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ABSTRACT

Background: Studies using quantitative experimental methods have shown that intracellular
spatial distribution of molecules plays a central role in many cellular systems. Spatially resolved
computer simulations can integrate quantitative data from these experiments to construct phys-
ically accurate models of the systems. Although computationally expensive, microscopic reso-
lution reaction-diffusion simulators, such as Spatiocyte can directly capture intracellular effects
comprising diffusion-limited reactions and volume exclusion from crowded molecules by explic-
itly representing individual diffusing molecules in space. To alleviate the steep computational
cost typically associated with the simulation of large or crowded intracellular compartments,
we present a parallelized Spatiocyte method called pSpatiocyte.
Results: The new high-performance method employs unique parallelization schemes on hexag-
onal close-packed (HCP) lattice to efficiently exploit the resources of common workstations and
large distributed memory parallel computers. We introduce a coordinate system for fast accesses
to HCP lattice voxels, a parallelized event scheduler, a parallelized Gillespie’s direct-method for
unimolecular reactions, and a parallelized event for diffusion and bimolecular reaction processes.
We verified the correctness of pSpatiocyte reaction and diffusion processes by comparison to
theory. To evaluate the performance of pSpatiocyte, we performed a series of parallelized dif-
fusion runs on the RIKEN K computer. In the case of fine lattice discretization with low voxel
occupancy, pSpatiocyte exhibited 74% parallel efficiency and achieved a speedup of 7686 times
with 663552 cores compared to the runtime with 64 cores. In the weak scaling performance,
pSpatiocyte obtained efficiencies of at least 60% with up to 663552 cores. When executing the
Michaelis-Menten benchmark model on an eight-core workstation, pSpatiocyte required 45- and
55-fold shorter runtimes than Smoldyn and the parallel version of ReaDDy, respectively. As a
high-performance application example, we study the dual phosphorylation-dephosphorylation
cycle of the MAPK system, a typical reaction network motif in cell signaling pathways.
Conclusions: pSpatiocyte demonstrates good accuracies, fast runtimes and a significant per-
formance advantage over well-known microscopic particle simulators for large-scale simula-
tions of intracellular reaction-diffusion systems. The source code of pSpatiocyte is available at
https://spatiocyte.org.
Keywords: Cell simulation, Monte Carlo method, Particle reaction-diffusion, Hexagonal close-
packed lattice, Mitogen-activated protein kinase, Message passing interface, parallelized Gille-
spie’s direct-method;
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BACKGROUND

Intracellular space plays an important role in many biochemical systems operating in the
timescales of minutes to hours such as cell signaling [1], division [2], polarization [3], morpho-
genesis [4] and chemotaxis [5,6]. These systems are regulated by the spatiotemporal dynamics
of molecules. Recent quantitative biology methods can obtain high-resolution spatiotemporal
measurements of the molecules. These disparate sources of measurements can be combined
and interpreted using spatially resolved simulators to construct models of the systems that are
realistic and consistent with physical principles. By simulating the models, detailed analysis of
the systems can be conducted in silico and future experiments can be designed [7].

The choice of spatial simulators largely depends on the timescale and spatial resolution of the
system of interest [8–13]. For example, high-performance molecular dynamics (MD) simulators
[14] can accurately capture the atomistic behavior of up to several macromolecules in a system
but are limited in their timescale, allowing only simulations for up to a few milliseconds [15,16].
It is thus not feasible to use MD for example, to simulate cell signaling systems such as the
mitogen-activated protein kinase (MAPK) cascade, which takes place at the cellular scale with
timescales spanning minutes to hours [17, 18]. For these longer spatial and temporal scales,
numerical methods that solve partial differential equations (PDEs) or coarse-grained stochastic
particle simulation methods can be used. PDE-based tools such as the freely available Virtual
Cell [19] and the commercially available COMSOL Multiphysics (COMSOL Inc.) are useful
when the system of interest is deterministic. They are especially fast and convenient when
simulating molecules with very high copy numbers. Conversely, particle methods are preferable
when we need to account for the noise and fluctuations arising from low copy number of reacting
molecules in the cell [20].

Lattice-based particle methods based on the reaction-diffusion master equation (RDME)
have the advantage to simulate a large number of diffusing molecules for extended spatiotem-
poral scales [21–25]. However, since RDME methods represent molecules as dimensionless point
particles in lattice voxels, they do not directly capture the effects of excluded volume brought by
intracellular macromolecular crowding [26]. About 20–30% of the total volume inside cells are
occupied by macromolecules [27]. This amount of crowding has been shown to affect reaction
equilibria both in vivo and in vitro, and alter protein binding and gene expression character-
istics [28–31]. Moreover, crowded media can also cause non-intuitive effects such as molecules
performing directed motion [32], and a change in the statistics of molecular number fluctua-
tions in simple reactions [33]. To capture the effects of volume exclusion in systems that are
in equilibrium, Cianci and colleagues [34] recently reported a modified version of the RDME
method called vRDME. Despite this enhancement, RDME-based methods are still constrained
when it comes to simulating diffusion-limited reactions and rebinding events [35–37] because
they assume molecules to be well-mixed in each voxel.

