Original Manuscript
Title: Is vectorial transmission of Trypanosoma cruzi an efficient route to support high infection rates in sylvatic hosts?
Juan Manuel Cordovez ${ }^{1,4^{*}}$, Mauricio Santos-Vega ${ }^{1}$, Diana Erazo ${ }^{1}$, Camilo Sanabria ${ }^{2}$, Lina María Rendón ${ }^{3}$, Felipe Guhl ${ }^{3}$
${ }^{1}$ Departamento de Ingeniería Biomédica, Grupo de Investigación en Biología Matemática y Computacional BIOMAC, Universidad de los Andes, Bogotá Colombia.
${ }^{2}$ Departamento de Matemáticas, Grupo de Investigación en Biología Matemática y Computacional BIOMAC, Universidad de los Andes, Bogotá Colombia.
${ }^{3}$ Departamento de Ciencias Biológicas, Centro de Investigaciones en Microbiología y Parasitología Tropical CIMPAT, Universidad de los Andes, Bogotá Colombia.
${ }^{4}$ Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona
*Corresponding author: jucordov@uniandes.edu.co

Abstract

Chagas disease is caused by the parasite Trypanosoma cruzi and it is transmitted to humans by the triatomine bug Rhodnius prolixus. The main insect vector in the Andean countries presents sylvatic and domestic cycles involving humans, insects and reservoirs (e.g small mammals). It is commonly assumed that vectorial transmission is the main route for parasite spread between hosts. Recent studies have reported high percentages (21-80\%) of infected opossums (Didelphis marsupialis) in the sylvatic cycle, raising the question of whether such a high proportion of infected could be only maintained by vectorial transmission, a seemingly inefficient pathway. To address this question, we formulated a mathematical model that describes the sylvatic transmission dynamics considering vectors and hosts and parametrized with field data. Our results show that vectorial transmission it is not sufficient to explain such high percentages of infected host-mammals reported in the literature. Here we propose oral transmission as an alternate route of transmission that may increase the number of infected individuals found in field studies.

Introduction

The transmission of the parasite Trypanosoma cruzi, etiological agent of Chagas disease, involves several pathways and results in 6 million infected people in Latin America [1]. Human infections are caused by multiple routes, the main suggested mechanism is vectorial transmission that occurs when triatomine insects feed on host blood (Sylvatic mammals and humand after a short period, the vector defecates releasing large amounts of parasites in the skin close to the wound allowing the parasite to reach the bloodstream [2-4]. Vertical transmission occurs in humans from an infected mother to a child; however, the ability of the parasite to cross the placenta of sylvatic reservoirs has not been fully demonstrated yet. Oral transmission has been proved to cause more aggressive clinical symptoms in humans and to have a high mortality rate ($8-35 \%$ compared to $5-10 \%$ by vectorial transmission) only two weeks post infection [5]. In sylvatic mammals, oral transmission has been reported when mammals feed on Rhodnius prolixus infected with T. cruzi were ingested [6]. Recent studies in central Brazil have demonstrated that both vertical and oral transmission are not a rare event in this biological system. In fact, a recent study in the Pantanal Region of Brazil, have demonstrated that both the vertical an oral transmission are likely to occur, depending on the encounter possibilities of the mammals and vectors [7].

In sylvatic mammals, particularly of the family Didelphidae, it has also been suggested that spraying from anal glands could be playing an important role in the transmission of T. cruzi. Opossums, mainly of the species D. marsupialis, have been proposed not only as a reservoir but also as a T. cruzi vector, since the parasite can multiply extracellularly in the anal glands of the animal [8-9]. This variety of transmission mechanisms and their relative importance in human infection compared to reservoir infection, suggests that parasites have different transmission cycles in the environment, sylvatic or domestic, that can be connected or isolated depending on the feeding behaviour of insect vectors.

When insect vectors breed and feed inside the houses, a domestic cycle is occurring, involving human and domestic mammals as reservoirs [4,10]. On the other hand, the sylvatic cycle involves triatomine bugs living in the wild feeding on sylvatic mammals such as opossums and rodents that act as reservoirs. The connection between the two cycles occurs when insects migrate from the sylvatic to the domestic habitat attracted by light sources and domestic species presence combined with the increase in the number of domestic animals like dogs [11-14]. It must be considered that the ecological
interactions and encounters between vectors and reservoirs depend on the faunal composition, which is directly related with the landscape structure [15].

