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Abstract 

 The study of resting state functional connectivity (RSFC) using functional MRI scans has 

rapidly become one of the most promising and widely used techniques for investigations of 

human brain function in both healthy and psychiatric populations. Two critical recent 

developments in this field are 1) the increasing use of simultaneous multi-slice fMRI (multiband) 

acceleration techniques, which dramatically improves the spatial and temporal resolution of 

fMRI data, and 2) the recognition that participant motion is a critical confound in RSFC studies, 

which requires careful denoising in order to obtain valid results. However, motion artifact 

denoising techniques were not developed with the temporal resolution of multiband fMRI in 

mind, which results in the capture of high-frequency respiration-related motion of participants 

during scanning. This respiration-related motion appears to negatively impact the performance of 

existing volume censoring approaches. Using publicly available multiband RSFC data from the 

Human Connectome Project, we developed a new volume censoring motion correction approach 

that addresses respiration-related motion separately from other sources of motion, and 

outperforms one of the most widely used denoising pipelines. We further show that the 

assumptions underlying some of the most commonly employed metrics for evaluating motion 

denoising pipelines (testing for significant differences in RSFC correlations between high- and 

low-motion participants, and so-called “QC-FC” based methods) are invalid. Specifically, the 

number of significant RSFC correlations between high- and low-motion groups is dramatically 

reduced by exclusion of participants exhibiting substance use or who have a family history of 

psychiatric or neurological disorder, indicating that individual differences in unmeasured third 

variables contribute to both higher motion and true differences in RSFC correlations, thereby 

invalidating this widely used metric, which assumes that no true differences in RSFC exist 
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between high- and low-motion groups. Finally, we develop and present an empirical basis for 

selecting volume censoring thresholds in any multiband RSFC dataset, which are widely used in 

the field but have had an exclusively heuristic basis prior to this work. These findings thus have 

three major impacts: first, to present a substantively improved pipeline for motion denoising of 

multiband RSFC data; second, to raise concerns about a key metric used to evaluate motion 

denoising for RSFC data more generally; and third, to provide investigators with an empirically-

grounded estimate of the optimal volume censoring threshold to employ for any dataset. 
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Introduction 

 Over the past decade and a half, the use of functional Magnetic Resonance Imaging 

(fMRI) to investigate resting state functional connectivity (RSFC) has become the dominant 

approach to studying the connectome of the human brain, a key priority of the National Institute 

of Mental Health for achieving their strategic objective to define the mechanisms of complex 

behaviors1. However, in recent years it has been increasingly recognized that participant motion 

represents a serious confound for investigations using RSFC, and that aggressive steps must be 

taken to minimize the impact of this confound2-11. The success of this ongoing effort will be 

crucial to the utility of RSFC as a tool for human connectomics in both health and disease. 

In recent years, simultaneous multi-slice acceleration of fMRI sequences (multiband 

fMRI)12,13 has gained prominence in RSFC research, and has been adopted by several large-scale 

studies of human brain function, including the Human Connectome Project (HCP)13, the UK 

Biobank study14, and the Adolescent Brain Cognitive Development (ABCD) study15-18. 

Multiband acceleration provides substantial improvements in both spatial and temporal 

resolution of both RSFC and task-based fMRI data. Critically, however, the performance of 

existing RSFC motion denoising methods for multiband data has not been extensively evaluated 

(but see 19), although recent work demonstrates that the fast sampling rate (the inverse of 

repetition time; TR) of multiband data necessitates the development of new approaches for 

handling estimates of participant motion, such as framewise displacement (FD)20,21.  

Early in our work with multiband RSFC data, we noted that estimated participant motion 

parameters (MPs) universally exhibit a high-frequency signal component that varies in frequency 

between participants, typically falling between 0.2 and 0.4 Hz (Figure 1). Other authors have 

recently demonstrated that these signals result from head motion due to participant respiration20-
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22, although a small portion arises from “false” pseudo-motion in the phase-encode direction that 

occurs as a result of tissue changes due to lung expansion impacting the B0 field20. In many 

participants, an elevation of average gray matter signal amplitude at the same frequency as the 

MP respiratory signal is also apparent (Figure 1c), suggesting that this motion effect also has a 

repeated, systematic, effect on fMRI Blood Oxygen Level-Dependent (BOLD) signal at high 

frequencies. Notably, any effect at these frequencies would be impossible to observe in higher 

TR single-band fMRI, because these sequences rarely achieve a sampling rate faster than 0.5 Hz 

(TR = 2 s). Due to the Nyquist limit, signals above 0.25 Hz would be aliased in these data. In 

contrast, the public HCP dataset was acquired at just under 1.4 Hz (TR = 0.72 s), allowing for 

characterization of signal components up to nearly 0.7 Hz. 

Figure 1. a) Estimated motion parameters (MPs) for a single RSFC scan from a participant in the Human 

Connectome Project (Subject ID 116524), which show a clear high-frequency oscillation throughout the run. b) 

Spectral frequency amplitudes of the MP traces, obtained via Fourier decomposition and summed over all 6 

estimated MPs. c) Spectral frequency amplitudes of the mean signal extracted from all gray matter voxels after 

image preprocessing (see Methods). Red arrows indicate the elevation of spectral amplitude in both MPs and global 

signal thought to result from participant respiration. 
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We reasoned that because RSFC data is routinely band-pass filtered well below these 

frequencies (approximately 0.01 - 0.08 Hz), these respiration-related gray matter signal 

fluctuations likely have no impact on RSFC correlations calculated with filtered data. However, 

two of the most widely employed methods for motion correction in the field—volume censoring 

and spike regression5,7—are based on unfiltered estimates of subject motion (FD) and whole-

brain signal change (temporal Derivative of timecourses, root-mean-squared VARiance over 

voxels; DVARS or DV)4-6,23. Thus, these denoising techniques would unnecessarily flag volumes 

affected by respiration-related motion and remove them from the dataset. Indeed, multiple other 

authors have concluded that employing a band-stop (notch) filter on MPs prior to calculating FD 

facilitates the identification of non-respiratory subject head motions20,21, although these authors 

did not compare the effect of employing filter-based FD values for volume censoring to methods 

using unfiltered, or raw, FD values, nor did they employ similar methods on fMRI timeseries 

prior to calculation of DV. In contrast, our primary goal here is to determine optimal methods for 

addressing motion artifacts in multiband RSFC data, in order to provide clear recommendations 

to the field as to how multiband data should be processed in order to optimize the detection of 

true neural patterns of RSFC, as free as possible from the effect of head motion and related 

signal artifacts. 

To this end, we hypothesized that a denoising approach that ignores motion due to 

respiration and censors only those volumes that exhibit irregular and sudden (and thus 

predominantly low frequency) motion might perform as well or better than existing methods. 

Consequently, we developed a volume censoring approach based on low-pass filtering at 0.2 Hz, 

which is just low enough to remove nearly all respiration-related motion while remaining at least 

double the upper frequency band of standard RSFC band-pass filters (which rarely exceed 0.1 Hz 
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for the upper end of the pass-band). We apply this filter to both MPs and to within-brain voxel 

timeseries prior to calculation of FD and DV, respectively, which we term LPF-FD and LPF-DV 

censoring, each with a threshold parameter, respectively termed ΦF and ΦD.  

Further, we observed that both DV and LPF-DV values calculated for each participant, 

and even for each run within a participant, frequently exhibit large differences in central 

tendency, such that an apparently reasonable cutoff for one run could potentially remove all data 

from another. Figure 2a-b demonstrates this issue in four example runs from two subjects. 

Consequently, we also tested an adaptive thresholding method that fits a generalized extreme 

value distribution to the LPF-DV values within each run separately, and rejects the upper tail 

(i.e., outliers) of that distribution by setting ΦD separately for each run, which we term GEV-DV 

censoring (see Figure 2c) with free parameter dG.  

Thus, below we evaluate the performance of each censoring approach (LPF-FD, LPF-

DV, and GEV-DV) relative to standard volume censoring methods5 that have performed well in 

recent evaluations of multiple motion denoising strategies2,3, using the HCP S500 release24. We 

initially set out to employ a set of RSFC quality control (QC) metrics that have been employed in 

prior work2-5, but we observed substantive issues with QC measures that depend on associations 

between QC measures (such as median FD) and the observed magnitude of RSFC correlations 

(e.g., so-called QC-FC correlations, or tests for significant RSFC differences between high- and 

low-motion groups). These issues, which we detail in the Results below, led us to adopt a new 

QC metric similar to graphical metrics employed in prior work4,5. This technique calculates the 

mean absolute change (MAC) in region of interest (ROI) pair correlations after volume 

censoring, over and above the change due to randomly removing an equivalent number of 

volumes, which we refer to as MAC-RSFC.  
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As a final goal, we also sought to develop for the first time a quantitative, empirical basis 

for determining the optimal value of censoring thresholds for removing motion artifacts from 

RSFC data. That is, each volume censoring method requires the use of a free parameter that 

determines the aggressiveness of the censoring approach (e.g., two commonly employed 

parameters over the last several years are raw FD thresholds of 0.2 or 0.5 mm). However, to date 

Figure 2. a) Histograms of framewise DV values for 4 runs, comprising 2 pairs of runs 

each from 2 subjects, demonstrating the large variability in central tendency of DV values 

between runs. b) Histograms of framewise LPF-DV for the same 4 runs as in A. c) 

Example generalized extreme value (GEV) distribution probability density function 

(PDF), determined from a maximum-likelihood fit, for one run (purple). Two adaptive 

censoring thresholds for this run are shown using (arbitrary unit) free parameter values d 

= 1.16 and d = 5.80.  
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these thresholds have been relatively arbitrarily determined, based predominantly on visual 

inspection of post-processed data5,6. Instead, here we develop an approach that attempts to 

optimize the trade-off between reduction in motion-induced bias and the loss of power that both 

result from the removal of data due to censoring, using a statistically-driven metric we term 

ΔMSE-RSFC (actually the change in MSE/N; see Results, below). This approach uses a bias-

variance decomposition of mean squared error (MSE) for estimators of RSFC correlations to 

approximate the total error in sample RSFC correlation estimates, including 1) motion-induced 

bias in sample mean correlations; 2) variance resulting from both true variation between sampled 

individuals and the unequal distribution of motion, and thus motion artifact, across individuals 

and runs; and 3) sampling error within each run. The resulting MSE estimate is then divided by 

the remaining post-censoring sample size to account for the increase in the width RSFC 

confidence intervals resulting from a loss of sample size (i.e., when participants are removed due 

to insufficient data remaining following censoring). 

