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Abstract

Background. Human genomes are diploid, which means they have two homologous copies

of each chromosome and the assignment of heterozygous variants to each chromosome

copy, the haplotype assembly problem, is of fundamental importance for medical and

population genetics.

While short reads from second generation sequencing platforms drastically limit haplotype

reconstruction as the great majority of reads do not allow to link many variants together,

novel long reads from third generation sequencing can span several variants along the

genome allowing to infer much longer haplotype blocks.

However, the great majority of haplotype assembly algorithms, originally devised for short

sequences, fail when they are applied to noisy long reads data, and although novel algo-

rithm have been properly developed to deal with the properties of this new generation of

sequences, these methods are capable to manage only datasets with limited coverages.

Results. To overcome the limits of currently available algorithms, I propose a novel for-

mulation of the single individual haplotype assembly problem, based on maximum allele

co-occurrence (MAC) and I develop an ultra-fast algorithm that is capable to recon-
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struct the haplotype structure of a diploid genome from low- and high-coverage long read

datasets with high accuracy. I test my algorithm (MAtCHap) on synthetic and real PacBio

and Nanopore human dataset and I compare its result with other eight state-of-the-art

algorithms. All the results obtained by these analyses show that MAtCHap outperforms

other methods in terms of accuracy, contiguity, completeness and computational speed.

Availability: MAtCHap is publicly available at https://sourceforge.net/projects/

matchap/.

Introduction

Most mammals, such as humans, are diploid organisms, which means they have two ho-

mologous copies of each chromosome, one from each parent. The two parental copies

contain variants that can be homozygous (in both chromosomes) or heterozygous (in only

one chromosome). While homozygous variants belong to both chromosomal copies, het-

erozygous alleles belong to only one of the copies and need to be partitioned into two

groups.

The assignment of heterozygous variants to each chromosome copy is called phasing (or

haplotype reconstruction) while the resulting sequence of variants is called haplotype and

is of fundamental importance in several contexts, that include medical genetics, popula-

tion genetics and association studies (Tewhey et al., 2011).

At present, there are two main experimental/computational approaches for phasing ge-

nomic variants: haplotype inference and haplotype assembly.

The first class of approaches comprise statistical methods (based on expectation maxi-

mization or Markov chain Monte Carlo techniques) that use genotype data collected at

a set of polymorphic loci (usually SNPs) from a group of individuals and give as output

the frequency of the most likely haplotype (combination of SNPs) in the population.

The second class of phasing methods, haplotype assembly, aim to reconstruct the two
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haplotypes of a single individual by directly using sequence reads and cluster them in two

groups that represent the two chromosomal copies by which they have been generated.

Since 2005, the advent of second generation sequencing (SGS) has revolutionized human

genomics, drastically reducing the cost of DNA sequencing and allowing the identification

of single nucleotide variants, small insertions and deletions (InDels) and structural vari-

ants. However, the short length of the reads generated by SGS (up to 250 bp in paired-end

sequencing) drastically limits the use these data for haplotype reconstruction, as the great

majority of reads do not allow to link many (if any) variants together. As a consequence,

assembled haplotypes are fragmented into short blocks that remain unphased, relative to

each other.

The last few years have seen the emergence of a third generation of sequencing (TGS)

technologies based on single-molecule real-time (SMRT) and nanopore sequencing, that

interrogate single molecule of DNA and are capable to produce sequences in the order of

tens of kb (up to hundreds of kb for nanopore) (Magi et al., 2016, 2017). Thanks to these

new sequencing platforms, each read can span several variants along the genome allowing

to infer much longer haplotype blocks.

Unfortunately, traditional haplotype assembly methods, originally devised for short se-

quences, fail when they are applied to TGS data, owing to the high error rate of these

reads and to the fact that existing algorithmic solutions take time exponential in the

number of variants per read. Although novel computational approaches, such as What-

sHap (Patterson et al., 2015) and HapCol (Pirola et al., 2016) have been developed to

deal with long reads characteristics, they allow to manage only datasets with limited

coverages (20x) and since the most reliable way to mitigate the high error rate of TGS

reads is increasing the sequencing coverage (to 30x-50x), these novel algorithms limit the

capability to reconstruct haplotypes of higher quality.