The domestic and peri domestic cycle has been the focus of many reports [12, 16-17] and control programs [4, 18-20], probably because is the easiest one to intervene and involves humans directly. However, understanding the sylvatic cycle is crucial because it is the source of infected insects that ultimately invade the houses. Furthermore, control programs in Colombia that used pyrethroid insecticides, that succeeded in countries like Chile and Uruguay in eliminating insects from houses [21], have shown limited effectiveness in Colombia due to a strong re-infestation phenomenon that occurs weeks after the application of the insecticide [22]. In addition, vector prevention and control activities have not been very efficient in endemic areas due to the lack of knowledge about the biological characteristics of the vector populations present in each region, leading to uncertainty about the most appropriate control measures in each transmission scenario [23]. Thus, we investigate in more detail the sylvatic cycle dynamics for the Colombian endemic department of Casanare a territory of high interest involving both Chagas disease transmission cycles and high T. cruzi natural infection in R. prolixus [24-27].

In rural areas of Colombia, particularly in the Orinoco region where the Casanare department is located, R. prolixus is considered the main vector of T. cruzi transmission. Its main habitat are palm trees, particularly the species Attalea butyracea, in a landscape where houses are scarce and well spread. This palm tree species is widely distributed and establishes a large faunistic reserve, where mammalian reservoirs are typically found in the crowns [23]. In this natural habitat, where triatomines and mammals coexist and interact, the vectorial pathway of parasite transmission between them has been demonstrated by many studies [2]. Few authors had documented the existence of both oral and congenital pathways [28-29]. This raises the difficulty of knowing whether vector transmission is acting as a sole route, or if multiple transmission modes act simultaneously.

Regardless of the transmission route, the question of how severe is the infection in sylvatic reservoirs has appeared repeatedly and several studies have reported the proportion of different infected mammals. This is important because high levels of reservoirs infection suggest higher probabilities for human infection. For example, bats can play an important role in transmission scenarios, because their high mobility allows the parasite to migrate between the sylvatic and domestic habitat. Studies carried out
in Casanare in different bat species reported infection indexes of T. cruzi from 6.5% to 51% [26, 30]. Moreover, Didelphis marsupialis has been considered one of the main reservoirs of the parasite and previous studies suggest infection rates ranging from 5 to 90% [31-32]. More recent studies have reported 80% and 89% infected mammals in an area with similar ecological characteristics to the department of Casanare [3334. Finally, the results from our studies showed an infection rate of 21% in D. marsupialis. Hypothetically if vectorial transmission is acting alone, host reservoirs will become infected only if after a blood meal the insect defecates on the skin and then the parasites find their way into the bloodstream, and insects would become infected if they suck blood from an infected mammal. This poses the question of whether vectorial transmission is sufficient to sustain more than 21% of infected hosts in a population, as reported before.

Several mathematical models of Chagas disease have been proposed in the last two decades to study its epidemiology and more recently its ecology. Among the first models we can find general analysis of vector and host dynamics [35], the incorporation of acute and chronic stages [36] or models accounting for congenital transmission [37], spatially explicit models [38], age-structure models [39], and stochastic models [40]. On the ecological side, more recent models have investigated the role of dogs [41] and synantropic animals in human infection [42], and the sylvatic cycle dynamics in different habitats varying in their host communities [43]. However, none of these models has evaluated if the assumed mechanisms of transmission could explain the sylvatic host infection that is observed in the wild.

Here we investigate if vectorial transmission per se is capable to maintain the transmission observed in the data by using a mathematical modeling approach. By exploring the model, we will address if the well-known vectorial transmission is enough to support the high infection rates among sylvatic reservoirs and, if so, to propose entomological control strategies that would be adequate to reduce the risk of infection to humans.

Methods and Results

We formulate different epidemiological models to recreate the sylvatic transmission cycle and establish the interactions between vectors and reservoirs. In the model, we consider hosts (H) and vectors (V) to represent the population of D. marsupialis and R. prolixus respectively, and the model was set to represent the dynamics in the region
$167 \frac{d S_{V}}{d t}=\mu_{V} N_{V}-\beta_{H V} I_{H} S_{V}-\mu_{V} S_{V}$

$$
\frac{d S_{H}}{d t}=\mu_{H} N_{H}-\left(\beta_{V H, 0}+\beta_{V H, 1}\right) I_{V} S_{H}-\mu_{H} S_{H}
$$

$173 \frac{d I_{H}}{d t}=\left\{\left(\beta_{V H, 0}+\beta_{V H, 1}\right) I_{V}+\beta_{H H} I_{H}\right\} S_{H}-\mu_{H} I_{H}$
$\frac{d I_{V}}{d t}=\beta_{H V} I_{H}\left(N_{V}-I_{V}\right)-\mu_{V} I_{V}$
$\frac{d I_{H}}{d t}=\left\{\left(\beta_{V H, 0}+\beta_{V H, 1}\right) I_{V}+\beta_{H H} I_{H}\right\}\left(N_{H}-I_{H}\right)-\mu_{H} I_{H}$