Thus, ΔMSE-RSFC seeks to provide a tangible minimization target for balancing the 

improvement in RSFC estimates through reduced motion-induced bias against the reduction in 

statistical power produced by a loss of observations (as frames are censored and removed from 

analysis). We then used a global optimization algorithm to simultaneously determine optimal 

parameters for both FD- and DV-based censoring in the HCP500 dataset by minimizing ΔMSE-

RSFC. We repeated this analysis with and without global signal regression (GSR), and provide 

an analytically based method to generalize these results to fMRI datasets of nearly any size. 
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Results 

Initial Comparison of Standard and LPF-Based Censoring 

As an initial step to evaluate each censoring method, we sought to replicate a graphical 

approach to evaluating the efficacy of motion censoring employed in prior work4,5, which shows 

changes in RSFC correlations across all ROI pairs (taken from a commonly used set of RSFC 

ROIs25) resulting from motion-targeted volume censoring (red dots; see Figure 3). In order to 

ensure that these changes are a result of removing high-motion volumes specifically, they are 

compared to RSFC changes resulting from removal of randomly selected volumes (black dots). 

To allow for a direct comparison between censoring methods in Figure 3, thresholds were 

selected such that an equivalent number of volumes were removed by each evaluated method 

(56.15% of volumes in analyses without GSR and 40.06% of volumes with GSR).  

Standard censoring methods resulted in minimal changes in RSFC compared to random 

censoring of an equivalent number of frames within each run, consistent with our hypothesis that 

these methods would largely flag volumes impacted by respiratory motion for removal, and that 

removing these volumes would have little impact on RSFC correlations. In addition, standard 

Figure 3. Changes in all pairwise ROI RSFC correlations resulting from volume censoring using raw FD (a,b) and 

raw DV (e,f), LPF-FD (c,d) and LPF-DV (g,h), and adaptive GEV-DV (i,j), plotted against the Euclidean distance 

between ROIs on the X-axis. Red dots indicate the average change across the sample in RSFC correlation resulting 

from volume censoring for each ROI pair. Black dots indicate the average change resulting from random censoring 

of an equal number of volumes within each run. White lines indicate a sliding window of the mean of the red dots, 

Results are shown both without global signal regression (GSR) (a,c,e,g,i) and with GSR (b,d,f,h,j). 
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methods were outperformed by LPF-based censoring, and GEV-DV censoring produced an even 

greater change in observed RSFC than LPF-DV censoring. Finally, in analyses without GSR, 

LPF-FD, LPF-DV, and GEV-DV censoring produced an overall downward shift in RSFC 

magnitude that was not observed in analyses employing GSR. Given that GSR has been shown 

to globally reduce the magnitude of RSFC correlations2,26, this suggests that LPF-based methods 

may be producing some of the same effect as GSR in minimizing the impact of motion on 

overall RSFC correlation magnitude, and that this effect is consistent with a reduction of “Type 

2” motion artifact effects on RSFC6. Similar results were obtained using an alternative method of 

comparing the differential performance of volume censoring methods, using one method as a 

baseline for evaluating the change in RSFC correlations produced as a result of censoring 

additional volumes targeted by another method (Figure S1; see Supplementary Results). 

 

Comparison of High- to Low-Motion Participants After Censoring 

Our next step was to look for significant differences in RSFC correlations between high- 

and low-motion participants before and after volume censoring, following methods employed in 

multiple prior studies3,5,7,9. The logic of this approach rests on the assumption that, as a group, 

high- and low-motion participants differ only in the amount of in-scanner head motion, and so 

any significant differences in RSFC must result from unmitigated motion artifacts rather than 

true differences in RSFC. However, when we employed this approach with LPF-FD censored 

data we observed null hypothesis rejection rates approximately two orders of magnitude higher 

than the nominal false positive rate, leading us to hypothesize that these observed differences 

may not, in fact, reflect false positives. Rather, there may be true RSFC differences between 
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high- and low-motion participants that are not strictly due to in-scanner motion (i.e., a “third-

variable” effect). 

For example, even if participants themselves are psychiatrically and neurologically in the 

normal range, a family history of these disorders, or a history of substance use, could produce 

both increased participant motion and true RSFC differences. Figure 4 shows the observed 

proportion of RSFC correlations exceeding various uncorrected P value thresholds for both the 

full HCP 500 dataset and for a reduced dataset that excludes participants who had a parent with 

any psychiatric or neurological disorder (FH+ subjects), or who used any illicit substance or had 

a blood-alcohol level above 0.05 during the course of the study (SU+ subjects). As expected, 

FH+ and SU+ subjects had elevated median FD values (mean = 16.2) relative to FH- and SU- 

participants (mean = 14.7; t490 = 3.06; P = 0.002). Figure 4 also shows 95% confidence intervals 

from a Monte Carlo simulation of the effect of removing an equal number of randomly selected 

participants who exhibited an equivalent amount of motion to FH+ and SU+ subjects, but who 

were themselves FH- and SU- (see Methods).  

We observed that removing FH+ and SU+ participants causes a significantly greater 

reduction in observed null hypothesis rejection rates than would be expected simply by removing 

an equivalent number of FH- and SU- participants who exhibit similar levels of motion. Thus, 

these findings are consistent with the “third-variable” effect hypothesized above, such that FH+ 

and SU+ participants exhibit both true differences in RSFC relative to FH- and SU- individuals, 

and elevated in-scanner motion, thereby producing a true association between RSFC and motion 

that is independent of motion-induced signal artifacts. These results are also consistent with 

previous findings that trait effects were still detectable in RSFC correlations in the HCP dataset, 

even after aggressive denoising methods were employed27. 
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These results argue strongly against using any method based on individual differences in 

the quantity of motion, such as testing for differences in RSFC correlations in high- versus low-

motion participants, or measures that examine the correlation between participant motion and 

RSFC correlations in each ROI (commonly known as QC-FC correlations), which have been 

widely employed to date2,3,5,6,8,19,28-32. Even if one excludes participants with known “third 

variables” that influence both in-scanner motion and RSFC correlations, such as family history 

of psychiatric or neurological disorder and substance use as we show here, there is no guarantee 

that other third variables influencing motion and RSFC do not exist. Consequently, we would 

argue strongly against the use of such measures for evaluating the effectiveness of methods 

designed to reduce or eliminate the impact of participant motion on RSFC, unless it can be 

shown somehow that such third variables could not possibly exist in the data under examination 

Figure 4. Observed proportion of RSFC correlations exceeding P value threshold (uncorrected for multiple 

comparisons). Red lines denote the proportion observed for the full dataset; blue-green lines denote the proportion 

observed in the dataset after removing subjects who tested positive for drug use or elevated blood alcohol content 

on the day of a scan session (SU+) or have a family history of a psychiatric or neurological disorder (FH+). 95% 

confidence intervals from 1,000 Monte Carlo resamplings of the SU-/FH- subset of the data with motion 

characteristics matched to the original dataset (matched on FD; see Methods) are shown in the beige area. Black 

lines represent the null expectation. Results are shown using both raw FD (a,c) and LPF-FD (b,d), and without 

GSR (top) and with GSR (bottom). 
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(e.g., with phantom or simulated data, or potentially within-subject comparisons that depend only 

on a manipulation that systematically effects within-scanner motion). 

 

Comprehensive Evaluation of Standard and LPF-Based Censoring 

As a result of the significant issues with measures depending on individual differences in 

motion (e.g., median FD values for each participant) described above, we sought to develop an 

alternative, quantitative metric to evaluate the efficacy of motion denoising efforts. Given that 

we view any method relying on the relationship between RSFC correlations and participant 

motion as potentially “contaminated” by true motion-RSFC relationships, we opted to focus 

directly on the magnitude of changes in RSFC correlations as a result of motion-targeted volume 

censoring (compared to random removal of an equivalent number of volumes within each run) 

within each subject, and averaged across subjects. Specifically, we evaluated the mean absolute 

value of the within-subject change in RSFC correlations relative to removing an equivalent 

number of volumes within each run, across all ROI pairs, and across all subjects in the sample. 

This provides a benchmark for the magnitude of systematic changes in RSFC correlation 

estimates within each subject produced by each method for motion-targeted censoring, relative to 

removing an equivalent number of frames within each run. Thus, observed between-method 

differences in this metric should be specifically associated with differences in targeting of BOLD 

signal fluctuations resulting from head motion, rather than any other source. We term this 

measure MAC-RSFC (Mean Absolute Change in Resting State Functional Connectivity). 

A pervasive issue with volume censoring approaches to handling motion in RSFC (such 

as “scrubbing” and spike regression) has been a lack of clarity as to the appropriate threshold 

above which to censor RSFC volumes; i.e., the question as to how much motion is “too much.” 
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In order to address this question, we tested a wide range of parameter values for both LPF and 

standard censoring methods, and employed the Stony Brook SeaWulf high performance 

computing cluster to conduct bootstrapping on the results at each parameter value, thereby 

allowing us to obtain confidence intervals across the full range of potential parameter values for 

all evaluated methods. As can be seen in Figure 5, which summarizes analyses comprising over 

6.95 x 1015 partial correlations, both LPF-FD and LPF-DV produced larger magnitude changes 

in RSFC correlations than standard FD- and DV-based censoring, relative to random removal of 

volumes, regardless of how much data is removed by each method. That is, across the full range 

from minimal to maximal removal of data (approaching 0% and 100% of data removed), the 

LPF-based methods we propose here significantly (based on the non-overlap of 95% confidence 

intervals obtained from a bootstrapping procedure) outperformed standard censoring methods. In 

addition, GEV-DV outperformed LPF-DV, suggesting that, in line with our observations in 

Figure 2, Figure 3g-j, and Figure S1i-l, an adaptive thresholding method is preferable for 

handling the substantial differences in central tendency of DV measures across runs. 