To overcome the limits of currently available approaches, I introduce a novel formulation

of the objective function for solving the single individual haplotype assembly problem,

based on maximum allele co-occurrence (MAC) and I propose a very fast algorithm that
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allows to analyze high coverage TGS datasets with times comparable to low coverage

ones. I test my algorithm on simulated and real sequencing data and I show that it out-

performs other state of the art methods in terms of accuracy, contiguity, completeness

and computational speed.

Materials and Methods

Maximum allele co-occurrence (MAC) function

In the last decade several computational strategies have been developed to reconstruct the

two haplotypes of a single individual by directly using sequence reads (single individual

haplotype assembly problem) and are all based on the fragment matrix that is defined

as an n × m matrix where n in the number of heterozygous variants and and m is the

number of reads (fragments).

Three main strategies have been used to solve the single individual haplotype assembly

problem: removal of fragment matrix rows (Minimum Fragment Removal, MFR), removal

of fragment matrix columns (Minimum SNP Removal, MSR) and flipping of fragment

matrix elements (Minimum Error Correction, MEC). All these problems are NP-hard

(Cilibrasi et al., 2007) and the approach that has received most attention in literature is

the MEC problem that aims to find the minimum number of error corrections in order to

partition the reads in two haplotypes.

Many algorithms have been proposed to solve the MEC problem and these include exact

methods based on Integer Linear Programming and Dynamic Programming (Chen et al.,

2013; He et al., 2010) and heuristic approaches (Panconesi et al., 2004; Duitama et al.,

2012; Edge et al., 2017; Bansal et al., 2008). These methods obtain good results with short

read data, but fail when applied to TGS data since they scale poorly with increasing read

length.

On the other hand, recently developed algorithms, such as WhatsHap (Patterson et al.,

2015) and HapCol (Pirola et al., 2016), properly devised for long TGS reads, can deal
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only with datasets of limited coverages (20x).

In order to overcome the limits of currently available algorithms, I propose a novel for-

mulation of the haplotype assembly problem that aims to infer the two haplotypes that

maximize the number of allele co-occurrence in the input fragments.

In a sequencing experiment, each read represents a fragment of a chromosome and when

it spans more than a heterozygous variant it represents a segment of one of the two hap-

lotypes. In this situation, the co-occurence of two alleles in the same read supports the

fact that one haplotype contains the two alleles, while the other haplotype contains the

two other alleles. As a consequence, one can argue that the higher the number of reads

containing two alleles and the higher the probability the two alleles belong to the same

haplotype.

From this considerations, one can infer the two haplotypes of a diploid genome by maxi-

mizing the allele co-occurrence objective function (MAC) that represent the total number

of allele co-occurence in the fragment matrix:

MAC(M,H) =
∑n

i=1

∑
j∈{M [i,j] 6=−}

∑
k∈{M [i,k] 6=−} δ((M [i, j],M [i, k]), (h1[j], h1[k])) +

δ((M [i, j],M [i, k]), (h2[j], h2[k]))

where δ((a, b), (c, d)) is a function equal to 1 if a = c and b = d, equal to 0 elsewhere,

while M, the fragment matrix, represent the input to MAC function that consists of n

rows (reads) and m columns (heterozygous variants).

Each row of M represents the information of a read and each column the information of

a heterozygous variant. The information is encoded as a string that takes values on the

alphabet 0, 1,−. M [i, j] = − means that fragment i does not cover variant j, M [i, j] = 0

(M [i, j] = 0) means that fragment i has reference (alternative) allele at locus j. h1 and

h2 are the two solution haplotypes (vectors of length N where N is the number of het-

erozygous variants), with h ∈ {0, 1} and since each variant is heterozygous, h1[j] 6= h2[j]

for each j.
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In order to maximize the MAC objective function I developed an algorithmic recipe that

recursively infer the values of h[j] = {h1[j], h2[j]} by maximizing the variant specific MAC

function:

MAC(M,h[j]) =
∑

i∈{M [i,j] 6=−}
∑

k∈{M [i,k] 6=−} δ((M [i, j],M [i, k]), (h1[j], h1[k])) +

δ((M [i, j],M [i, k]), (h2[j], h2[k]))

that represent the total number of allele co-occurence for variant j.