The Next Generation Matrix (G) for this model is:

$$
G=\left[\begin{array}{cc}
0 & \frac{N_{V} \beta_{H V}}{\mu_{H}} \\
\frac{N_{H}\left(\beta_{V H, 0}+\beta_{V H, 1}\right)}{\mu_{V}} & \frac{N_{H} \beta_{H H}}{\mu_{H}}
\end{array}\right]
$$

Where the model with no transmission between hosts (Figure 1A) is obtained by making $\beta_{H H}=0$. Having no vital dynamics, $N_{V}=S_{V}+I_{V}$ and $N_{H}=S_{H}+I_{H}$ are constant, the equations collapse into:
at

Therefore, with no transmission between hosts

$$
R_{0}=\mu(G)=\sqrt{\frac{N_{V} N_{H} \beta_{H V}\left(\beta_{V H, 0}+\beta_{V H, 1}\right)}{N_{V} \mu_{H}}}
$$

And with it

$$
\mu(G) \leq R_{0} \leq \frac{1+\sqrt{5}}{2} \mu(G) \simeq 1.618 \mu(G)
$$

Where

$$
\mu(G)=\max \left\{\sqrt{\frac{N_{V} N_{H} \beta_{H V}\left(\beta_{V H, 0}+\beta_{V H, 1}\right)}{\mu_{V} \mu_{H}}}, \frac{N_{H} \beta_{H H}}{\mu_{H}}\right\}
$$

In order to have an endemic equilibrium, where the parasite invaded the ecosystem, it is necessary to have $R_{0}>1$. In the first model (Figure 1A), in this equilibrium, if it exists, the number of infected hosts corresponds to:

$$
I_{H}^{*}=\frac{N_{V} N_{H} \beta_{H V}\left(\beta_{V H, 0}+\beta_{V H, 1}\right)-\mu_{V} \mu_{H}}{\beta_{H V}\left\{N_{V}\left(\beta_{V H, 0}+\beta_{V H, 1}\right)+\mu_{H}\right\}}
$$

$$
I_{H}^{*}=N_{H}\left(1-\frac{1}{R_{0}^{2}}\right)\left(\frac{N_{V}\left(\beta_{V H, 0}+\beta_{V H, 1}\right)}{N_{V}\left(\beta_{V H, 0}+\beta_{V H, 1}\right)+\mu_{V}}\right)
$$

$$
I_{H}^{*} \leq N_{H}\left(1-\frac{1}{R_{0}^{2}}\right)
$$

In the second model (Figure 1B), we know that the parasite will not invade the ecosystem if

$$
\mu(G)<\frac{2}{1+\sqrt{5}}=\frac{\sqrt{5-1}}{2} \simeq 0.618
$$

For the numerical exploration of the model we used parameters from the literature. To determine their maximum values for transmission coefficients, which are the most uncertain parameters, we combined expert knowledge, field and lab measures from several sources (Table I). Death rate parameters were estimated based on the average of the life expectancy (1/life expectancy) from literature reports.

Finally, to relax the assumption of the transmission following the mass action law an alternate way to model the transmission would be incorporate saturation effects in the transmission. The most common way to include the effects of saturation in a biological model is to consider an analogous to the Michaelis-Menten equation in the definition of both transmission coefficients. Here, we redefined the transmission rates in our model to include saturation in the following manner:

$$
\beta_{H V}=\frac{b_{H V} N_{H}}{a_{H V} N_{H}} ; \beta_{V H}=\frac{b_{V H} N_{V}}{a_{V H} N_{V}}
$$

where b is the maximum transmission coefficient and a reflects the number of hosts necessary to reach the saturation level (when $N_{H}=a$, the transmission coefficient takes the value of $b / 2$). However, even if we consider a more realistic interaction between reservoirs and vectors the model could predicts reproductive numbers higher than 1 for some combinations of the transmission coefficients and does not explain the high levels of infection found in the field studies.

Table I. Parameters used in the mathematical model of the sylvatic cycle of Chagas disease.