As noted above, other authors have recently suggested employing band-stop (notch) 

filters to separate respiration-related motion from other motion in fast-TR data such as the HCP 

dataset20,21. Although they did not directly compare the efficacy of a band-stop filter to other 

methods (nor did they propose applying such filters to voxelwise data prior to calculation of 

DV), we show that although these methods both outperform standard raw, unfiltered, approaches 

to FD-based censoring, they are both outperformed by the LPF methods presented here (Figure 

S2). Thus, LPF-FD and GEV-DV volume censoring for multiband fMRI, at least in the HCP 500 

dataset evaluated here, appears to be an across-the-board superior method of volume censoring, 

no matter how aggressive (or not) an investigator prefers to be in censoring motion-effected data. 
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Optimization of Volume Censoring Thresholds: A Bias-Variance Decomposition Approach 

It has been noted that, irrespective of the method used to target high-motion volumes for 

removal, use of increasingly strict thresholds for volume censoring results in continuous 

‘improvements’ in data quality (i.e., continuous reduction in motion-induced bias in RSFC 

correlations)5,6,33, an observation that is also clearly demonstrated in Figure 5, above. This raises 

a critical question for investigators as to how to balance the tradeoff between the benefits of 

additional denoising (i.e., selecting a censoring parameter that results in a more restrictive 

threshold), and the costs of discarding additional data. Presently, such thresholds are typically 

selected uniquely for each dataset through a qualitative visual inspection of a variety of outcome 

Figure 5. Mean Absolute Change in Resting State Functional Connectivity (MAC-RSFC) after volume 

censoring using standard FD and LPF-FD (a,b) and standard DV, LPF-DV, and GEV-DV (c,d) across a range 

of parameter values. 95% CIs on MAC-RSFC were estimated via bias corrected and accelerated bootstrapping 

with 10,000 bootstrap samples. Results are shown both without GSR (a,c) and with GSR (b,d). 
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metrics (e.g., QC-RSFC). However, this methodology is largely agnostic to the loss of statistical 

degrees of freedom relative to the benefits of removal of motion artifact, and thus does not 

provide a quantitative target that may be used to evaluate the optimality of volume censoring 

parameters. 

In order to address this issue, we sought to develop a benchmark for the data quality 

improvement resulting from motion denoising in RSFC studies that accounts for the loss of 

power that is expected to occur as more and more data is censored. Our goal was to optimize the 

ability of investigators to resolve true sample-level mean RSFC correlations by simultaneously 

minimizing both a) motion-induced bias, defined as the change in sample mean RSFC 

correlations, due to targeted volume censoring; and b) the increase in RSFC confidence interval 

widths resulting from loss of high-motion volumes, runs, and subjects. To this end, we developed 

a measure of the overall improvement in the quality of RSFC estimates resulting from motion 

denoising by employing a mean-squared error (MSE) calculation from a bias-variance 

decomposition (that is, an MSE calculation that includes bias, in addition to variance, in its 

estimation of total error), divided by the sample size (number of subjects remaining after volume 

censoring), which we term ΔMSE-RSFC. The results of employing this approach in the HCP500 

dataset to determine optimal parameters for LPF-FD and GEV-DV censoring (ΦF and dG) when 

used independently is shown in Figure 6. As shown in Figure 6a, increasingly aggressive 

volume censoring (nearly) continuously reduces the motion-induced systematic sample-wide 

bias in RSFC correlations, with significantly greater effects in analyses without using GSR, 

using both LPF-FD and GEV-DV volume targeting methods. Additionally, Figure 6b shows that 

both censoring methods produce a reduction in between-subjects variance that exceeds the 

increase caused by an increase in sampling error until approximately 50% of volumes are 
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removed, depending on the censoring and analysis methods used (LPF-FD vs. GEV-DV, and 

with/without GSR). As variance is reduced considerably before any subjects are removed in 

GEV-DV censoring (Figure 6c), this reduction in variance is not due to excluding individuals 

and a consequent change in sample composition; rather, it is due to the exclusion of volumes that 

were impacting individual RSFC correlation estimates in relatively high-motion subjects. The 

resulting ΔMSE-RSFC, calculated as the change in the ratio of the sum of squared bias and 

variance to the number of remaining subjects (see Methods), produces a U-shaped curve when 

plotted again percent frames removed (Figure 6d), and is thus suitable for optimization. The 

global minimum (i.e., the greatest magnitude reduction in MSE-RSFC) represents the point at 

which maximal improvement in data quality is achieved in this dataset for each particular 

method when used in isolation: beyond this point, while further removal of data will result in a 

reduction in bias, that reduction will be accompanied by a larger increase in variance that results 

in a poorer overall estimate of the true value of RSFC correlations in the sample. The optimal 

volume censoring parameter and corresponding percent of volumes removed is shown for each 

method with and without GSR in Table 1.  

 

Table 1. Optimal parameters for volume censoring determined by minimizing ΔMSE-RSFC. 

 No GSR With GSR 

LPF-FD Volume Censoring Only  

LPF-FD ΦF (mm) 0.0318 0.0337 

% Frames Removed 46.68 43.32 

 GEV-DV Volume Censoring Only 

GEV-DV dG (dimensionless) 1.16 1.36 

% Frames Removed 45.95 37.95 

Combined LPF-FD and GEV-DV Volume Censoring 

LPF-FD ΦF (mm) 0.0339 14.336 

GEV-DV dG (dimensionless) 1.39 1.30 

ΦF / dG ratio (mm) 0.02438 11.0277 

Frames Removed (%) 56.15 40.06 

Note. GSR = global signal regression. LPF-FD = low-pass filtered framewise displacement. GEV-DV = 

generalized extreme value derivative of timecourses, root-mean-squared VARiance over voxels. 
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 Next, we aimed to determine optimal combined thresholds for LPD-FD and GEV-DV 

censoring when used together, by determining the location of the global minimum ΔMSE-RSFC 

in the space produced by the free parameters LPF-FD ΦF and GEV-DV dG. Our approach was to 

use a two-parameter global optimization consisting of a particle swarm optimization followed by 

simulated annealing, each with a pattern search local optimization hybrid function to refine local 

optima (see Methods). Optimal free parameter values for LPF-FD and GEV-DV volume 

censoring when used simultaneously in the HCP 500 dataset are shown in Table 1. These results 

suggest that a relatively restrictive threshold for LPF-FD is required for analysis without GSR, 

but that it is optimal to rely primarily on GEV-DV censoring for data employing GSR, which is 

Figure 6. Change in sample statistics due to volume censoring. a) Mean change in sample average Z-transformed 

ROI pair correlations, over and above that due to random removal of an equivalent number of randomly selected 

volumes within each run. b) Mean change in between-subjects variance in sample ROI pair correlation estimates. 

c) Number of subjects removed from the sample due censoring. d) Change in estimated mean square error (MSE) 

divided by the remaining number of subjects, ΔMSE-RSFC, averaged across ROI pairs.  
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consistent with the minimal reductions in bias observed for LPF-FD with GSR in Figure 6a. 

That is, it is likely that the artifactual signals that are indexed by increasing LPF-FD values, but 

that are not also accompanied by outlying values of LPF-DV at the same timepoint, are largely 

removed using GSR. Consequently, when used in concert with GSR, LPF-FD values can be 

largely disregarded so long as relatively aggressive GEV-DV censoring is carried out. 

 

Estimation of Optimal Volume Censoring Thresholds for Other Datasets 

 In order to allow investigators to approximate which thresholds are optimal for a given 

study protocol (i.e., a given number of runs per subject, and volumes per run) without having to 

carry out the computationally intensive optimization procedures employed here, we sought to 

generalize these optimized LPD-FD and GEV-DV thresholds beyond the HCP 500 dataset. 

Using the known relationship between a) the sampling error of Z-transformed Pearson’s 

correlations calculated within each run, and b) the number of observations (i.e., volumes) within 

each run and the number of runs acquired per subject, we estimated what the change in between-

subjects variance (as shown in Figure 6b) would be in a dataset with a different study protocol 

and an identical distribution of motion and motion artifact across acquired volumes (i.e., volumes 

and runs are removed in identical proportion to the HCP 500 dataset, with proportional effects on 

bias and variance; see Methods).  

Using the protocol-adjusted change in variance we estimated the optimal aggressiveness 

of volume censoring and the associated LPF-FD and GEV-DV parameters across a range of 

volumes per run and number of runs per subject. These are shown for each method in isolation in 

Figure 7a-b and Figure 7c-d, respectively, as well as for combined LPF-FD + GEV-DV 

censoring in Figure 7e-f. For combined censoring, LPF-FD and GEV-DV were varied along the 

vector defined by the ratio of LPF-FD ΦF and GEV-DV dG determined to be optimal for the 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/


HCP500 dataset in Table 1, as demonstrated in Figure 7g. Notably, in the absence of GSR, 

combined LPF-FD + GEV-DV censoring results in improvements to data quality when using a 

more aggressive combined threshold than those used for LPF-FD or GEV-DV individually, i.e., 

it is optimal to use both methods together to remove more volumes than when using either 

Figure 7. Optimal percent of volumes censored as a function of fMRI acquisition protocol (runs/subject and 

volumes/run), determined using analytic adjustments to empirically observed ΔMSE-RSFC (see Methods). Results 

are shown for LPF-FD (a,b), GEV-DV (c,d), and combined LPF-FD + GEV-DV censoring (e,f), both without GSR 

(a,c,e) and with GSR (b,d,f). Panel g demonstrates the optimal ratio of free parameters for combined LPF-FD + 

GEV-DV censoring from Table 1 used to produce data in e-f. All contour plots (a-f) are shown using the same color 

scale (Optimal % Volumes Censored); each panel displays the corresponding volume censoring parameter values. 
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method individually. In contrast, optimal data quality when using GSR is produced when using a 

threshold that relies almost entirely on GEV-DV, while removing fewer volumes than when 

using LPF-FD alone, in concordance with the results in Table 1.  

