

177 making . Having no vital dynamics,  and  are 𝛽𝐻𝐻 = 0 𝑁𝑉 =  𝑆𝑉 +  𝐼𝑉 𝑁𝐻 =  𝑆𝐻 +  𝐼𝐻

178 constant, the equations collapse into:

179

180
𝑑𝐼𝑉

𝑑𝑡 =  𝛽𝐻𝑉𝐼𝐻(𝑁𝑉 ‒  𝐼𝑉) ‒  𝜇𝑉𝐼𝑉

181

182
𝑑𝐼𝐻

𝑑𝑡 =  {(𝛽𝑉𝐻,0 +  𝛽𝑉𝐻,1)𝐼𝑉 +  𝛽𝐻𝐻𝐼𝐻}(𝑁𝐻 ‒  𝐼𝐻) ‒  𝜇𝐻𝐼𝐻 

183
184 The Next Generation Matrix  for this model is:(𝐺)

185

186 𝐺 =  [ 0
𝑁𝑉𝛽𝐻𝑉

𝜇𝐻
𝑁𝐻(𝛽𝑉𝐻,0 +  𝛽𝑉𝐻,1)

𝜇𝑉

𝑁𝐻𝛽𝐻𝐻

𝜇𝐻
]

187
188
189 And the adjacency matrix  is then:(𝑆(𝐺))

190

191 𝑆(𝐺) =  [0 1
1 𝜖]

192
193 Where  or , depending whether there is transmission between hosts. The 𝜖 = 1 𝜖 = 0

194 spectral radius  of  is either 1 if , or  if . Now if  is the 𝜌 𝑆(𝐺) 𝜖 =  0 (1 +  5) 2 𝜖 = 1 𝜇(𝐺)

195 critical virulence [44] of our epidemiological system and  its basic reproductive 𝑅0

196 number:

197
198 𝜇(𝐺) ≤  𝑅0 ≤  𝜌 𝜇(𝐺)

199
200 Therefore, with no transmission between hosts

201
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202 𝑅0 =  𝜇(𝐺) =  
𝑁𝑉𝑁𝐻𝛽𝐻𝑉(𝛽𝑉𝐻,0 +  𝛽𝑉𝐻,1)

𝑁𝑉𝜇𝐻

203
204 And with it

205 𝜇(𝐺) ≤  𝑅0 ≤  
1 +  5

2  𝜇(𝐺) ≃ 1.618 𝜇(𝐺)

206 Where

207 𝜇(𝐺) = max { 𝑁𝑉𝑁𝐻𝛽𝐻𝑉(𝛽𝑉𝐻,0 +  𝛽𝑉𝐻,1)
𝜇𝑉𝜇𝐻

,  
𝑁𝐻𝛽𝐻𝐻

𝜇𝐻 }
208
209 In order to have an endemic equilibrium, where the parasite invaded the ecosystem, it 

210 is necessary to have . In the first model (Figure 1A), in this equilibrium, if it exists, 𝑅0 > 1

211 the number of infected hosts corresponds to:

212

213 𝐼 ∗
𝐻 =  

𝑁𝑉𝑁𝐻𝛽𝐻𝑉(𝛽𝑉𝐻,0 +  𝛽𝑉𝐻,1) ‒  𝜇𝑉𝜇𝐻

𝛽𝐻𝑉{𝑁𝑉(𝛽𝑉𝐻,0 +  𝛽𝑉𝐻,1) +  𝜇𝐻}
214

215 𝐼 ∗
𝐻 =  𝑁𝐻(1 ‒  

1

𝑅2
0
)( 𝑁𝑉(𝛽𝑉𝐻,0 +  𝛽𝑉𝐻,1)

𝑁𝑉(𝛽𝑉𝐻,0 +  𝛽𝑉𝐻,1) +  𝜇𝑉)
216

217 𝐼 ∗
𝐻 ≤  𝑁𝐻(1 ‒  

1

𝑅2
0
) 

218
219
220 In the second model (Figure 1B), we know that the parasite will not invade the 

221 ecosystem if

222

223 𝜇(𝐺) <  
2

1 +  5
=  

5 ‒ 1
2  ≃ 0.618

224
225  

226 For the numerical exploration of the model we used parameters from the literature. To 

227 determine their maximum values for transmission coefficients, which are the most 

228 uncertain parameters, we combined expert knowledge, field and lab measures from 

229 several sources (Table I). Death rate parameters were estimated based on the average 

230 of the life expectancy (1/life expectancy) from literature reports.  
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231
232 Finally, to relax the assumption of the transmission following the mass action law an 