Terminology	Definition	Value	References
N_{V}	Total number of vectors $^{\mathrm{a}}$	$9.6 /$ palm	$[26]$
N_{H}	Total number of hosts $^{\mathrm{a}}$	$1.5 / 100 \mathrm{ha}$	$[26]$
$\beta_{H V^{*}}$	Max transmission rate of vector by contact with infected $^{\text {host }^{\mathrm{b}}}$	1	$[55]$
$\beta_{V H, 0^{*}}$	Max transmission rate of host due to an infected vector (biting $)^{\text {ab }}$	1×10^{-2}	$[45]$

$\beta_{V H, 1}{ }^{*}$	Transmission rate of host due to an infected vector (oral) ${ }^{\text {ab }}$	1×10^{-1}	[45]
$\beta_{H H}{ }^{*}$	Transmission rate of host by contact with infected host ${ }^{\text {b }}$	1×10^{-1}	[55]
μ_{V}	Death rate for vectors ${ }^{\text {a }}$	1.7/year	[46]
μ_{H}	Death rate for hosta	0.666/year	[47, 48, 49]

* Transmission rates are reported to the nearest order of magnitude.
${ }^{\text {a }}$ Parameter was calculated using literature reports.
${ }^{\text {b }}$ Parameter was calculated using expert knowledge.

A sensitivity analysis for global reproductive number R0 was performed using the Latin Hypercube method (LH) to estimate each parameter contribution. Negative Partial Rank Correlation Coefficients (PRCC) indicate a decrease in R0 and PRCC positive values indicate an increment in R0. Thus, increases in $N_{v}, N_{H}, \beta_{\mathrm{HV}}, \beta_{\mathrm{VH}, 0}$, and $\beta_{\mathrm{VH}, 1}$ produce a rise in R0 (Fig. 2). The positive effect (PRCC) of these parameters ranges between 0.61 and 0.65 for the model without oral transmission and when it is included, the contribution of vector-host transmission rates $\left(\beta_{\mathrm{VH}, 0}, \beta_{\mathrm{VH}, 1}\right)$ is shared by both parameters $\left(\beta_{\mathrm{VH}, 0} \mathrm{PRCC}=-0.30\right.$ and $\left.\beta_{\mathrm{VH}, 1} \mathrm{PRCC}=-0.33\right)$. On the other hand, vector and host death rates have significant effect on lowering RO (model without oral transmission $\mu_{\mathrm{V}}, \mathrm{PRCC}=-0.61$ and μ_{H} PRCC $=-0.58$, including oral transmission μ_{V}, $\operatorname{PRCC}=-0.61$ and μ_{H} PRCC $=-0.58$).

Figure. 2. Latin Hypercube Sampling for the global reproductive number R0. PRCC: Partial Rank Correlation Coefficient. Black colored circles correspond to the model without oral transmission and gray to the model including oral transmission. For information about each parameter's explanation see Table 1. Note that parameters related to host-vector (and vice versa) infection rates and populations ($\mathrm{N}_{\mathrm{v}}, \mathrm{N}_{\mathrm{H}}, \beta_{\mathrm{HV}}$, $\beta_{\mathrm{VH}, 0,}$, and $\beta_{\mathrm{VH}, 1}$) have a positive contribution to R0. On the contrary, vector and host death rates (μ_{V} and μ_{H}) have a negative effect in RO.

Plugging the parameter values into the maximum critical virulence equation $\mu(G)$ and considering the maximum probability value in each transmission rate (β) we got that μ (G) max is between 0.3584 and 0.0224 . Since none of these values are greater than 0.618 , an endemic infection with the parasite cannot occur, interestingly this indicates that another route of transmission, apart from the vector route, is needed to explain high percentages of host infection rates. Figure 3 show a numerical exploration of the model considering parameter ranges for $\beta_{H V}$ and $\beta_{V H, 0}$, here is evident that for every combination of parameters a model that just incorporates vectorial transmission is not capable to exhibit an R0 bigger than one.

Figure 3. RO values depicted in z depending on $\beta_{H V}$ (here in x) and $\beta_{V H, 0}$ (here in y) we used for the analyses the palm as the study unit. In this case the max R0 is lower than 0.4.

In addition, Figure 4 shows values of R0 resulted from simulations of the model with a range of values of the oral transmission parameter $\beta_{V H, 1}$ assuming that $\beta_{H V}$ and $\beta_{V H, 0}$ are at the maximum value found in figure 2 , we found that $\beta_{V H, 1}$ has to be 0.07 or bigger in order to reach and R_{0} above 1 (Figure 4).

Figure 4. The x axis represents $\mathrm{n} \beta_{V H, 1}$ values range and their corresponding Ro. We assume maximum values for $\beta_{H V}(1)$ and $\beta_{V H, 0}(0.01)$. In this case, $\beta_{V H, 1}$ must be larger than 0.07 , for Ro to have a value above 1.