Off-lattice microscopic particle methods such Smoldyn [38], eGFRD [36], SpringSaLaD [39]
and ReaDDy [40] can capture the effects of crowding directly because each molecule is repre-
sented individually with sphere-like physical dimensions. These simulators also support different
sizes of volume excluding molecules. ReaDDy and SpringSalaD can also account for the coarse
shape of molecules. However, because of these additional details, microscopic particle methods
are more computationally demanding than RDME methods. In a recent performance bench-
mark of the microscopic methods [41], Smoldyn required the shortest runtime when simulating
the well-known Michaelis-Menten reaction-diffusion kinetics.

Spatiocyte [42] is another microscopic method but molecules diffuse on lattice by hopping
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from one voxel to another. The current stable version of Spatiocyte accounts for volume ex-
clusion by allowing only a single molecule to occupy a voxel at a time. The maximum size
of a molecule is roughly equals to the size of a voxel [43]. The method therefore captures
steric interactions most realistically when the size of volume excluding molecules is the same
and almost equals to that of a voxel. To better simulate the effects of crowding, there is also
a development version of Spatiocyte that allows a single molecule to occupy multiple voxels
according to its size (unpublished). In Spatiocyte, fine and fast-diffusing molecules such as mes-
sengers, metabolites and ions are simulated at the compartment scale using the Next-Reaction
method [42, 44]. The accuracy and consistency of Spatiocyte have been validated in detail
recently in both volume [43] and surface [45] compartments. Spatiocyte achieves better ex-
ecution time scaling behavior compared to other methods [43] because it resolves molecular
collisions by looking only at the target voxel for occupancy. At the typical intracellular protein
concentration range, the performance of Spatiocyte is comparable to Smoldyn when molecules
are represented as point particles. On the other hand, when the molecules have physical di-
mensions, the runtime of Spatiocyte is at least two times faster than Smoldyn. These recent
performance benchmarks [41,43] imply that at present Spatiocyte is one of the fastest methods
for simulating individual molecules in crowded systems.

There have been several efforts in the past to improve the performance of particle simulation
methods using parallelization approaches. RDME methods have been accelerated on Graphics
Processing Units (GPUs) [46–48] and CPU clusters [49]. The GPU-based implementations of
RDME can simulate up to two orders of magnitude faster than the serial version on CPU. Chen
and De Schutter [49] used Message Passing Interface (MPI) to run a neuron model and achieved
500-fold speedup on a cluster with 1000 processes. Microscopic methods such as ReaDDy [50]
and Smoldyn [51, 52] have also been parallelized on GPUs. The performance gain of ReaDDy
was up to 115 times over its serial counterpart on CPU. The GPU versions of Smoldyn required
between 135- to 200-fold shorter runtimes than the original CPU implementation. Recently,
the ReaDDy method was extended to run using multiple threads in parallel on CPU [53]. It
showed 6-fold reduction in the simulation time when running with 6 threads compared to the
serial implementation.

Here we introduce a parallel implementation of the Spatiocyte method, called pSpatiocyte.
The new algorithm was written bottom-up in C++ and MPI to exploit the resources of conven-
tional workstations and massively parallel computers for high-performance simulations of large
or crowded cell models. We demonstrate efficient simulations of reaction-diffusion systems at
the microscopic scale with volume occupying molecules to recapitulate the crowded nature of
intracellular media. We achieve scalability over 500,000 CPU cores on a distributed memory
architecture. In the following section we describe the parallelization schemes and numerical
implementation of pSpatiocyte. We then provide computational results that validate paral-
lel diffusion and reaction processes. We also demonstrate the performance of pSpatiocyte on
the RIKEN K computer with thousands of cores and on a common workstation with eight
cores. We show the applicability of pSpatiocyte in actual biological problems by simulating the
dual phosphorylation-dephosphorylation cycle of MAPK. Finally, we conclude by providing a
summary of the validation and performance results, and future directions of this work.