Finally, we aimed to utilize the findings in Figure 7e-g in order to provide estimates for 

optimal volume censoring parameters, for volume censoring using LPF-FD and GEV-DV in 

tandem, as a function of dataset size (i.e., number of runs per subject and volumes per run) that 

may be used by investigators for virtually any study protocol. The contribution of within-run 

variance in Z-transformed RSFC correlations to the between-subject variance at the study level 

can be calculated as 
1

𝑁𝑅∙(𝑁𝑉−3)
, where Nv is the number of volumes per run, and NR is the number 

of runs per subject that are included in the calculation of RSFC correlations (i.e., after discarding 

volumes prior to steady state T1 relaxation, or discarding volumes at the beginning and end of a 

run timeseries following bandpass filtering). Using this relationship, we determined the optimal 

GEV-DV dG as a function of this term, for a hypothetical dataset with 𝑁𝑅𝐻
 runs per subjects and 

𝑁𝑉𝐻
 volumes per run prior to volume censoring. We then fit a monoexponential curve (𝐴 ∙

exp(𝑏 ∙ 𝑥) + 𝑐) to this relationship for data without GSR (adjusted R2 = 0.99960) and with GSR 

(adjusted R2 = 0.99999), as shown in Figure 8a-b (optimal fit parameters are shown in Table 

S1). Table 2 and Figure 8c-f show these results for GEV-DV dG and LPF-FD ΦF as a function 

of 𝑁𝑅𝐻
⋅(𝑁𝑉𝐻

 - 3), the form of 𝐴 ∙ exp(𝑏/𝑥) + 𝑐, with parameters from the curve fit in Figure 8a-

b. The functions for optimal LPF-FD thresholds were determined by scaling the magnitude of 

the monoexponential (parameter A) by the ratio of ΦL/dG found to be optimal, separately for 

analyses with and without GSR (from Table 1 and Figure 7g). Table 2 presents these results in 

a straightforward, directly usable form that investigators may use to estimate optimal censoring 

parameters, simply by plugging in the relevant values for 𝑁𝑅𝐻
 and 𝑁𝑉𝐻

.  
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Figure 8. Procedure for estimating optimal censoring parameters as a function of study protocol. a,b) Fit of 

optimal GEV-DV dG vs. sampling variance observed at the between-subjects level. Data is fit to an equation of the 

form: A⋅exp(b⋅x) + c, where x = 1/(𝑁𝑅𝐻
⋅(𝑁𝑉𝐻

 - 3)), and A, b, and c are free parameters. Optimal fit parameters are 

shown in Table S1. c-f) Relationship between optimal GEV-DV dG (c,f) and LPF-FD ΦF (e,f) and study protocol, 

i.e., the reciprocal of between-subjects level sampling variance, the product of number of runs (𝑁𝑅𝐻
) per subject 

and the number of volumes per run minus 3 (𝑁𝑉𝐻
 – 3) in the full uncensored dataset. Optimal LPF-FD ΦF (e,f) was 

obtained by scaling the curve in panels e-f by the relationship shown in Fig. 7g and Table 1.  
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Discussion  

 The work presented here provides several significant advances in preprocessing strategies 

for reducing the impact of participant motion in RSFC studies employing acquisitions with 

multiband acceleration and fast repetition times (TRs). First, we proposed two novel methods for 

evaluating the quality of data in each frame of an RSFC timeseries (LPF-FD and GEV-DV) for 

volume censoring and demonstrated that these methods outperform existing methods across the 

board. Next, we developed a novel metric for empirically determining an optimal threshold for 

both LPF-FD and GEV-DV in isolation, as well as when used in combination, which we term 

ΔMSE-RSFC. We then analytically extended this metric to provide formulas that estimate 

optimal thresholds for virtually any dataset, as a function of the number of runs and number of 

volumes within each run of a dataset. MATLAB code that provides these optimal thresholds, as 

well as code that calculates LPF-FD and GEV-DV on motion parameter estimates and whole-

brain RSFC timeseries (i.e., NIFTI or CIFTI format images of the RSFC data for a run), 

respectively, is publicly available (see Code Availability). 

 In addition, this work also provides two key advances for investigators engaged in 

developing and evaluating preprocessing strategies for motion correction in RSFC. First, we 

show that some widely used approaches to evaluate the performance of preprocessing strategies 

for mitigating motion effects on RSFC estimates rest on the flawed assumption that true, 

Table 2. Optimal volume censoring parameters as a function of dataset size. 

No GSR With GSR 

GEV-DV dG (dimensionless) 

𝒅𝑮 = 0.5591 ⋅ exp (
269.6

𝑁𝑅𝐻
⋅ (𝑁𝑉𝐻

− 3)
) + 1.15 𝒅𝑮 = 0.0903 ⋅ exp (

937.3

𝑁𝑅𝐻
⋅ (𝑁𝑉𝐻

− 3)
) + 1.277 

LPF-FD ΦF (mm) 

𝝓𝑭 = 0.0136356 ⋅ exp (
269.6

𝑁𝑅𝐻
⋅ (𝑁𝑉𝐻

− 3)
) + 1.15 𝝓𝑭 = 0.995800 ⋅ exp (

937.3

𝑁𝑅 ⋅ (𝑁𝑉𝐻
− 3)

) + 1.277 

Note. Optimal GEV-DV dG and LPF-FD ΦF are shown as a function of study protocol, 𝑁𝑅𝐻
⋅(𝑁𝑉𝐻

 - 3), as shown in 

Figure 8c-d and Figure 8e-f, respectively.  The optimal ΦF/dG ratio is demonstrated visually in Figure 7g. 
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‘artifact-free’, RSFC correlations are unrelated to motion QC measures, such as the median FD 

value for a participant. Specifically, we demonstrated that when evaluating the number of 

significant differences in RSFC correlations between high- and low-motion subjects (which has 

commonly been used to evaluate how much residual motion artifact remains in a dataset after 

preprocessing), removing participants who have a family history of psychiatric or neurological 

disorder (FH+), or who tested positive for substance use or high blood alcohol level during the 

study (SU+), results in a significantly larger reduction in the number of significant differences 

between high- and low-motion subjects than is observed when removing FH- and SU- 

participants who exhibit an equivalent amount of in-scanner motion. Thus, we conclude that 

many of the observed significant differences in RSFC correlations between high- and low-

motion subjects in the full dataset actually reflect true differences in RSFC between FH/SU+ and 

FH/SU- individuals, rather than reflecting the presence of motion artifact. This finding implies 

that the correct interpretation of a change in the number of observed significant differences in 

RSFC between high- and low-motion participants due to volume censoring is uncertain, and thus 

problematic as a quantitative measure for evaluating performance, as higher quality motion-

correction pipelines may reveal true neural differences in RSFC while simultaneously removing 

those that are spurious. 

 In order to address this issue, we also developed a novel metric for evaluating motion 

denoising pipelines: MAC-RSFC. This metric simply measures the mean absolute change in 

Pearson correlation in an average RSFC ROI-pair across participants in a dataset as a result of 

motion-targeted censoring, compared to the same change observed when randomly censoring an 

equivalent number of volumes. Thus, to the extent that this measure increases in one pipeline 

compared to another for any given number of volumes censored, it can be inferred that a larger 
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impact on the data has been had specifically as a result of censoring motion-impacted volumes in 

the timeseries. 

Caveats and Further Considerations 

 We wish to highlight that the novel methods presented here were specifically designed 

for multiband data, and we would strongly advise against generalizing these findings to any 

single band, slower TR, dataset, without further evaluation. However, although these methods 

were developed specifically on the publicly available HCP 500 subjects data release, we do 

expect that they will generalize broadly to other multiband datasets, at least provided that they 

are of similar TR. Substantive differences in TR from the 720 ms used in the HCP study may 

produce changes in the magnitude of measured LPF-FD and LPF-DV values that cause the 

thresholds reported here to no longer be appropriate. However, provided the TR of a dataset is 

reasonably close to 720 ms, we expect that the thresholds we report here should be 

approximately correct; certainly, we anticipate that they would outperform any other volume 

censoring procedure currently available in the literature. 

 In addition, it is critical to note that investigators should not assume that applying the 

formula we provide for optimal censoring thresholds (see Table 2) necessarily results in 

adequate removal of motion artifact from a dataset. Rather, because our method attempts to 

balance measurement error (which depends in part on the quantity of data remaining after 

censoring) and motion-induced bias (which depends on the stringency of censoring thresholds), 

datasets with very brief RSFC acquisitions, and thus relatively few timepoints even prior to 

censoring, will require very lenient thresholds because variance increases so rapidly as data is 

removed. Rather, Figure 7 suggests that a minimum of approximately 1,000 volumes (12 

minutes of data collection at the 720 ms TR used here) is required before recommended 
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thresholds begin to level off, consistent with this being the point at which more aggressive 

censoring begins to have smaller marginal returns in reducing motion-induced bias remaining in 

the data. Below this quantity of data, the loss of power associated with more aggressive 

censoring thresholds prohibits the use of sufficiently aggressive LPF-FD and GEV-DV cutoffs, 

and consequently leaves substantial motion artifact in the dataset.  

Further, as shown in Figure S3 and discussed in Supplementary Results, the distribution 

of motion artifact systematically varies across runs within each session, and over time within 

each run, with the highest-quality data acquired near the start of each run, and during the first run 

of each session. Notably, a substantial “rebound” towards higher quality data occurs at the 

beginning of the second run, and thus it is advisable to aim to employ a larger number of shorter 

runs rather than a smaller number of long runs. Specifically, Figure S3 strongly suggests that 

employing twice as many runs at half the length employed in the HCP study would have resulted 

in substantially less participant motion than was observed. 

 Another consideration is that we did not separately consider spike regression methods, 

because although they differ from censoring in implementation (direct removal of high-motion 

volumes from the timeseries in the latter, compared to inclusion of a nuisance regressor for each 

effected volume in the former), the effect of censoring versus spike regression on RSFC 

correlations and degrees of freedom is identical. Thus, observed differences between these two 

approaches2,3 are a result of differences in how high-motion volumes are identified, rather than 

the removal method per se. Because the methods have been shown to perform similarly2,3, we 

felt that comparing our approach to only one of these two methods would enhance clarity and 

simplify presentation of our results, with no substantive impact on our conclusions. 
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Methods 

Resting State Functional Connectivity Dataset and Pre- and Post-Processing 

 We employed minimally preprocessed data34 from the HCP 500 Subjects data release, 

comprising 501 subjects, each with 4 runs (or, in rare cases, 2 runs) of resting-state fMRI data of 

14 minutes 24 sseconds (1200 volumes), collected over two sessions, and described in detail 

elsewhere13,24,35. Data were acquired using the HCP 3T Siemens “Connectome Skyra” scanner, 

using 2 mm3 isotropic voxel size, 720 ms TR, and multiband acceleration factor of 813,35.  All 

subsequent analyses were conducted using custom MATLAB functions. RSFC processing was 

kept generally similar to previously published methods5, with most changes designed to reduce 

computational and disk utilization demands. 