The pseudo code of the Maximum Allele Cooccurrence Haplotype (MAtCHap) algo-

rithm is the following:

1. randomly initialize h1 so that h1[1] = {1, 0} (or h1[1] = {0, 1}), in this way h1 =

({0, 1}, {−,−}....{−,−})

2. repeat until ht 6= ht−1

3. for j=2 to m

4. Calculate MAC(M,ht[j]) for ht[j] = {0, 1} and ht[j] = {1, 0} and assign

ht[j] the value that give max(MAC(M,ht[j]))

5. t=t+1

The solution that one obtains from this procedure is the two haplotypes ht that

maximize the number of allele co-occurrence in the fragment matrix M (Figure 1).

At the end of the maximization procedure, for each variant j we calculate the ratio

MACR = MAC(M,ht[j])/MAC(M, ĥt[j]) (where ĥt[j] is the flipped version of ht[j]

with inverted alleles) that gives a measure of the likelihood that the two alleles where

correctly assigned to their haplotypes. MACR close to 1 means that the number of allele

co-occurrence that support ht[j] and ĥt[j] are very similar, while high values of MACR

mean that the number of allele co-occurrence that support ht[j] are much larger than those

supporting ĥt[j] and so the likelihood of ht[j] is much higher than ĥt[j]. Positions with
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low MACR can be filtered out to improve the accuracy of haplotype assembly. Owing to

low-coverage and highly error prone genomic positions, haplotype inference can produce

switch errors that lead to completely flipped haplotype blocks.

To overcome this problem, at the end of the maximization procedure, the MAtCHap al-

gorithm include a procedure to remove switch errors by calculating partial MAC function:

MAC(M,Hx) =
∑n

i=x

∑
j∈{M [i,j] 6=−}

∑
k∈{M [i,k] 6=−} δ((M [i, j],M [i, k]), (h1[j], h1[k])) +

δ((M [i, j],M [i, k]), (h2[j], h2[k]))

Partial MAC function MAC(M,Hx) smaller than 1 indicate a switch error at position

x and every position from x onwards is flipped with respect to those before x.

Synthetic data simulations

To assess the performance of MAtCHap algorithm in reconstructing individual haplotypes

from long and highly error prone reads, synthetic sequences were generated by using the

PBSim software (Ono et al., 2013). PBSim simulates reads by randomly sampling from

a reference sequence, adding errors with a user defined distribution of substitutions, in-

sertions and deletions and allowing to define read size distribution (mean and maximum

size) and the desired sequencing coverage.

In all the performed simulations, the two haplotypes were generated by PBSim using

as reference sequences two modified versions of 10 Mb of the human reference genome

GRCh37 (chr1:10.000.001-20.000.000), in which synthetic substitutions were added every

N bp (for each haplotype N was set to N = {200bp, 1000bp, 2000bp, 4000bp} obtaining a

diplotype with a heterozygous variant every 100 bp, 500 bp, 1000 bp and 2000 bp respec-

tively).
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Real data

The nanopore WGS consortium (Jain et al., 2018) (https://github.com/nanopore-wgs-

consortium) sequenced the NA12878 human genome on the ONT MinION by using 39

R9/R9.4 flow cells generating 4,183,584 base-called reads containing 91,240,120,433 bases

with a read N50 of 10,589 bp. Reads in FastQ format for all 39 runs were downloaded from

https://github.com/nanopore-wgs-consortium, aligned against the human reference

genome (hg19) by using BWA mem (Li et al., 2010) with −xont2d option and converted

to bam format with samtools (Li et al., 2009) obtaining a 30x sequencing coverage. Bam

file was then downsampled (with samtools -s) to simulate datasets with sequencing cov-

erage of 5x, 10x, 15x, 20x, 25x and 30x.