METHODS

In a Spatiocyte model, a molecule of a species si diffuses in space by performing random walk
on lattice from one voxel to a nearest neighbor voxel. The diffusion interval, τ id between two
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Figure 1: HCP lattice arrangement and a coordinate system for accessing voxels. (A) A schematic
view of HCP lattice. Left: odd and even planes, shown in different colors. Right: the twelve nearest
neighbors (green) of a voxel (yellow). (B) 2D slice of an HCP coordinate system based on a unit cell.
A rectangular compartment mapped along the axes i and j, which together make up a parallelogram.
A tilted third axis, k (not shown) further contorts the boundaries of the compartment. (C) Top
row: accessing neighbor voxels in a twisted Cartesian coordinate system for the odd plane in k-axis.
Bottom row: another stencil is used for the even plane.
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successive walks is determined by the diffusion coefficient Di. When the molecule collides with
a molecule of a reactant species sj in the target voxel, they perform a bimolecular reaction with
an acceptance probability, Wij. Wij captures the intrinsic reaction rate kij of the pair according
to the Smoluchowski-Collins-Kimball (SCK) model [54, 55]. The accuracy and consistency of
the bimolecular reaction on lattice in both activation-limited and diffusion-limited regimes have
been verified [43, 45]. To represent volume occupying molecules, a voxel can be occupied by
a single molecule at any given time. Therefore, if the diffusing molecule meets a non-reactive
molecule in the target voxel, a collision occurs and it remains in its original voxel. In the
following subsections, we describe the parallelization schemes of the Spatiocyte method in
detail.

Coordinate system

Spatiocyte adopts the hexagonal close-packed (HCP) lattice arrangement (Figure 1A) as it
supports the highest density of sphere voxels in a given volume [56]. For comparison, the
average density of HCP voxels is 74.048%, whereas the more commonly used cubic lattice
has a density of 52.359%. The highest density of voxels is preferable because it allows the
simulator to represent highly packed and crowded regions in a compartment to its maximum
theoretical limit. Moreover, it was recently demonstrated that the voxels in HCP lattice need
to be only about 2% larger than the molecule for the simulations to be consistent with the
SCK model [43]. This is in contrast to the cubic lattice, which requires the voxel size to be at
least 8% larger. The HCP lattice therefore, can more closely represent hard-sphere molecules in
space. For two-dimensional (2D) planar simulations, Spatiocyte employs the triangular lattice
arrangement, which is a plane of the HCP lattice [45]. Grima and Schnell [57] have previously
shown that simulations on a triangular lattice are closer to Brownian dynamics and produce
less discretization error than on square lattice. Simulations on square lattice also overestimate
macromolecular crowding effects compared to the triangular lattice.

Although HCP lattice has a regular grid arrangement of voxels, some considerations are
necessary to define the coordinate axes to access the voxels. In Figure 1B, the axes i and j
aligned to the voxels in a plane of HCP lattice make up a parallelogram instead of a rectangle.
The third axis k is also tilted when aligned to the voxels across the planes of the lattice. Such
unusual axes arrangement makes it arduous to convert the integer coordinates of a voxel into
real coordinates. A data structure without a coordinate system can also be used to identify and
access neighbor voxels. For example, a one-dimensional array of voxels can be used, wherein
each voxel has pointers to its 12 nearest neighbors. The serial version of Spatiocyte adopts
this scheme [42] but from our performance profiling results, the additional memory required to
store 12 pointers per voxel and indirect memory accesses to load neighbor voxel data adversely
impacts performance because of increased memory bandwidth usage and cache misses. In
addition, with an unconventional grid it can also be cumbersome to split the computational
domain spatially into smaller subdomains (green, red, orange and blue regions in Figure 1B)
for parallel execution by processes.

To overcome these issues, we propose a coordinate system called twisted Cartesian as de-
picted in Figure 1C. It comprises a straight and two zigzag axes. The figure illustrates how
each of the 12 neighbors is identified with these axes. Depending on whether the voxel plane,
k is even- or odd- numbered, one of two procedures should be used in i- and j-axes to identify
a neighbor voxel. The two procedures are represented by the top and bottom panels of Figure
1C. This coordinate system can be readily mapped onto a conventional Cartesian coordinate
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Algorithm 1: Initialization procedure of the pSpatiocyte algorithm.
Initialization (by all processes)
Input:
number of processes, N
simulation end time, tend
molecule species, S ← {s1, . . . , sc}
diffusion coefficients, D ← {D1, . . . , Dc}
number of molecules, Ns ← {N1, . . . , Nc}
reaction probabilities upper limit, P ← {P1 = 1, . . . , Pc = 1}
voxel radius, rv = 1.0209×max{molecule radii}
unimolecular reactions, U ← {u1, . . . , um}
bimolecular reactions, B ← {b1, . . . , bn}
species numbers log interval, τne
molecule coordinates log interval, τ ce
Variables and containers:
B reaction probabilities,W ← {W11 = 0,W12 = 0, . . . ,Wcc = 0}
max B reaction probability of reactants, ρ← {ρ1 = 0, . . . , ρc = 0}
queue for events (e) sorted by scheduled time (te), Q← {}
simulation time, ts ← 0
Procedure:
initialize global lattice and split the volume into N subdomains
set ghost and out voxels in local subdomain
foreach b ∈ B do