A set of 10 mm diameter spheres were drawn around 264 center coordinates reported 

elsewhere25, and fMRI timeseries were averaged across all voxels in each sphere to generate 264 

timeseries for each run. Global signal (GS) was calculated as the mean signal in all voxels in the 

brain, determined for each subject (from the brainmask_fs.2.nii.gz files included with HCP 

subject data). Nuisance signals from white matter (WM) and cerebrospinal fluid (CSF) were 

calculated as the average signal in all compartment voxels remaining after an iterative erosion 

procedure, in which masks were eroded up to four times as long as some voxels remained in the 

mask following erosion5.  

The first 10 volumes of each run timeseries were discarded, as inspection of mean 

timeseries values averaged across all participants showed elevated signal in these volumes (data 

not shown), consistent with an extended tissue relaxation effect remaining in the data. Next, all 

timeseries were mode 1000 normalized (multiplied by 1000 and divided by the modal value of 

all in-brain voxels), demeaned, and detrended. All timeseries were band-pass filtered between 
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0.009 and 0.08 Hz using a second-order zero-phase Butterworth filter, and the first and last 30 

volumes of each timeseries were discarded (as these volumes showed systematic deviations from 

expected when averaged across the entire dataset, due to filter effects at the edges of the 

timeseries).  

 

Resting-State Functional Connectivity Analysis Methods  

RSFC correlations were calculated using partial correlations, by comparing each pairwise 

ROI while partialing out the effect of various nuisance parameters. Nuisance parameters 

included band-pass filtered motion parameters (MPs) and their squares, the derivatives of the 

band-pass filtered MPs and the squares of those derivatives, the WM signal and its derivative, 

and the CSF signal and its derivative. All derivatives were calculated by backwards difference. 

Analyses both with and without GSR (i.e., with and without including mean signal in all brain 

voxels, and its first derivative) were conducted and are presented side by side throughout. All 

RSFC correlations were Fisher’s r-to-Z transformed immediately after their calculation, prior to 

their use in any further computations or analysis, and are reported in this form throughout this 

manuscript. In all cases, (Z-tranformed) RSFC correlations for each subject were calculated 

separately for each available fMRI run (4 for most participants, although some HCP participants 

have fewer) and averaged together across runs. 

 

Standard Volume Censoring Methods 

 For standard (FD and DV) volume censoring, high-motion volumes were identified and 

targeted for removal by volume censoring (scrubbing) when their FD exceeded a threshold FD 

value, or when their DV value exceeded a threshold DV value. FD was calculated as the 
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estimated motion of a cortical voxel from one frame to the next, based on translation and the 

rotation of a point on the circumference of a 50 mm radius sphere4; DV was calculated as the 

root-mean-square (over voxels) of the first derivative (by backwards differences) of the 

timeseries across all brain voxels4,23. Calculation of standard DV values was carried out 

following volume smoothing with a 4 mm FWHM gaussian kernel in SPM 12, in order to 

produce values closer to those reported for prior datasets4,5, as unsmoothed data produces much 

higher values of DV. Prior to band-pass filtering of timeseries, linear interpolation was used to 

replace censored time series data before discarding these time points from analysis. Runs for 

which less than 2 minutes of uncensored data (167 volumes) remained after censoring were 

excluded from analysis. Study participants were retained for analysis provided they had at least 1 

run remaining after censoring. 

 

LPF-Based Volume Censoring (LPF-FD and LPF-DV) and Adaptive LPF-DV Censoring (GEV-

DV) 

LPF-FD was calculated for each frame by calculating FD as above, but on a set of MPs 

that were first low-pass filtered at 0.2 Hz with a second-order Butterworth filter. LPF-DV was 

calculated by applying the same low-pass filter to voxel timeseries data prior to calculation of 

DV (as above). Similar to standard FD and DV volume censoring, the aggressiveness of LPF-FD 

and LPF-DV volume censoring was set by selecting threshold LPD-FD and LPF-DV values, 

respectively, denoted ΦF and ΦD.  

 Adaptive LPF-DV censoring thresholds were set by maximum likelihood fitting of a 

generalized extreme value (GEV) distribution36 to the LPF-DV values within each run, and 

setting the threshold LPF-DV value ΦD separately within each run such that the cumulative 
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density function (CDF) at ΦD is equal to 1 −
𝑘𝐺+0.3

𝑑𝐺
 (i.e., the area under the curve of the GEV to 

the right of the cutoff is equal to 
𝑘𝐺+0.3

𝑑𝐺
), where kG is the shape parameter obtained from the GEV 

fit, and dG is a free parameter. The shape parameter kG is greater in runs containing more extreme 

DV values (i.e., a thicker right tail), causing a greater proportion of the data to be excluded when 

more data has high LPF-DV values relative to the central tendency for that run. The free 

parameter dG allows investigators to set the overall aggressiveness of the cutoff across the 

dataset, which is used in place of a fixed LPF-DV threshold. In cases where LPF-FD and GEV-

DV volume censoring are used together, volumes with an LPF-FD value exceeding the threshold 

set for the study (ΦF), or an LPF-DV value exceeding the threshold set for the run (ΦD), were 

censored (i.e., a logical OR operation on the censoring vectors produced by each method).  

 

Comparison of High- to Low-Motion Participants After Censoring 

 We also sought to compare the number of significant differences in RSFC correlations 

between high- and low-motion participants, following prior work3,5,7,9, by splitting the sample 

into terciles based on median FD for each participant. However, as described in the results, we 

observed an alarmingly high number of significant differences between high- and low-motion 

participants following motion censoring. This led us to hypothesize that the assumption that this 

approach rests on (that there are no true RSFC differences between high- and low-motion 

participants, such that any such differences can be ascribed to the effects of motion) might be 

false. Consequently, we used the HCP Tier 2 Restricted Data release to identify and remove 

participants with a family history of any psychiatric or neurological condition (e.g. 

schizophrenia, Parkinson’s disease, etc.), or who engaged in drug use or had elevated blood-
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alcohol content (BAC) in the course of the study, which resulted in exclusion of 154 and 32 

participants, respectively. 

 In order to determine whether removal of these participants resulted in a greater-than-

expected reduction in the number of differences in RSFC correlations, we also generated 1000 

Monte Carlo resamplings of the dataset that excluded the same number of participants who did 

not have a family history of psychiatric or neurological disorder, or positive toxicology or 

elevated BAC, but who still had approximately the same mean motion as the originally excluded 

participants. This was done by restricting the set of participants from which resampling could 

occur to those with a median FD value across all RSFC runs that was either higher or lower than 

the “true” excluded sample mean, depending on whether the current sample mean was higher or 

lower than the mean of the true sample. That is, for each Monte Carlo iteration, a new set of 186 

participants to be removed was randomly selected, one participant at a time. The first participant 

to be removed was randomly selected from the entire set of participants who lack a family 

history of psychiatric or neurological disorder, positive toxicology, and elevated BAC. If this 

participant’s median FD value was greater than the mean of the true 186 excluded participants, 

then the second participant was randomly selected from only those participants with a median 

FD value lower than the mean of the true 186 participants; conversely, if the participant’s median 

FD value was lower than the mean of the true sample, then the second participant had to have a 

median value that was higher than the mean. The third participant was then selected from those 

participants with higher or lower median FDs than the true sample mean, based on whether the 

mean of the first two participants was higher or lower than the true sample mean. This process 

was repeated iteratively until a full sample of 186 participants had been constructed, for each of 

the 1000 Monte Carlo resamplings. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Significant differences between high- and low-motion participants (the upper and lower 

tercile of the median FD for each participant across all volumes in all runs, respectively) were 

then determined for each ROI pair at a range of uncorrected p-value thresholds (ranging from P < 

0.0001 to P < 0.1, in increments of 0.00001). This was done for the full dataset, for a dataset 

excluding all family history or substance use positive participants, and for each of the 1000 

Monte Carlo samples.  

 

Evaluation of Volume Censoring Performance  

Changes to RSFC correlations as a result of targeted volume censoring were evaluated 

for each method as compared to randomly censoring an equivalent number of volumes within 

each run (“random censoring”). Contiguous clusters of “bad” volumes (i.e., volumes flagged for 

removal) were randomly permuted, in order to maintain the size and number of censored regions 

in each run, and averaged over 10 randomizations4. 

Figure 5 shows a comparison of volume censoring methods across a range of parameter 

values for each method. The range of parameters evaluated was as follows. For FD and LPF-FD 

(all units in mm): 1001 points from 0 though 0.1 in steps of 10-4, 160 points from 0.1025 through 

0.5 in steps of 2.5 x 10-3, 50 points from 0.51 through 1.0 in steps of 10-2, 90 points from 11 

through 100 in steps of 0.1, and infinity (corresponding to no censoring). For DV and LPF-DV 

(all units in tenths of % signal change per frame): 1001 points from 0 through 10 in steps of 0.01, 

160 points from 10.25 through 50 in steps of 0.25, 50 points from 51 through 100 in steps of 1, 

90 points from 110 through 1,000 in steps of 10, and infinity (corresponding to no censoring). 

For GEV-DV dG (all units dimensionless): 1,000 points from 0.005 through 5 in steps of 0.005, 
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50 points from 5.1 through 10 in steps of 0.1, 90 points from 11 through 100 in steps of 1, and 

infinity (no censoring).  

The mean absolute change in resting state functional connectivity (MAC-RSFC) was 

determined by first calculating the mean within-subject RSFC correlations in all ROI pairs after 

targeted volume censoring, and subtracting the mean RSFC correlations resulting from random 

censoring (averaged over 10 random censoring vectors), to obtain 𝛥𝑍𝑖,𝑘 for the ith subject and 

kth ROI pair. This is equivalent to subtracting the change in RSFC correlations produced by 

targeted volume censoring from that due to random censoring. 