233 alternate way to model the transmission would be incorporate saturation effects in the 

234 transmission. The most common way to include the effects of saturation in a biological 

235 model is to consider an analogous to the Michaelis-Menten equation in the definition 

236 of both transmission coefficients. Here, we redefined the transmission rates in our 

237 model to include saturation in the following manner:

238 𝛽𝐻𝑉 =  
𝑏𝐻𝑉𝑁𝐻

𝑎𝐻𝑉𝑁𝐻
 ;  𝛽𝑉𝐻 =  

𝑏𝑉𝐻𝑁𝑉

𝑎𝑉𝐻𝑁𝑉

239 where b is the maximum transmission coefficient and a reflects the number of hosts 

240 necessary to reach the saturation level (when , the transmission coefficient 𝑁𝐻 = 𝑎

241 takes the value of b/2). However, even if we consider a more realistic interaction 

242 between reservoirs and vectors the model could predicts reproductive numbers higher 

243 than 1 for some combinations of the transmission coefficients and does not explain the 

244 high levels of infection found in the field studies.

245
246 Table I. Parameters used in the mathematical model of the sylvatic cycle of Chagas 

247 disease. 

248
Terminology Definition Value References

𝑁𝑉 Total number of 

vectorsa

9.6/palm [26]

𝑁𝐻 Total number of 

hostsa

1.5/100ha [26]

*𝛽𝐻𝑉 Max transmission 

rate of vector by 

contact with infected 

hostb

1 [55]

*𝛽𝑉𝐻,0 Max transmission 

rate of host due to 

an infected vector 

(biting)ab

1 x 10-2 [45]
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*𝛽𝑉𝐻,1 Transmission rate of 

host due to an 

infected vector 

(oral)ab

1 x 10-1 [45]

*𝛽𝐻𝐻 Transmission rate of 

host by contact with 

infected hostb

1 x 10-1 [55]

𝜇𝑉 Death rate for 

vectorsa

1.7/year [46]

𝜇𝐻 Death rate for hosta 0.666/year [47,48,49]

249 * Transmission rates are reported to the nearest order of magnitude. 

250 a Parameter was calculated using literature reports.

251 b Parameter was calculated using expert knowledge.

252
253 A sensitivity analysis for global reproductive number R0 was performed using the Latin 

254 Hypercube method (LH) to estimate each parameter contribution. Negative Partial 

255 Rank Correlation Coefficients (PRCC) indicate a decrease in R0 and PRCC positive 

256 values indicate an increment in R0. Thus, increases in Nv, NH, βHV, βVH,0, and βVH,1 

257 produce a rise in R0 (Fig. 2). The positive effect (PRCC) of these parameters ranges 

258 between 0.61 and 0.65 for the model without oral transmission and when it is included, 

259 the contribution of vector-host transmission rates (βVH,0, βVH,1) is shared by both 

260 parameters (βVH,0 PRCC = -0.30 and βVH,1 PRCC = - 0.33). On the other hand, vector 

261 and host death rates have significant effect on lowering R0 (model without oral 

262 transmission μV, PRCC = -0.61 and μH PRCC = - 0.58, including oral transmission μV, 

263 PRCC = -0.61 and μH PRCC = - 0.58).
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264
265 Figure. 2. Latin Hypercube Sampling for the global reproductive number R0. PRCC: 

266 Partial Rank Correlation Coefficient. Black colored circles correspond to the model 

267 without oral transmission and gray to the model including oral transmission. For 

268 information about each parameter’s explanation see Table 1. Note that parameters 

269 related to host-vector (and vice versa) infection rates and populations (Nv, NH, βHV, 

270 βVH,0, and βVH,1) have a positive contribution to R0. On the contrary, vector and host 

271 death rates (μV and μH) have a negative effect in R0.

272
273 Plugging the parameter values into the maximum critical virulence equation  and 𝜇(𝐺)

274 considering the maximum probability value in each transmission rate we got that (𝛽) 𝜇

275  max is between 0.3584 and 0.0224. Since none of these values are greater than (𝐺)

276 0.618, an endemic infection with the parasite cannot occur, interestingly this indicates 

277 that another route of transmission, apart from the vector route, is needed to explain 

278 high percentages of host infection rates. Figure 3 show a numerical exploration of the 

279 model considering parameter ranges for  and , here is evident that for every 𝛽𝐻𝑉 𝛽𝑉𝐻,0

280 combination of parameters a model that just incorporates vectorial transmission is not 

281 capable to exhibit an R0 bigger than one.