Discussion

To the date, studies that investigate in detail the dynamics of the sylvatic cycle of T. cruzi transmission are still rare. Nonetheless, it has been shown for the endemic region of Casanare a stable sylvatic transmission, where R. prolixus individuals were captured in palm trees (A. butyracea) [25-27]. These studies have reported infections rates in mammals ranging from (21-89\%) [26, 34, 50, 51]. This is remarkable fact, given that vectorial route has been considered inefficient since the parasite faces great challenges to infiltrate the host bloodstream via vectorial route [52], thus this route its unable to explain the observed reservoir prevalence reported in the literature.
T. cruzi vectorial transmission has been suggested to be among one the most inefficient ways for parasites to infect susceptible hosts, although the number of infected hosts it is high on the field fluctuating between 40 to 90% [31-33]. Our results from model simulations only considering vectorial transmission show that the basic
reproductive number R_{0} is always less than 1 . This implies that an additional transmission route is needed to guarantee an endemic state ($\mathrm{R} 0>1$). Although, there are no reports in the literature for natural occurring populations where the transmission of the parasite is not supported due to low transmission rates. Perhaps for other vector populations, like Triatoma dimidiata, this could be the case and it would be interesting to verify it in the field.

One of our main goals with this study was to establish if vectorial transmission per se was able to explain the high-reported levels of infected hosts. Our results demonstrate that even if we simulate the system at their maximal critical virulence $\mu(G)$ over the highest possible value combinations of transmission rates the system never reaches high number of infected hosts. The incorporation of a new route of transmission, such as the oral transmission, let the system reach the high proportion of infected hosts reported in field studies [47,52-54]. However, these high proportion of infected host could also be obtained with higher levels of transmission rates, in particular increasing the transmission rate from vectors to host $\beta_{V H}$, even though we believe that the high values needed are outside of the biological range we have no report to compare to and thus this is mainly speculative.

Results from our sensitivity analysis suggest there is no single variable or parameter that by itself explains the dynamics in the systems. Instead, we were able to identify a subset of factors that together help to explain the temporal variation in the system. First, in the absence of oral transmission the dynamics is explained by the transmission rate and the population size and the incorporation of the oral transmission add a significant positive effect that help to reach a higher number of infected hosts. In addition, it is important to note that the direction of change in the fraction of infected hosts after a change in the parameter is given by the sign of its condition number: a same direction change (e.g. increase parameter-increase i_{H}) is a positive condition number, while an opposite direction change (e.g. increase parameter-decrease i_{H}) produces negative condition numbers. Using the parameter values in table 1, we found that for increasing growth rates increases the fraction of infected hosts. However, the effect of changing N_{V} is an order of magnitude lower than changing N_{H} in the same proportion (same relative change). For death rates, we have an opposite-direction effect as it was expected, meaning that if we have more vector or host, the contact between both would be lower accordingly to the mass action law, so the net flow of individuals from susceptible to infected populations would be lower. Again, we saw that
vectors have an effect almost an order of magnitude higher than the hosts. Thus, we could expect that these parameters become an interesting target for disease control initiatives.

Importantly, our model is implemented using the palm as spatial unit; the choice is based in its fundamental role in the ecology of both vector and host populations. A mathematical model with a different spatial resolution (i.e. a village) faces the challenge of vector and host mobility. In addition, a temporal model often assumes complete mixing in the spatial component and that is an important aspect to study any host - vector disease model. Here restricting the model to the palm for the analysis simplify and constrain the model results. Extrapolating our results to villages with multiple palms has to be done carefully because hosts often visit multiple palms and insects could move also between palms and houses. We believe that our results should apply to higher levels of aggregation such as villages with high and homogeneous palms density with easy access between palms to guaranteed population mixing. However, including the palm distribution in the model implies a different theoretical approach that although is an important hypothesis it is out of the scope of this paper.

From a biological perspective, the ability of the model to capture important disease dynamics is what makes it useful for testing potential control strategies and studying T. cruzi transmission in sylvatic host species different from D. marsupialis. For example, if we increase death rate of vectors and simultaneously decrease the transmission rates to a point where they cancel out is possible to eradicate the disease. This is an important result, because control strategies often target one parameter at a time (i.e. increase vector mortality - house spraying, decrease contact rates - improve house materials), but it seems more reasonable to intervene all of them at the same time taking care in shifting the disease balance from endemic to temporal. In fact, it has been proposed that using a particular control method does not exclude using another one [10]. One way to achieve this at the household level is to combine spraying, which increases insect mortality, with presence of non-reservoirs peridomestic species, such as chickens, providing another vector feeding. However, there is potential negative effect because the latter could increase vector carrying capacity. In addition to the previous analysis the model could be used to further refine the range of unknown parameters. For example, the transmission rates, $\beta_{H V}$ and $\beta_{V H}$, are difficult to estimate, however if one has reports of the densities for host and vectors, proportion of infected host and vectors, and a good estimate of death rates, then it is easy to
calculate the transmission rates. This technique could be implemented combining fieldwork and the mathematical expressions to make the model adequate to a certain region, and thus a useful disease control tool.