The Genome in a Bottle (GIAB) Consortium (https://github.com/genome-in-a-bottle)

is creating diverse set of sequencing data for seven human genomes that include the

NA12878 from the CEPH Utah Reference collection (Zook et al., 2016). The sequenc-

ing data were obtained from 11 technologies: BioNano Genomics, Complete Genomics

paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD,

10X Genomics GemCodeTM WGS, and Illumina paired-end, mate-pair, and synthetic

long reads.

NA12878 genome was sequenced with the Pacific Biosciences Single Molecule Real-Time

(SMRT) platform using the P6-C4 chemistry and obtaining a 45x total sequencing cov-

erage. The bam file of PacBio reads mapped to the human reference genome (hg19)

with BLASR (v1.3.2) were downloaded from ftp://ftp-trace.ncbi.nih.gov/giab/

ftp/data/NA12878/NA12878_PacBio_MtSinai/. To simulate different sequencing cov-

erage (5x, 10x, 15x, 20x, 25x and 30x), the original 45x bam file was downsampled with

samtools view -s.

To evaluate the performance of MAtCHap and the other eight state-of-the-art algorithms

we used as gold standard the high confidence variants identified by the GIAB con-

sortium and downloaded at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/

NA12878_HG001/latest/GRCh37/. VCFs include phasing information both from family-
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based phasing and from local read-based phasing, prioritizing family-based phasing. 99.0%

of high-confidence calls are phased by the Platinum Genome (Eberle et al., 2017).

Single Individual Haplotype Tools

The performance of MAtCHap were compared with those obtained by other height state

of the art tools: WhatsHap (Patterson et al., 2015), HAPCUT2 (Edge et al., 2017),

TwoDMEC (Wang et al., 2007), FastHare (Panconesi et al., 2004), DGS (Levy et al.,

2007), ProbHap (Kuleshov et al., 2014), MixSIH (Matsumoto et al., 2013) and RefHap

(Duitama et al., 2012).

WhatsHap v0.18 was downloaded at https://whatshap.readthedocs.io/en/latest/

and applied to synthetic and real datasets by following the recommendations reported in

https://whatshap.readthedocs.io/en/latest/guide.html#recommended-workflow.

HAPCUT2 https://github.com/vibansal/HapCUT2 was applied to PacBio and Nanopore

synthetic and real datasets with default parameter settings. TwoDMEC, FastHare, DGS

and Refhap algorithms were ran exploiting the SingleIndividualHaplotyper package down-

loaded at http://www.molgen.mpg.de/~genetic-variation/SIH/Data/algorithms. Prob-

Hap was downloaded at https://github.com/kuleshov/ProbHap and ran following au-

thor suggestions.

MixSIH https://github.com/hmatsu1226/MixSIH was ran by setting the error rate op-

tion (-a) to 0.15 for real Nanopore and PacBio data (according to nanopore and PacBio

error profiles) and to 1 − error for synthetic data (where error is the global error rate

simulated by PBSim).
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Results

Synthetic Simulations

To demonstrate the ability of MAtCHap to reconstruct haplotypes from sequences with

different sizes and error rates, the PBSim software was used to simulate synthetic data

(see methods).

In particular, to test the capability of my computational recipe to infer the correct haplo-

types from sequences generated by novel TGS platforms, PBSim was exploited to simulate

sequencing dataset that mimic the characteristics of long reads with average size from 5

Kb to 15 Kb (size={5 Kb, 8 Kb, 10 Kb, 12 Kb and 15 Kb}), global error rate from

75% to 99% (error={0.75,0.8, 0.85, 0.9, 0.95, 0.99}) and total sequencing coverage from

5x to 50x (coverage={5x,10x, 15x, 20x, 25x, 30x, 35x, 40x, 45x and 50x}). Moreover,

to better simulate the sequences produced by PacBio and MinION platforms, the error

rate distribution among substitutions, insertions and deletions, were set according to the

results found by me and other authors (Magi et al., 2016; Weirather et al., 2017): 10:60:30

for PacBio and 30:30:40 for MinION.