282

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 29, 2019. ; https://doi.org/10.1101/860189doi: bioRxiv preprint 

https://doi.org/10.1101/860189
http://creativecommons.org/licenses/by/4.0/


12

283
284
285 Figure 3. R0 values depicted in z depending on  (here in x) and  (here in y) 𝛽𝐻𝑉 𝛽𝑉𝐻,0

286 we used for the analyses the palm as the study unit. In this case the max R0 is lower 

287 than 0.4.

288
289 In addition, Figure 4 shows values of R0 resulted from simulations of the model with a 

290 range of values of the oral transmission parameter  assuming that  and  𝛽𝑉𝐻,1 𝛽𝐻𝑉 𝛽𝑉𝐻,0

291 are at the maximum value found in figure 2, we found that  has to be 0.07 or bigger 𝛽𝑉𝐻,1

292 in order to reach and  above 1 (Figure 4). 𝑅0

293
294
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295
296 Figure 4. The x axis represents n values range and their corresponding Ro. We 𝛽𝑉𝐻,1 

297 assume maximum values for  (1) and  (0.01). In this case, must be larger 𝛽𝐻𝑉 𝛽𝑉𝐻,0 𝛽𝑉𝐻,1 

298 than 0.07, for Ro to have a value above 1.

299

300 Discussion

301 To the date, studies that investigate in detail the dynamics of the sylvatic cycle of T. 

302 cruzi transmission are still rare. Nonetheless, it has been shown for the endemic region 

303 of Casanare a stable sylvatic transmission, where R. prolixus individuals were captured 

304 in palm trees (A. butyracea) [25-27].  These studies have reported infections rates in 

305 mammals ranging from (21-89%) [26, 34, 50, 51]. This is remarkable fact, given that 

306 vectorial route has been considered inefficient since the parasite faces great 

307 challenges to infiltrate the host bloodstream via vectorial route [52] , thus this route its 

308 unable to explain the observed reservoir prevalence reported in the literature.

309  

310 T. cruzi vectorial transmission has been suggested to be among one the most 

311 inefficient ways for parasites to infect susceptible hosts, although the number of 

312 infected hosts it is high on the field fluctuating between 40 to 90% [31-33]. Our results 

313 from model simulations only considering vectorial transmission show that the basic 
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314 reproductive number  is always less than 1. This implies that an additional 𝑅0

315 transmission route is needed to guarantee an endemic state (R0>1). Although, there 

316 are no reports in the literature for natural occurring populations where the transmission 

317 of the parasite is not supported due to low transmission rates. Perhaps for other vector 

318 populations, like Triatoma dimidiata, this could be the case and it would be interesting 

319 to verify it in the field.

320
321 One of our main goals with this study was to establish if vectorial transmission per se 

322 was able to explain the high-reported levels of infected hosts. Our results demonstrate 

323 that even if we simulate the system at their maximal critical virulence  over the 𝜇(𝐺)

324 highest possible value combinations of transmission rates the system never reaches 

325 high number of infected hosts. The incorporation of a new route of transmission, such 

326 as the oral transmission, let the system reach the high proportion of infected hosts 

327 reported in field studies [47,52-54].  However, these high proportion of infected host 

328 could also be obtained with higher levels of transmission rates, in particular increasing 

329 the transmission rate from vectors to host , even though we believe that the high 𝛽𝑉𝐻

330 values needed are outside of the biological range we have no report to compare to and 

331 thus this is mainly speculative. 

332
333 Results from our sensitivity analysis suggest there is no single variable or parameter 

334 that by itself explains the dynamics in the systems. Instead, we were able to identify a 

335 subset of factors that together help to explain the temporal variation in the system. 

336 First, in the absence of oral transmission the dynamics is explained by the transmission 

337 rate and the population size and the incorporation of the oral transmission add a 

338 significant positive effect that help to reach a higher number of infected hosts. In 

339 addition, it is important to note that the direction of change in the fraction of infected 

340 hosts after a change in the parameter is given by the sign of its condition number: a 

341 same direction change (e.g. increase parameter-increase ) is a positive condition 𝑖𝐻

342 number, while an opposite direction change (e.g. increase parameter-decrease ) 𝑖𝐻

343 produces negative condition numbers. Using the parameter values in table 1, we found 

344 that for increasing growth rates increases the fraction of infected hosts. However, the 

345 effect of changing is an order of magnitude lower than changing  in the same 𝑁𝑉 𝑁𝐻

346 proportion (same relative change). For death rates, we have an opposite-direction 

347 effect as it was expected, meaning that if we have more vector or host, the contact 

348 between both would be lower accordingly to the mass action law, so the net flow of 

349 individuals from susceptible to infected populations would be lower. Again, we saw that 
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350 vectors have an effect almost an order of magnitude higher than the hosts. Thus, we 

351 could expect that these parameters become an interesting target for disease control 

352 initiatives.