Conclusions

In Latin America, the transmission dynamics of Chagas disease vary significantly between regions and the Orinoco epidemiological scenario involves a unique mixture of factors that requires interdisciplinary approaches. Computational models, along with biological knowledge, are a great tool to test hypotheses and forecast epidemic events, becoming great allies in understanding transmission mechanisms and designing control strategies.

Acknowledgements

[funding sources should not be included here or in the manuscript file, only during manuscript submission]

References

1. World Health Organization 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Weekly epidemiological record Relevé épidémiologique hebdomadaire No. 6, 90: 33-40.
2. Catala S, Crocco LB, Morales GF 1997. Trypanosoma cruzi transmission risk index (TcTRI): an entomological indicator of Chagas disease vectorial transmission to humans. Acta Trop 68: 285-295.
3. Rassi AJ RA, Marin-Neto JÁ 2010. Chagas disease. Seminar. Lancet 375: 1338-1402.
4. Coura JR, Junqueira AC, Fernandes O, Valente SA, Miles MA 2002. Emerging Chagas disease in Amazonian Brazil. Trends Parasitol 18: 171176.
5. Sanchez LV, Ramírez JD 2012. Congenital and oral transmission of American trypanosomiasis: an overview of physiopathogenic aspects. Parasitology 139: 1-13.
6. Thomas ME, Rasweiler IV JJ, D'Alessandro A 2007. Experimental transmission of the parasitic flagellates Trypanosoma cruzi and Trypanosoma
rangeli between triatomine bugs or mice and captive neotropical bats. Mem Inst Oswaldo Cruz 102: 559-565.
7. Herrera HM, Rocha FL, Lisboa CV, Rademaker V, Mourao GM, Jansen AM 2011. Food web connections and the transmission cycles of Trypanosoma cruzi and Trypanosoma evansi (Kinetoplastida, Trypanosomatidae) in the Pantanal Region, Brazil. : 380-387.
8. Jansen A, Santos de Pinho A, Varella LC, Cupolillo E, Mangia RH, Fernandes O 1999. The Sylvatic Cycle of Trypanosoma cruzi: a Still Unsolved Puzzle. Mem Inst Oswaldo Cruz 94: 203-204.
9. Jansen A, Carreira J, Deane M 1988. Infection of a mammal by monogenetic insect Trypanosomatids (Kinetoplastida, Trypanosomatidae). Mem Inst Oswaldo Cruz 81: 271-272.
10. Guhl F 2009. Enfermedad de Chagas: Realidad y perspectivas. Biomedica 20: 228-234.
11. Cohen JE, Gurtler RE 2001. Modeling household transmission of American trypanosomiasis. Science 293: 694-698.
12. Fitzpatrick S, Feliciangeli MD, Sanchez-Martin MJ, Monteiro FA, Miles MA 2008. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl Trop Dis 2: e210.
13. Sanchez-Martin MJ, Feliciangeli MD, Campbell-Lendrum D, Davies CR 2006. Could the Chagas disease elimination programme in Venezuela be compromised by reinvasion of houses by sylvatic Rhodnius prolixus bug populations? Trop Med Int Health 11: 1585-1593.
14. Minoli SA, Lazzari CR 2006. Take-off activity and orientation of triatomines (Heteroptera: Reduviidae) in relation to the presence of artificial lights. Acta Trop 97: 324-330.
15. Jansen AM, Xavier SCC, Roque ALR 2015. The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. Acta Trop 151: 1-15.
16. Miles MA, Feliciangeli MD, de Arias AR 2003. Science, medicine, and the future - American trypanosomiasis (Chagas' disease) and the role of molecular epidemiology in guiding control strategies. Brit Med J 326: 14441448.
17. Feliciangeli MD, Dujardin JP, Bastrenta B, Mazzarri M, Villegas J, Flores M, Muñoz M 2002. Is Rhodnius robustus (Hemiptera: Reduviidae) responsible for Chagas disease transmission in Western Cenezuela? Trop Med Int Health 7: 280-287.
18. Dias JCP 2007. Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusional Chagas disease. Historical aspects, present situation, and perspectives. Mem Inst Oswaldo Cruz 102: 11-18.
19. Dias JCP, Silveira AC, Schofield CJ 2002. The impact of Chagas disease control in Latin America - A review. Mem Inst Oswaldo Cruz 97: 603-612.
20. Campbell-Lendrum DH, Angulo VM, Esteban L, Tarazona Z, Parra GJ Restrepo M, Restrepo BN, Guhl F, Pinto N, Aguilera G, Wilkinson P, Davies CR 2007. House-level risk factors for triatomine infestation in Colombia. Int J Epidemiol 36: 866-872.
21. WHO/TDR UW 1999. Chile and Brazil to be certified free of transmission of Chagas disease. TDR News.
22. Guhl F 1998. Estado actual del control de la enfermedad de Chagas en Colombia. In: Guhl F JCE, editor. Curso-taller control de tripanosomiasis americana y leishmaniasis: aspectos biológicos, genéticos y moleculares. Bogotá: Corcas Editores. pp. 47-81.
23. Guhl F, Pinto N, Aguilera G 2009. Sylvatic triatominae: a new challenge in vector control transmission. Mem Inst Oswaldo Cruz 104: 71-75.
24. Guhl F, Aguilera G, Pinto N, Vergara D 2007. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomédica 27(Supl. 1): 143-62.
25. Angulo V, Esteban L, Luna KP 2012. Attalea butyracea próximas a las viviendas como posible fuente de infestación domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomédica 32(2).
26. Rendón LM, Guhl F, Cordovez JM, Erazo D 2015. New scenarios of Trypanosoma cruzi transmission in the Orinoco region of Colombia. Mem Inst Oswaldo Cruz 110(3): 283-288.