That is, for subject i, run j, ROI pair k, and random permutation vector p 

𝛥𝑍𝑖,𝑘 = ∑
𝑍𝑖,𝑗,𝑘  −  

∑ 𝑍𝑅𝐴𝑁𝐷𝑖,𝑗,𝑘,𝑝
𝑁𝑅𝐴𝑁𝐷
𝑝=1

𝑁𝑅𝐴𝑁𝐷

𝑁𝑅𝑖

,

𝑁𝑅𝑖

𝑗=1

(1) 

where 𝑍𝑖,𝑗,𝑘 is the RSFC correlation for subject i, run j, and ROI pair k, after targeted volume 

censoring, 𝑍𝑅𝐴𝑁𝐷𝑖,𝑗,𝑘,𝑝
 is the RSFC correlation for subject i, run j, and ROI pair k after volume 

censoring using random permutation vector p, 𝑁𝑅𝑖
 is number of runs that exist after censoring for 

subject i, and the number of random permutations used per run is 𝑁𝑅𝐴𝑁𝐷 (here, 10). MAC-RSFC 

is calculated for the full sample as 

MAC-RSFC = ∑
∑

|𝛥𝑍𝑖,𝑘|
𝑁𝑆

𝑁𝑆
𝑖=1

𝑁𝑃𝐴𝐼𝑅

𝑁𝑃𝐴𝐼𝑅

𝑘=1

, (2) 

in which 𝑁𝑆 is the number of subjects in the sample after volume censoring and NPAIR is the 

number of ROI pairs used for analysis (here, 𝑁𝑃𝐴𝐼𝑅 = (264
2

) = 34,716). 95% confidence 

intervals for MAC-RSFC were approximated for each parameter value using the bias-corrected 

and accelerated (BCa) bootstrap with 10,000 bootstrap samples37. Note that MAC-RSFC has a 
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nonzero null expectation, making it unsuitable for evaluating whether a given parameter value 

for a given method has a significant non-zero effect. However, comparisons between parameter 

values within each method, or between two or more methods, do have a zero null expectation. 

That is, in the absence of any true between-method (or between-parameter) differences in the 

impact of targeting volumes for removal on RSFC estimates, MAC-RSFC would be expected to 

be identical across methods. Note further that, while ΔMSE-RSFC (see below) decomposes the 

effects of volume censoring on sample RSFC estimates into bias and variance components, 

MAC-RSFC measures both in aggregate. 

 

Delta-Mean-Squared-Error Based Methods (ΔMSE-RSFC) 

We developed ΔMSE-RSFC as a quantitative benchmark for volume censoring 

performance that could be used as an optimization target to determine optimal free parameter 

values for each volume censoring method (i.e., optimal LPF-FD ΦF and GEV-DV dG). As 

explained in detail in Results, we evaluated the mean squared error (MSE) in RSFC correlations 

for each pair of ROIs, divided by the number of subjects remaining after censoring (NS), over the 

range of parameter values noted above for LPF-FD and GEV-DV. ΔMSE-RSFC was calculated 

in each ROI pair k and averaged over all ROI pairs, i.e., 

𝛥MSE-RSFC = 
∑ 𝛥MSE-RSFC𝑘

𝑁𝑃𝐴𝐼𝑅
𝑘=1

𝑁𝑃𝐴𝐼𝑅
, (3) 

where NPAIR is the number of ROI pairs (34,716 as above), and 

𝛥MSE-RSFC𝑘 = 𝛥 (
𝑀𝑆𝐸(�̂�𝑘)

𝑁𝑆
) =

𝑀𝑆𝐸(�̂�𝐶𝑘)

𝑁𝑆
−

𝑀𝑆𝐸(�̂�𝑈𝑘)

𝑁𝑆𝑈

, (4)  

where 𝜃𝑈𝑘
 is the estimated RSFC correlation in ROI pair k from uncensored data, 𝜃𝐶𝑘

 is the 

same estimator for volume censored data, and 𝑁𝑆𝑈
 is the number of subjects in the dataset in the 
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uncensored dataset. 𝑀𝑆𝐸(𝜃𝑘) is the mean squared error in the RSFC correlation estimate for 

ROI pair k, accounting for both the variance (observed across subjects) and bias produced by 

motion artifact 

𝑀𝑆𝐸(𝜃𝑘) = 𝐸[(𝜃𝑘 − 𝜃𝑘)2] = 𝜎2(𝜃𝑘) + 𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘)
2

, (5) 

in which 𝜃𝑘 is the true population mean RSFC correlation for a single ROI pair k and 𝜃𝑘 is its 

estimator, 𝜎2(𝜃𝑘) is the observed between-subjects variance in 𝜃𝑘, and 𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘) is the bias 

in 𝜃𝑘, here defined as the total motion-induced bias that is removeable by volume censoring (see 

elsewhere38 for further details on the bias-variance decomposition of MSE). Thus, 

𝛥MSE-RSFC𝑘 =
𝜎2(𝜃𝐶𝑘

) + 𝐵𝑖𝑎𝑠(𝜃𝐶𝑘
, 𝜃𝑘)

2

𝑁𝑆
−

𝜎2(𝜃𝑈𝑘
) + 𝐵𝑖𝑎𝑠(𝜃𝑈𝑘

, 𝜃𝑘)
2

𝑁𝑆𝑈

. (6) 

As it is not possible to measure 𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘) directly, we instead estimated the change in 

bias due to volume censoring, 𝛥𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘), in each ROI pair by measuring the mean sample-

wide magnitude of the change in its RSFC correlation due to volume censoring and taking the 

additive inverse, i.e.,  

𝛥𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘) = − |∑
𝛥𝑍𝑖,𝑘

𝑁𝑆

𝑁𝑆

𝑖=1

| , (7) 

where 𝛥𝑍𝑖,𝑘 is defined in Equation 1. The change in squared bias can then be estimated as 

𝛥 [𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘)
2

] = |[𝐵𝑖𝑎𝑠(𝜃𝑈𝑘
, 𝜃𝑘) + 𝛥𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘)]

2
−  𝐵𝑖𝑎𝑠(𝜃𝑈𝑘

, 𝜃𝑘)
2

| , (8) 

and thus 

𝐵𝑖𝑎𝑠(𝜃𝐶𝑘
, 𝜃𝑘)

2
= 𝐵𝑖𝑎𝑠(𝜃𝑈𝑘

, 𝜃𝑘)
2

+ 𝛥 [𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘)
2

] . (9) 

As noted above, 𝐵𝑖𝑎𝑠(𝜃𝑈𝑘
, 𝜃𝑘) is the total sample-wide motion-induced bias in RSFC 

correlations that is removeable by volume censoring, and is necessarily not known. However, we 
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estimate this value for each ROI pair by measuring the additive inverse of the change in mean 

RSFC correlations due to volume censoring, 𝛥𝐵𝑖𝑎𝑠(𝜃𝑘, 𝜃𝑘), as a function of percent of frames 

removed (as in the top row of Figure 6), resampling to a resolution of 0.01% using linear 

interpolation, estimating the slope using robust regression (bisquare weight function, tuning 

constant of 4.685) and an intercept of 0, and extrapolating to estimate the value at 100% frames 

removed. This method was used in order to provide a reasonable estimate of total bias that is 

robust to the instability in RSFC correlation estimates as the number of frames removed begins 

to approach 100% (notably, this instability also necessitates the absolute value employed on the 

right side of Equation 8, so that this instability near 100% frame removal is not treated as the 

maximal removal of bias). As a demonstration, this method is shown for the average RSFC 

correlation across all ROI pairs, using LPF-FD based censoring, without GSR, in Figure S4.  

 

Determination of Optimal Volume Censoring Parameters Using Multi-Parameter Global 

Optimization 

 Optimal parameters for combined LPF-FD and GEV-DV volume censoring were 

determined by using an optimization procedure to minimize ΔMSE-RSFC. Optimization was 

carried out using a particle swarm global optimization algorithm (particleswarm in MATLAB39-

41), followed by simulated annealing (simulannealbnd in MATLAB42-44), each followed by a 

pattern search local optimization algorithm (patternsearch in MATLAB45-50 with default settings) 

to refine results. Particle swarm optimization was carried out using 44 particles, 40 of which 

were randomly generated upon initialization in the interval [10-1, 104], with a log10-uniform 

distribution, for both LPF-FD ΦF and GEV-DV dG. The 4 remaining particles were placed along 

the edges of this distribution, i.e. (10-1
, 10-1), (10-1

, 104), (104
, 10-1), and (104

, 104). Parameters for 
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the particle swarm optimization were 1000 stall iterations and an initial neighborhood size of 1. 

Simulated annealing was carried out using the optimal points determined by particleswarm (after 

refinement of local minima using patternsearch) as starting values, with an initial temperature of 

1000, reannealing interval of 100, and function tolerance of 10-6, with steps with length 

temperature and direction chosen uniformly at random (i.e., ‘annealingfast’).  

 

Estimation of Optimal Censoring Thresholds for Other Datasets 

 In order to determine optimal volume censoring parameters appropriate for a variety of 

acquisition protocols (i.e., protocols that differ from the HCP datasets in number of runs per 

subject and number of volumes per run), we developed an approach to approximate the ΔMSE-

RSFC that would be expected over a range of protocols as a function of volume censoring 

parameters (LPF-FD and GEV-DV).  

Our approach was to first consider a variance decomposition of a given RSFC correlation 

for ROI pair k 

𝜎2(𝜃𝑘) = 𝜎𝑆
2(𝜃𝑘) +

𝜎𝑅
2(𝜃𝑘) + 𝜎𝑍

2(𝜃𝑘)

�̃�𝑅

+  𝜎𝐴
2(𝜃𝑘), (10) 

where 𝑁𝑅 is the harmonic mean of the number of runs across all subjects in the study, 𝜎2(𝜃𝑘) is 

the observed variance across study participants for ROI pair k, 𝜎𝑆
2(𝜃𝑘) is the true between-

subjects variance in the RSFC correlation that exists between individual participants, 𝜎𝑅
2(𝜃𝑘) is 

the true between-runs variance in RSFC correlation k, 𝜎𝑍
2(𝜃𝑘) is the within-runs variance in Z-

transformed Pearson’s product-moment correlations due to sampling error, and 𝜎𝐴
2 is the total 

contribution of motion artifact (and potentially other sources of unexplained error) to 𝜎2(𝜃𝑘). 