Assessing the quality of an haplotype assembly requires very complex measures that take

into consideration accuracy, contiguity and completeness of the inferred haplotype. In an

inferred haplotype one can find two type of errors: switch and mismatch errors. Switch

errors (also known as long switch) are defined as two or more consecutive variants flipped

with respect to gold standard, while mismatch errors are defined as variants whose phase

was incorrectly inferred (also known as short switch). A switch error (also known as long

switch) occurs when the phase between two adjacent variants in the assembled haplotypes

is discordant relative to the truth haplotypes. Two consecutive switch errors correspond

to the flipping of the phase of a single variant and were counted as ’mismatch’ (also known

as short switch) errors instead of two switch errors.

The accuracy of a haplotype assembly is typically evaluated by comparing the inferred

haplotypes to gold standard haplotypes and calculating the total fraction of switch and
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mismatch errors (Edge et al., 2017).

While total error rate (switch + mismatch) gives a global picture of haplotype accuracy,

it is not capable to capture the effect of short- and long-range switch errors on the re-

constructed haplotype structure. The limits of total error rate can be overcome by using

pairwise variant haplotype assignment accuracy, in which inferred alleles at any given pair

of positions are compared to gold standard calls and classified as concordant or discor-

dant. Comparing every pair of variants, binned by genomic distances, one can study the

effect short- and long-range switch errors on haplotype accuracy.

Concerning the evaluation of haplotype contiguity (how many separate haplotype frag-

ments have been inferred), a standard measure is the N50 metric, that was originally

developed for the comparative assessment of de novo genome assemblies, and that is de-

fined as the length of the shortest haplotype at 50% of the total assembly length. However,

since this statistic does not take into account accuracy, long and highly erroneous blocks

can obtain N50 measures higher than short and accurate haplotypes. One way to resolve

this limitation is to use a contiguity measures that breaks haplotype blocks at each erro-

neous position (switch and mismatch error) and then calculating the N50 of the resulting

assembly.

Moreover, also statistics that evaluate the proportion of all heterozygous variants that

have been phased (completeness) are highly informative for assessing the quality of in-

ferred haplotypes.

For these reasons, for evaluating the performance of the MatchHap algorithm I used four

different measures that capture accuracy, contiguity and completeness and I compared

its performance with those obtained by other eight state-of-the-art methods: WhatsHap,

HAPCUT2, TwoDMEC, FastHare, DGS, ProbHap, MixSIH and RefHap (see Methods).

MatchHap is one of the few algorithms which can provide estimates of haplotype mem-

bership of a variant in the form of MACR score that a heterozygous variant belong to the

assigned haplotype. To evaluate the capability of the MACR score to predict haplotype

reconstruction accuracy, all the variants were first ranked as a function of MACR score
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and then the total fraction of switch and mismatch errors was calculated by considering

only variants above a given score threshold (and treating the other variants as unphased).

These results were compared with the only other tools that allows the user to exclude

low-confidence positions (HAPCUT2, ProbHap and MixSIH) and they show (Figure 2)

that MAtCHap obtains the lowest error rate for each fraction of phased SNVs at each

sequencing coverages, followed by MixSIH, HAPCUT2 and ProbHap respectively.

As a further step, to evaluate the global error rate of each algorithm I calculated the sum

of mismatch and switch errors and to capture the effect of short and long-range errors,

I estimated pairwise accuracy as a function of distance by calculating the proportions

of concordant alleles at any pairs of variants using bin of distances that range from 100

to 900 Kb (see methods). The results of Figure 3.a-f show that MAtCHap is capable

to better reconstruct both the short- and long-range structure of haplotypes (panels a

and b) generating the lowest global error rate for each sequencing coverage and accuracy,

followed by RefHap and MixSIH. Surprisingly, two recently published algorithms, What-

sHap and HAPCUT2, properly devised for haplotype assembly from long reads, obtained

poor performance.

Finally, to evaluate contiguity and completeness of the inferred haplotypes, N50 (with

haplotype blocks broken at each errors) and the proportion of phased variants as a func-

tion of the number of largest blocks were calculated. Panels g-j of Figure 3 show that my

approach outperforms other algorithms in term of completeness (Figure 3.g-h) and that

is capable to obtain high N50 measures even with moderately low coverages (20x) while

the other tools requires sequencing coverages as large as 50x.