27. Urbano P, Poveda C, Molina J 2015. Effect of the physiognomy of Attalea butyracea (Arecoideae) on population density and age distribution of Rhodnius prolixus (Triatominae). Parasit Vectors 8: 199.
28. Benchimol Barbosa PR 2006. The oral transmission of Chagas' disease: an acute form of infection responsible for regional outbreaks. Int J Cardiol 112: 132-133.
29. Brutus L, Schneider D, Postigo J, Romero M, Santalla J, Chippaux JP 2008. Congenital Chagas disease: diagnostic and clinical aspects in an area without vectorial transmission, Bermejo, Bolivia. Acta Trop 106: 195-199.
30. Ramirez et al. 2014
31. Fernandes O, Mangia RH, Lisboa CV, Pinho AP, Morel CM, Zingales B, Campbell DA, Jansen AM 1999. The complexity of the sylvatic cycle of Trypanosoma cruzi in Rio de Janeiro state (Brazil) revealed by the nontranscribed spacer of the mini-exon gene. Parasitology 118 (Pt 2): 161-166.
32. Grisard EC, Carvalho-Pinto CJ, Scholz AF, Toma HK, Schlemper BR Jr, Steindel M 2000. Trypanosoma cruzi infection in Didelphis marsupialis in Santa Catarina and Arvoredo Islands, southern Brazil. Mem Inst Oswaldo Cruz 95: 795-800.
33. Sanchez JL CJ, Vallejo GA, Lozano LE, Jaramillo JC, Guhl F 2000. Diagnóstico molecular de Trypanosoma cruzi en reservorios y humanos en un área endémica del departamento del Tolima. Curso-Taller Internacional: "Biología, Epidemiología y Control de la Tripanosomiansis Americana y Leshmaniasis": Mayo 29 Junio 23, pp. 63-68.
34. Pinto N MD, Herrera C, Vallejo G, Naranjo JM, Guhl F 2005. Comprobación del ciclo selvatico de Rhodnius prolixus en reductos de Attalea Butyracea en el departamento de Casanare. Biomédica 25: 159.
35. Velasco-Hernandez JX 1991. An epidemiological model for the dynamics of Chagas' disease. Biosystems 26: 127-134.
36. Das P, Mukherjee D 2006. Qualitative study of a model of Chagas' disease. Math Comput Model 43: 413-422.
37. Raimundo SM, Massad E, Yang HM 2010. Modelling congenital transmission of Chagas' disease. Biosystems 99: 215-222.
38. Slimi R, El Yacoubi S, Dumonteil E, Gourbiere S 2009. A cellular automata model for Chagas disease. Appl Math Model 33: 1072-1085.
39. Inaba H, Sekine H 2004. A mathematical model for Chagas disease with infection-age-dependent infectivity. Math Biosci 190: 39-69.
40. Castañera MB, Aparicio JP, Gurtler RE 2003. A stage-structured stochastic model of the population dynamics of Triatoma infestans, the main vector of Chagas disease. Ecol Model 162: 33-53.
41. Fabrizio et al. 2016
42. Petersen et al. 2015
43. Erazo, D., \& Cordovez, J. (2016). Modeling the effects of palm-house proximity on the theoretical risk of Chagas disease transmission in a rural locality of the Orinoco basin, Colombia. Parasites \& Vectors, 9(1), 592. https://doi.org/10.1186/s13071-016-1884-8
44. Cordovez JM and Sanabria C 2014. Environmental Changes Can Produce Shifts in Chagas Disease Infection Risk. Environmental Health Insights 8(S2): 43-48 doi: 10.4137/EHI.S16002.
45. Rabinovich J, Solarz ND, Gürtler R, Wisnivesky-Colli C 1990. Probability of transmission of Chagas disease by Triatoma infestans (Hemiptera: Reduviidae) in an endemic area of Santiago del Estero, Argentina. Bull World Heal Organ 68: 737-746.
46. Chaves LF, Hernandez MJ, Revilla TA, Rodriguez DJ, Rabinovich JE 2004. Mortality profiles of Rhodnius prolixus (Heteroptera: reduviidae), vector of Chagas disease. Acta Trop 92(2): 119-125.
47. Schweigmann NJ, Pietrokovsky S, Bottazzi V, Conti O, Bujas MA, Wisnivesky-Colli C 1999. Prevalence of Trypanosoma cruzi infection in opossum (Didelphis albiventris) in Santiago del Estero, Argentina. Rev Panam Salud Publica 6: 371-377.
48. Reyes AA 2009. Fauna mammalia asociada a los focos de leishmaniasis neotropical. Situación en Venezuela. Boletín de Malariología y Salud Ambiental 1: 35-52.
49. Telford S, Tonn R 1982. Dinámica de Trypanosoma cruzi en poblacionesde un reservorio primario, Didelphis marsupialis en los llanos altos de Venezuela. Bol Oficina Sanit Panam 93: 341-364.
50. Freire-de-Lima L, da Fonseca LM, da Silva VA, da Costa KM, Morrot A, Freire-de-Lima CG, Previato JO, Mendonça-Previato L. Modulation of Cell Sialoglycophenotype: A Stylish Mechanism Adopted by Trypanosoma cruzi to Ensure Its Persistence in the Infected Host. Front Microbiol. 2016 May 11;7:698. doi: 10.3389/fmicb.2016.00698. PMID: 27242722; PMCID: PMC4862976.
51. Pinho A., Cupolillo E., Mangia R., Fernandes O. \& Jansen A. M. (2000). Trypanosoma cruzi in the sylvatic environment: distinct transmission cycles involving two sympatric marsupials. Trans. R. Soc. Trop. Med. Hyg. 94: 509-514.
52. Deane M., Lenzi H. \& Jansen A. (1986). Double development cycle of Trypanosoma cruzi in the opossum. Parasitol. Today. 2: 146-147.
53. Conti O, Schweigmann NJ, Pietrokovsky S, Bottazzi V, Wisnivesky-Colli C. Search for Trypanosoma cruzi in the anal glands of wild Didelphis albiventris from Santiago del Estero, Argentina. Mem Inst Oswaldo Cruz 1995; 90(6):687
bioRxiv preprint doi: https://doi.org/10.1101/860189; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
54. Jansen AM, Madeira FB, Deane MP. Trypanosoma cruzi infection in the opossum Dide/phis marsupialis: absence of neonatal transmission and protection by maternal antibodies in experimental infections. Mem Inst Oswaldo Cruz 1994;89:4145.