For simplicity, we assume in these analyses that RSFC is a stationary process, and thus variance 
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in observed correlations between runs is solely due to 𝜎𝑍
2(𝜃𝑘), i.e., there is no true between-runs 

variance, and so we get: 

𝜎2(𝜃𝑘) = 𝜎𝑆
2(𝜃𝑘) +

𝜎𝑍
2(𝜃𝑘)

𝑁𝑅

+ 𝜎𝐴
2(𝜃𝑘). (11) 

Further, we can use the known variance of a Z-transformed Pearson correlation (which depends 

only on the number of observations), such that for subject i and run j 

𝜎𝑍
2(𝜃𝑖,𝑗,𝑘) =

1

𝑁𝑉𝑖,𝑗−3
, (12)  

where 𝑁𝑉𝑖,𝑗   is the number of volumes remaining in the analysis after volume censoring for 

subject i and run j. It follows that we can write the variance at the study (between-subjects) level 

due to 𝜎𝑍
2(𝜃𝑘), averaged across all runs and all subjects, here defined as 𝜎𝑍,𝑆𝑇𝑈𝐷𝑌

2 (�̂�𝑘), as 

𝜎𝑍,𝑆𝑇𝑈𝐷𝑌
2 (𝜃𝑘) = ∑

∑
1

(𝑁𝑅𝑖
)(𝑁𝑉𝑖,𝑗

− 3)
𝑁𝑅𝑖

𝑖=1

𝑁𝑆
.

𝑁

𝑟=1

 (13) 

Equation 13 can also be written as a product of harmonic means for the whole dataset, 

𝜎𝑍,𝑆𝑇𝑈𝐷𝑌
2 (�̂�𝑘) =

𝑁𝑆

∑
1

(𝑁𝑅,𝑖)
𝑁𝑆
𝑖=1

⋅
𝑁𝑆

∑

∑ (
1

𝑁𝑉𝑖,𝑗
− 3

)
𝑁𝑅𝑖

𝑗=1

𝑁𝑅𝑖

𝑁𝑆
𝑖=1

 =   
1

�̃�𝑅(𝑁𝑉 − 3)̃
=

1

�̃�𝑅 ⋅ 𝜈
, (14)

 

where 𝑁𝑅 is the across-subjects harmonic mean of 𝑁𝑅𝑖
, and 𝜈 is the across-subjects harmonic 

mean of the across-runs harmonic mean of (𝑁𝑉𝑖,𝑗
− 3). Further, we can define χ and γ as the 

proportions of runs and volumes remaining after censoring, respectively, i.e., χ =
�̃�𝑅

�̃�𝑅𝑈

 , and γ =

�̃�

�̃�𝑈
, where �̃�𝑅𝑈

 is the harmonic mean of the number of runs across subject before censoring and 

𝜈𝑈 is the harmonic mean of (𝑁𝑉𝑖,𝑗
− 3) across runs and subjects before censoring, such that, 
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𝜎𝑍,𝑆𝑇𝑈𝐷𝑌
2 (𝜃𝑘) =   

1

(χ ⋅ 𝑁𝑅𝑈
)(γ ⋅ 𝜈𝑈)

. (15) 

As a consequence of Equation 11, we can estimate the increase in between-subjects 

variance that occurs due to removal of volumes and runs as a result of volume censoring as 

𝛥𝜎𝑍,𝑆𝑇𝑈𝐷𝑌
2 (𝜃𝑘) = 𝜎𝑍𝐶

2 (�̂�𝑘) − 𝜎𝑍𝑈

2 (𝜃𝑘), (16) 

where 𝜎𝑍,𝑈
2 (�̂�𝑘) and 𝜎𝑍,𝐶

2 (𝜃𝑘) are calculated for the study per Equation 15 for the HCP500 

dataset before and after volume censoring, respectively. Thus,  

𝛥𝜎𝑍,𝑆𝑇𝑈𝐷𝑌
2 (𝜃𝑘) =

(1 − χ) ⋅ �̃�𝑅𝑈 + (1 − γ) ⋅ �̃�𝑈

(χ ⋅ �̃�𝑅𝑈 + γ ⋅ 𝜈�̃�)(�̃�𝑅𝑈 + �̃�𝑈)
 . (17) 

 Our approach is to approximate what 𝛥𝜎𝑍
2(𝜃𝑘) would be in a dataset of a different size, 

i.e., how this term would change for a different �̃�𝑅𝑈
 and 𝜈𝑈, and use this estimate to adjust our 

observed  estimate of 𝜎2(𝜃𝑘) from the actual HCP500 dataset. First, we assumed that in a 

hypothetical dataset, motion artifact would be distributed identically across frames, runs, and 

subjects, with equivalent magnitude, as in the HCP500 dataset. Therefore, an equivalent 

proportion of this hypothetical dataset (i.e., an equal percentage of subjects, runs, and volumes) 

would be removed for any given volume censoring parameter as was actually removed in the 

HCP500 dataset. We can estimate the study protocol-adjusted 𝛥𝜎𝑍
2(𝜃𝑘) for any given set of 

volume censoring parameters for a hypothetical dataset with uniformly 𝑁𝑅𝐻
 runs per subject and 

𝑁𝑉𝐻
 volumes per run, and 𝜈𝐻 = (𝑁𝑉𝐻

− 3), 

𝛥𝜎𝑍,𝑆𝑇𝑈𝐷𝑌
2

𝐻
(𝜃𝑟) =

(1 − χ) ⋅ 𝑁𝑅𝐻
+ (1 − γ) ⋅ 𝜈𝐻

(χ ⋅ 𝑁𝑅𝐻
+ γ ⋅ 𝜈𝐻)(𝑁𝑅𝐻

+ 𝜈𝐻)
. (18) 

 Consequently, for all estimates of the change in between-subjects variance due to volume 

censoring, 𝛥𝜎2(𝜃𝑘)  we can additionally determine the change in variance that should be 
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observed in a hypothetical dataset, denoted 𝛥𝜎𝐻
2(𝜃𝑘), by subtracting the estimated increase in 

variance due to censoring observed at the between-subjects level in the HCP500 dataset, as 

estimated in Equation 17, and adding that which would have theoretically been observed in a 

hypothetical dataset as estimated in Equation 18 

𝛥𝜎𝐻
2 (�̂�𝑘) = 𝛥𝜎2(�̂�𝑘) + 𝛥𝜎𝑍,𝑆𝑇𝑈𝐷𝑌

2

𝐻
(�̂�𝑘) −  𝛥𝜎𝑍

2(𝜃𝑘), (19) 

and thus, 

 𝜎𝐻
2 (�̂�𝐶𝑘) = 𝜎2(�̂�𝑈𝑘) + 𝛥𝜎𝐻

2 (�̂�𝑘). (20) 

 This can then be used to obtain an estimate of ΔMSE-RSFC for this hypothetical dataset 

by replacing 𝜎2(𝜃𝐶𝑘
) terms in Equation 6 with 𝜎𝐻

2(𝜃𝐶𝑘
) and, assuming an equal proportion of 

subjects removed due to volume censoring in this hypothetical dataset as in the HCP500 dataset, 

𝛥𝑀𝑆𝐸-𝑅𝑆𝐹𝐶𝐻𝑘
 = 

𝜎𝐻
2(𝜃𝐶𝑘

) + 𝐵𝑖𝑎𝑠(𝜃𝐶𝑘
, 𝜃𝑘)

2

𝜁𝑁𝑆𝐻

−
𝜎2(𝜃𝑈𝑘

) + 𝐵𝑖𝑎𝑠(𝜃𝑈𝑘
, 𝜃𝑘)

2

𝑁𝑆𝐻

, (21) 

in which 𝑁𝑆𝐻
 is the number subjects in the hypothetical dataset, ζ is the proportion of subjects 

remaining in the dataset after volume censoring, i.e., ζ =
𝑁𝑆

𝑁𝑆𝑈

, where 𝑁𝑆𝑈
 is the number of 

subjects in the full, uncensored, HCP500 dataset. Finally, we can calculate the average 

𝛥𝑀𝑆𝐸-𝑅𝑆𝐹𝐶𝐻𝑘
 across all ROI pairs using Equation 1, 

𝛥MSE-RSFC𝐻 = ∑
𝛥𝑀𝑆𝐸-𝑅𝑆𝐹𝐶𝐻𝑘

𝑁𝑃𝐴𝐼𝑅

𝑁𝑃𝐴𝐼𝑅

𝑘=1

 . (22) 

 

Determination of Optimal Volume Censoring Parameters for Variable Acquisition Protocols 

 Using Equations 18-22, we varied the initial number of frames and runs in a hypothetical 

dataset where 𝑁𝑅𝐻
 was varied in the range [1,8] in steps of 0.05, and 𝑁𝑉𝐻

 was varied in the range 

[100, 2000], in steps of 1 from 100 through 500, and in steps of 5 from 505 through 2000. 
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ΔMSE-RSFC was recalculated for each combination of 𝑁𝑅𝐻
 and 𝑁𝑉𝐻

, for volume censoring 

parameters using the optimal ratio of LPF-FD ΦF to GEV-DV dG when used in tandem as shown 

in Table 1, i.e., along the vectors shown in Figure 7g, separately for analyses with GSR and 

without GSR. A total of 3,582 sets of volume censoring parameters were sampled, using the 

union of the set of parameters used to sample LPF-FD and GEV-DV independently when 

calculating MAC-RSFC and ΔMSE-RSFC for the HCP500 dataset, and the aforementioned 

optimal FD ΦF/dG ratio. All contour plots in Figure 7 are displayed after smoothing using a 2D 

Gaussian smoothing kernel with a standard deviation of 1. The curve fit of GEV-DV dG as a 

function of study protocol, as shown in Figure 8a-b, was carried out using the Curve Fitting 

Toolbox in MATLAB R2018b, robustly by minimizing the least absolute residuals (LAR), using 

the Levenberg-Marquardt algorithm, and coefficient and function termination tolerances (‘TolX’ 

and ‘TolFun’) of 10-12; all fits converged. 

 

Data Availability 

The data employed here are publicly available from the Human Connectome Project at 

https://db.humanconnectome.org, and include all S500 Release subjects resting state fMRI 

data13,24,34,35.  