Real data analysis

To assess the performance of the MAtCHap algorithm to infer haplotypes from real data

I exploited two TGS dataset generated with Nanopore and PacBio technologies on the

NA12878 sample.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 2, 2019. ; https://doi.org/10.1101/860262doi: bioRxiv preprint 

https://doi.org/10.1101/860262
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Genome in a Bottle (GIAB) Consortium (https://github.com/genome-in-a-bottle)

sequenced NA12878 with the Pacific Biosciences Single Molecule Real-Time (SMRT) plat-

form using the P6-C4 chemistry and obtaining a 45x total sequencing coverage (see Meth-

ods for more details). Similarly, the nanopore WGS consortium (https://github.com/

nanopore-wgs-consortium) sequenced the NA12878 human genome with the ONT Min-

ION by using 39 R9/R9.4 flow cells generating 30x total sequencing coverage dataset (see

Methods for more details).

In order to evaluate the capability of my algorithm to reconstruct the haplotype struc-

ture of a human genome with data at different sequencing coverage, the original TGS

datasets were downsampled to simulate 5x, 10x, 15x, 20x, 25x and 30x. As in Synthetic

Simulations section, MAtCHap and the other eight state-of-the-art tools were evaluated

with four different statistics that measure accuracy, contiguity and completeness by using

as gold standard the variants phased by the GIAB consortium (see Methods for more

details).

The results reported in Figure 4 clearly show that my approach gives the best results in

terms of accuracy, obtaining the lowest error rate and the highest pairwise accuracy for

both PacBio and Nanopore data at all the sequencing coverages, followed by HAPCUT2

and WhatsHap.

Concerning completeness and contiguity, Figure 5 show that although all the algorithms

obtain very similar results, my method outperforms the other tools in terms of both frac-

tion of phased variants and N50 size for PacBio and Nanopore data. In contrast with

the results obtained with simulated data, HAPCUT2 and WhatsHap tools obtained good

results in the analyses of real TGS dataset, demonstrating their capability to manage the

intrinsic characteristics of this new generation of sequencing data.

Finally, in order to show the computational performance of my method, I calculated the

time taken by the nine algorithms to infer the haplotypes of all the 22 autosomal chromo-

somes for TGS data at different sequencing coverages. As expected, the results of figure

6 show that while the computational performance of all MEC-based methods are highly
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influenced by total number of reads, MAtCHap obtains nearly the same times at each se-

quencing coverage, demonstrating its power and versatility in the analysis of future ultra

high throughput long reads datasets.

Discussion and Conclusion

From the advent of second generation sequencing technologies, the vast majority of ge-

nomic studies have ignored the diploid nature of the human genome owing to the compu-

tational complexity and the lack of cost-effective experimental approaches for obtaining

phase information. However, many evidences, coming from classical medical genetics lit-

erature and from recent studies, demonstrate that the correlation between genotype and

phenotype can be more fully understood by using phase information (Tewhey et al., 2011).

In medical genetics applications, haplotype information can be of fundamental importance

in the study of compound heterozygous variants that occur when two homologous copies

of a gene contain unique variants at different positions. These variants can perturb the

function of the two homologous copies of a gene, generating a phenotype that is different

from that seen if one homologous gene carries both deleterious variants.

Compound heterozygosity is the genetic mechanism at the base of several recessive Mendelian

disorders such as Hemachromatosis, Mediterranean Fever and many other. Compound

heterozygosity is also at the base of the ”two hit” model of cancer, in which an individual

with an inherited cancer-susceptibility variant develops a somatic mutation at a different

position in the same gene that leads to dysfunction in both gene copies and to potential

tumorigenic effect. In compound heterozygous studies, genotype information at different

loci is not sufficient, while is essential the knowledge of haplotype.

In this scenario, the development of low-cost and highly efficient experimental/computational

strategies for the reconstruction of haplotype structure is of fundamental importance for

human genomics. Thanks to the advent of third generation nanopore sequencing, in par-
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ticular the novel Promethion platform, in the next few years it will be possible to sequence

a high coverage human genome (30-40x, and even 50x) at affordable prices comparable to

Illumina short reads technology. For these reasons, the availability of powerful and fast

algorithms that are capable to handle this new generation of sequencing data without

being influenced by the total throughput is of fundamental importance.