Figure legends

Figure 1. A) Shows the Vector-host model. Vector-host model with transmission between hosts

Figure. 2. Latin Hypercube Sampling for the global reproductive number R0. PRCC: Partial Rank Correlation Coefficient. Black colored circles correspond to the model without oral transmission and gray to the model including oral transmission. For information about each parameter's explanation see Table 1. Note that parameters related to host-vector (and vice versa) infection rates and populations ($\mathrm{N}_{\mathrm{v}}, \mathrm{N}_{\mathrm{H}}, \beta_{\mathrm{HV}}$, $\beta_{\mathrm{VH}, 0}$, and $\beta_{\mathrm{VH}, 1}$) have a positive contribution to RO. On the contrary, vector and host death rates $\left(\mu_{\mathrm{V}}\right.$ and $\left.\mu_{\mathrm{H}}\right)$ have a negative effect in R 0 .

Figure 3. R 0 values depicted in z depending on $\beta_{H V}$ (here in x) and $\beta_{V H, 0}$ (here in y) we used for the analyses the palm as the study unit. In this case the max R0 is lower than 0.4.

Figure 4. The x axis represents $\mathrm{n} \beta_{V H, 1}$ values range and their corresponding Ro. We assume maximum values for $\beta_{H V}(1)$ and $\beta_{V H, 0}(0.01)$. In this case, $\beta_{V H, 1}$ must be larger than 0.07, for Ro to have a value above 1 .
bioRxiv preprint doi: https://doi.org/10.1101/860189; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Tables

596 Table I. Parameters used in the mathematical model of the sylvatic cycle of Chagas 597 disease.