353
354 Importantly, our model is implemented using the palm as spatial unit; the choice is 

355 based in its fundamental role in the ecology of both vector and host populations. A 

356 mathematical model with a different spatial resolution (i.e. a village) faces the 

357 challenge of vector and host mobility. In addition, a temporal model often assumes 

358 complete mixing in the spatial component and that is an important aspect to study any 

359 host – vector disease model. Here restricting the model to the palm for the analysis 

360 simplify and constrain the model results. Extrapolating our results to villages with 

361 multiple palms has to be done carefully because hosts often visit multiple palms and 

362 insects could move also between palms and houses. We believe that our results 

363 should apply to higher levels of aggregation such as villages with high and 

364 homogeneous palms density with easy access between palms to guaranteed 

365 population mixing. However, including the palm distribution in the model implies a 

366 different theoretical approach that although is an important hypothesis it is out of the 

367 scope of this paper.

368
369 From a biological perspective, the ability of the model to capture important disease 

370 dynamics is what makes it useful for testing potential control strategies and studying 

371 T. cruzi transmission in sylvatic host species different from D. marsupialis. For 

372 example, if we increase death rate of vectors and simultaneously decrease the 

373 transmission rates to a point where they cancel out is possible to eradicate the disease. 

374 This is an important result, because control strategies often target one parameter at a 

375 time (i.e. increase vector mortality - house spraying, decrease contact rates - improve 

376 house materials), but it seems more reasonable to intervene all of them at the same 

377 time taking care in shifting the disease balance from endemic to temporal. In fact, it 

378 has been proposed that using a particular control method does not exclude using 

379 another one [10]. One way to achieve this at the household level is to combine 

380 spraying, which increases insect mortality, with presence of non-reservoirs peri-

381 domestic species, such as chickens, providing another vector feeding. However, there 

382 is potential negative effect because the latter could increase vector carrying capacity. 

383 In addition to the previous analysis the model could be used to further refine the range 

384 of unknown parameters. For example, the transmission rates,  and , are difficult 𝛽𝐻𝑉 𝛽𝑉𝐻

385 to estimate, however if one has reports of the densities for host and vectors, proportion 

386 of infected host and vectors, and a good estimate of death rates, then it is easy to 
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387 calculate the transmission rates. This technique could be implemented combining 

388 fieldwork and the mathematical expressions to make the model adequate to a certain 

389 region, and thus a useful disease control tool. 

390

391 Conclusions

392 In Latin America, the transmission dynamics of Chagas disease vary significantly 

393 between regions and the Orinoco epidemiological scenario involves a unique mixture 

394 of factors that requires interdisciplinary approaches. Computational models, along with 

395 biological knowledge, are a great tool to test hypotheses and forecast epidemic events, 

396 becoming great allies in understanding transmission mechanisms and designing 

397 control strategies. 
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574 Figure legends

575 Figure 1. A) Shows the Vector-host model. Vector-host model with transmission 

576 between hosts

577
578 Figure. 2. Latin Hypercube Sampling for the global reproductive number R0. PRCC: 

579 Partial Rank Correlation Coefficient. Black colored circles correspond to the model 

580 without oral transmission and gray to the model including oral transmission. For 

581 information about each parameter’s explanation see Table 1. Note that parameters 

582 related to host-vector (and vice versa) infection rates and populations (Nv, NH, βHV, 

583 βVH,0, and βVH,1) have a positive contribution to R0. On the contrary, vector and host 

584 death rates (μV and μH) have a negative effect in R0.

585
586 Figure 3. R0 values depicted in z depending on  (here in x) and  (here in y) 𝛽𝐻𝑉 𝛽𝑉𝐻,0

587 we used for the analyses the palm as the study unit. In this case the max R0 is lower 

588 than 0.4.

589
590 Figure 4. The x axis represents n values range and their corresponding Ro. We 𝛽𝑉𝐻,1 

591 assume maximum values for  (1) and  (0.01). In this case, must be larger 𝛽𝐻𝑉 𝛽𝑉𝐻,0 𝛽𝑉𝐻,1 

592 than 0.07, for Ro to have a value above 1.

593
594

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 29, 2019. ; https://doi.org/10.1101/860189doi: bioRxiv preprint 

https://doi.org/10.1101/860189
http://creativecommons.org/licenses/by/4.0/


23

595 Tables

596 Table I. Parameters used in the mathematical model of the sylvatic cycle of Chagas 

597 disease. 

598
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