 

Code Availability 

The software package accompanying this article allows a user to perform the LPF-FD 

and GEV-DV volume censoring methods described herein, as well determine optimal volume 

censoring parameters for a given dataset size as per the formulae in Table 2. This code is 

publicly available under the terms of the GNU General Public License Version 3 on the 
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MathWorks File Exchange at https://www.mathworks.com/matlabcentral/fileexchange/73479-

multiband_fmri_volume_censoring. 

 

Acknowledgements 

 This work was funded by K01 MH 107763. J. C. W. was also supported by F30 MH 

122136. 

Mark Slifstein, Anissa Abi-Dargham, Joseph Schwartz, and Yuefan Deng provided 

helpful commentary on various aspects of the methods presented here. Zu Jie Zheng, Philip 

Tubiolo, Alexander Eichert, Eilon Silver-Frankel, and Bernie Hung-Wei Chen assisted with 

submitting jobs to the SeaWulf HCP cluster, and with generating figures. The Stony Brook 

University Institute for Advanced Computational Science (IACS) provided critical high-

performance computing resources and technical assistance for the completion of this work. 

 

Author Contributions 

J.X.V.S. initially conceived of the project and J.C.W. additionally contributed to the 

design. Both authors contributed to the analysis and interpretation of data, as well as to the 

creation of new software. Both authors drafted and revised the manuscript. 

 

Competing Interests Statement 

The authors declare no competing financial interests. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://www.mathworks.com/matlabcentral/fileexchange/73479-multiband_fmri_volume_censoring
https://www.mathworks.com/matlabcentral/fileexchange/73479-multiband_fmri_volume_censoring
https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

 

1. https://www.nimh.nih.gov/about/strategic-planning-reports/strategic-research-

priorities/index.shtml. Strategic Research Priorities Overview. (2017). 

2. Ciric, R., et al. Benchmarking of participant-level confound regression strategies for the 

control of motion artifact in studies of functional connectivity. Neuroimage 154, 174-187 (2017). 

3. Parkes, L., Fulcher, B., Yucel, M. & Fornito, A. An evaluation of the efficacy, reliability, 

and sensitivty of motion correction strategies for resting-state functional MRI. NeuroImage 171, 

415-436 (2018). 

4. Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L. & Petersen, S.E. Spurious but 

systematic correlations in functional connectivity MRI networks arise from subject motion. 

Neuroimage 59, 2142-2154 (2012). 

5. Power, J.D., et al. Methods to detect, characterize, and remove motion artifact in resting 

state fMRI. Neuroimage 84, 320-341 (2014). 

6. Power, J.D., Schlaggar, B.L. & Petersen, S.E. Recent progress and outstanding issues in 

motion correction in resting state fMRI. Neuroimage 105, 536-551 (2015). 

7. Satterthwaite, T.D., et al. An improved framework for confound regression and filtering 

for control of motion artifact in the preprocessing of resting-state functional connectivity data. 

Neuroimage 64, 240-256 (2013). 

8. Satterthwaite, T.D., et al. Impact of in-scanner head motion on multiple measures of 

functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60, 

623-632 (2012). 

9. Van Dijk, K.R., Sabuncu, M.R. & Buckner, R.L. The influence of head motion on 

intrinsic functional connectivity MRI. Neuroimage 59, 431-438 (2012). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Yan, C.G., et al. A comprehensive assessment of regional variation in the impact of head 

micromovements on functional connectomics. Neuroimage 76, 183-201 (2013). 

11. Power, J.D., et al. Customized head molds reduce motion during resting state fMRI 

scans. Neuroimage 189, 141-149 (2019). 

12. Moeller, S., et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using 

partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn 

Reson Med 63, 1144-1153 (2010). 

13. Ugurbil, K., et al. Pushing spatial and temporal resolution for functional and diffusion 

MRI in the Human Connectome Project. NeuroImage 80, 80-104 (2013). 

14. Miller, K.L., et al. Multimodal population brain imaging in the UK Biobank prospective 

epidemiological study. Nat Neurosci 19, 1523-1536 (2016). 

15. Jernigan, T.L., Brown, S.A. & Coordinators, A.C. Introduction. Dev Cogn Neurosci 32, 

1-3 (2018). 

16. Casey, B.J., et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging 

acquisition across 21 sites. Dev Cogn Neurosci 32, 43-54 (2018). 

17. Volkow, N.D., et al. The conception of the ABCD study: From substance use to a broad 

NIH collaboration. Dev Cogn Neurosci 32, 4-7 (2018). 

18. Hagler, D.J., Jr., et al. Image processing and analysis methods for the Adolescent Brain 

Cognitive Development Study. Neuroimage, 116091 (2019). 

19. Burgess, G.C., et al. Evaluation of Denoising Strategies to Address Motion-Correlated 

Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human 

Connectome Project. Brain Connect 6, 669-680 (2016). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/


20. Power, J.D., et al. Distinctions among real and apparent respiratory motions in human 

fMRI data. Neuroimage 201, 116041 (2019). 

21. Fair, D.A., et al. Correction of respiratory artifacts in MRI head motion estimates. 

bioRxiv  (2018). 

22. Power, J.D., et al. Characteristics of respiratory measures in young adults scanned at rest, 

including systematic changes and "missed" deep breaths. Neuroimage 204, 116234 (2019). 

23. Smyser, C.D., et al. Longitudinal analysis of neural network development in preterm 

infants. Cereb Cortex 20, 2852-2862 (2010). 

24. Van Essen, D.C., et al. The WU-Minn Human Connectome Project: an overview. 

Neuroimage 80, 62-79 (2013). 

25. Power, J.D., et al. Functional network organization of the human brain. Neuron 72, 665-

678 (2011). 

26. Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B. & Bandettini, P.A. The impact of 

global signal regression on resting state correlations: are anti-correlated networks introduced? 

NeuroImage 44, 893-905 (2009). 

27. Siegel, J.S., et al. Data Quality Influences Observed Links Between Functional 

Connectivity and Behavior. Cereb Cortex 27, 4492-4502 (2017). 

28. Power, J.D., Plitt, M., Kundu, P., Bandettini, P.A. & Martin, A. Temporal interpolation 

alters motion in fMRI scans: Magnitudes and consequences for artifact detection. PLoS One 12, 

e0182939 (2017). 

29. Power, J.D., et al. Ridding fMRI data of motion-related influences: Removal of signals 

with distinct spatial and physical bases in multiecho data. Proc Natl Acad Sci U S A 115, E2105-

E2114 (2018). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/


30. Muschelli, J., et al. Reduction of motion-related artifacts in resting state fMRI using 

aCompCor. Neuroimage 96, 22-35 (2014). 

31. Ciric, R., et al. Mitigating head motion artifact in functional connectivity MRI. Nat 

Protoc 13, 2801-2826 (2018). 

32. Bassett, D.S., Xia, C.H. & Satterthwaite, T.D. Understanding the Emergence of 

Neuropsychiatric Disorders With Network Neuroscience. Biol Psychiatry Cogn Neurosci 

Neuroimaging 3, 742-753 (2018). 

33. Caballero-Gaudes, C. & Reynolds, R.C. Methods for cleaning the BOLD fMRI signal. 

Neuroimage 154, 128-149 (2017). 

34. Glasser, M.F., et al. The minimal preprocessing pipelines for the Human Connectome 

Project. Neuroimage 80, 105-124 (2013). 

35. Smith, S.M., et al. Resting-state fMRI in the Human Connectome Project. Neuroimage 

80, 144-168 (2013). 

36. Prescott, P. & Walden, A.T. Maximum likelihood estimation of the parameters of the 

generalized extreme-value distrubtion. Biometrika 67, 723-724 (1980). 

37. Efron, B. & Tibshirani, R. An introduction to the bootstrap (Chapman & Hall, New York, 

1993). 

38. Wackerly, D.D., Mendenhall, W. & Scheaffer, R.L. Mathematical statistics with 

applications (Thomson Brooks/Cole, Belmont, CA, 2008). 

39. Shi, Y. & Eberhart, R. A modified particle swarm optimizer. in 1998 IEEE International 

Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational 

Intelligence (Cat. No.98TH8360) 69-73 (1998). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/


40. Kennedy, J. & Eberhart, R. Particle swarm optimization. in Proceedings of ICNN'95 - 

International Conference on Neural Networks 1942-1948 vol.1944 (1995). 

41. Mezura-Montes, E. & Coello Coello, C.A. Constraint-handling in nature-inspired 

numerical optimization: Past, present and future. Swarm and Evolutionary Computation 1, 173-

194 (2011). 

42. Ingber, L. Adaptive simulated annealing (ASA): Lessons learned. Control Cybernetics 

25, 33-54 (1996). 

43. Kirkpatrick, S., Gelatt, C.D., Jr. & Vecchi, M.P. Optimization by simulated annealing. 

Science 220, 671-680 (1983). 

44. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. Equation 

of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21, 1087-

1092 (1953). 

45. Davidon, W. Variable Metric Method for Minimization. SIAM Journal on Optimization 

1, 1-17 (1991). 

46. Conn, A.R., Gould, N. & Toint, P.L. A globally convergent Lagrangian barrier algorithm 

for optimization with general inequality constraints and simple bounds. Math. Comput. 66, 261-

288 (1997). 

47. Audet, C. & Dennis, J. Analysis of Generalized Pattern Searches. SIAM Journal on 

Optimization 13, 889-903 (2002). 

48. Lewis, R., Shepherd, A. & Torczon, V. Implementing Generating Set Search Methods for 

Linearly Constrained Minimization. SIAM Journal on Scientific Computing 29, 2507-2530 

(2007). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/


49. Abramson, M., Audet, C., Dennis, J. & Digabel, S. OrthoMADS: A Deterministic MADS 

Instance with Orthogonal Directions. SIAM Journal on Optimization 20, 948-966 (2009). 

50. Kolda, T., Lewis, R. & Torczon, V. Optimization by Direct Search: New Perspectives on 

Some Classical and Modern Methods. SIAM Review 45, 385-482 (2003). 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860635doi: bioRxiv preprint 

https://doi.org/10.1101/860635
http://creativecommons.org/licenses/by-nc-nd/4.0/