In this work I introduce a novel formulation of the single individual haplotype assembly

problem based on the concept of maximum allelle co-occurrence (MAC), I define an ob-

jective function that mathematically represent the MAC formulation and I propose a fast

algorithmic recipe (MAtCHap) that maximizing the MAC function is capable to recon-

struct the haplotype structure of a diploid genome from sequencing data.

To show the power of my computational approach in the analysis of novel TGS long read

datasets, MAtCHap was tested on simulated and real PacBio and Nanopore experiments

and was compared with other eight state-of-the-art methods based on classical MEC for-

mulation of the haplotype assembly problem. To evaluate the performance of the nine

algorithms I used several statistics that measure different properties of the reconstructed

haplotypes, and in all the analyses I performed, my method outperformed the other height

algorithms in terms of accuracy, contiguity and completeness.

Moreover, MAtCHap obtained the best performance also in terms of computational perfor-

mance, allowing to infer high quality haplotypes from a 30x sequencing coverage long read

experiment in less than one hour , while other tools can take from one day (HAPCUT2) to

1 month (WhatsHap) with lower accuracy. Remarkably, while the computational perfor-

mance of other tools are highly influenced by sequencing coverage, MAtCHap is capable

to analyze a 30x experiment with times comparable to a 5x experiment, demonstrating

high scalability for future ultra-high coverage TGS experiments.
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Figure 1: MAtCHap algorithm scheme. In panel (a) is reported the alignment of five reads
against a segment of the reference genome that spans five heterozygous variants. Panel (b) reports
the fragment matrix M for the five reads. Panels (c) and (d) show the MAtCHap algorithm
applied to matrix M for t = 1 (c) and t = 2 (d).
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Figure 2: Comparison of the error rate/completeness trade-off of MAtCHap, HAPCUT2,
PROBHAP and MixSIH as a function of haplotype score. For each of the four tools, all the
variants were ranked as a function of tool specific haplotype score and, by considering only
variants above a given score threshold, we then calculated error rate and percentage of phased
variants. Panels report the results obtained by the four tools for different sequencing coverages:
5x (a), 10x (b), 15x (c), 20x (d), 25x (e), 30x (f), 40x (g), 50x (h).
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Figure 3: Accuracy, completeness and contiguity of haplotype assembly for simulated data.
Panels a-b report pairwise accuracy as a function of genomic distance. Panels c-f report the
total error rate (switch + mismatch errors) as a function of sequencing coverage (c-d) and read
accuracy (e-f). Panels g-h show haplotype completeness as fraction of phased variants vs number
of inferred blocks. N50 contiguity measure vs sequencing coverage is reported in panels i-j. Panels
a, c, e, g and i report the results for simulated Nanopore reads, while panels b, d, f, h and j for
simulated PacBio reads.
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Figure 4: Accuracy plot for NA12878 Nanopore and PacBio sequencing data. Panels a-b show
the total error rate (switch + mismatch errors) as a function sequencing coverage, while panels
c-j report pairwise accuracy as a function of genomic distance (c-d for 5x, e-f for 10x, g-h for
20x and i-j for 30x). Panels a, c, e, g and i report the results for PacBio experiments and panels
b, d, f, h and j for Nanopore.
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Figure 5: Completeness and contiguity plots for NA12878 Nanopore and PacBio sequencing
data. Panels a-h show haplotype completeness as fraction of phased variants vs number of
inferred blocks for sequencing coverage at 5x (a-b), 10x (c-d), 20x (e-f) and 30x (g-h). Panels
i-j show the N50 contiguity measure as a function of sequencing coverage. Panels a, c, e, g and
i report the results for PacBio experiments and panels b, d, f, h and j for Nanopore.23
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Figure 6: Computational performance of nine algorithms in the analysis of real long read data.
The barplots report the computational time taken by the nine haplotype assembly algorithms
to infer the haplotypic structure of the NA12878 genome with long reads at 5x, 10x, 20x and
30x of sequencing coverage.
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