for {reactants, si, sj ; reaction rate, kij} ∈ b do
reaction probability upon collision, Wij =

kij

6
√
2(Di+Dj)rv

ρi = max{ρi,Wij}; ρj = max{ρj ,Wij}

foreach si ∈ S do
populate local subdomain with Ni/N molecules, Mi

walk probability, αi =

{
Pi/ρi, if ρi > Pi

1, otherwise
rescale reaction probabilities according to walk probability:
foreach j ∈ {1, . . . , c} do Wij =Wijαi

diffusion interval, τ id =

{
2r2v
3Di

, if Di > 0

∞, otherwise

walk interval, τ ie = τ idαi

create a new walk event, e← {si; τ ie; next walk time, te = τ ie}
Q← e

if U 6= {} then
te = get direct method new interval()

create a new unimolecular reaction event, e← te
Q← e

if τne 6=∞ then
create a new numbers logger event, e← {τne ; next log time, te = τne }
Q← e

if τ ce 6=∞ then
create a new coordinates logger event, e← {τ ce ; next log time, te = τ ce}
Q← e
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system without almost any modification and enables straightforward programmability. De-
spite being unconventional, the twisted Cartesian coordinate system works well for identifying
and accessing neighbor voxels pointer-free by only using conditional statements. In a prelim-
inary implementation of pSpatiocyte, we used the system successfully for parallelization [58].
Recently, a similar approach was adopted for cellular automata simulations in 2D space [59].

Parallelized Spatiocyte algorithm

The Spatiocyte method advances the simulation time, ts in discrete steps using an event sched-
uler [42,60]. The scheduler gets the next event, e to be executed from a priority queue Q, which
contains events sorted according to scheduled times, te. The types of events that can be defined
in a model include walk (performs diffusion and bimolecular reactions), unimolecular reaction,
species numbers logger and molecule coordinates logger. Upon execution, an event returns the
interval, τe for its next execution. The next execution time, te = ts + τe is then passed to the
priority queue to reschedule the event. The scheduler executes all events in a loop until the
simulation end time, tend is reached.

The pSpatiocyte method is a parallelized version of Spatiocyte and is completely written
in C++. The method is parallelized using the domain decomposition approach illustrated in
Figure 2A. With this approach, the complete lattice space is divided equally into N subdomains
to be executed concurrently by N processes. To minimize synchronization overheads between
processes, the scheduler and events are duplicated across all processes at initialization, which
is described in Algorithm 1. The scheduler of each process then executes the main loop of the
simulation in parallel according to Algorithm 2. The simulation proceeds synchronously over
all processes by ensuring that (1) the scheduled execution time of each event is identical across
processes; and (2) each process synchronizes with adjacent processes when molecules from local
subdomain walk or react across adjacent subdomains. We describe how these two conditions
are satisfied by each event in the following subsections.

Parallelized walk event

Einstein [61] and von Smoluchowski [62] have independently shown that small particles in one-
dimensional (1D) system perform Brownian walk with a root-mean-squared displacement of√

2Dt, where t is the interval between walks and D is the diffusion coefficient of the particles.
The 1D relation can be expressed in three-dimensional (3D) space with the mean-squared
displacement (MSD) given as 6Dt. Similarly, in the 3D HCP lattice space, the displacement
of a molecule of species si within a diffusion interval τ id must be consistent with its diffusion
coefficient Di. Since the molecule displacement over the interval is equivalent to the voxel
diameter, we can use the MSD relation in 3D to obtain the interval, τ id = 2r2v/(3Di), where
rv is the voxel radius. We have previously shown that this approach is accurate for modeling
bimolecular reactions on HCP lattice when rv ≈ 1.0209R, where R is the molecule radius [43].

Bimolecular reactions are handled by the walk event because they take place upon the
collision of two reactant molecules on lattice during diffusion. Since the reaction acceptance
probability, Wij = kij/(6

√
2(Di + Dj)rv) is inversely proportional to the diffusion coefficients

of reactants, highly diffusion-limited reactions can cause Wij > 1 [42, 43]. To address this
inaccurate condition, we first determine the maximum Wij of all bimolecular reactions involving
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A

B

Figure 2: Schemes for large-scale parallel simulation of particles. (A) Domain decomposition of
an HCP lattice plane. A 122 plane with reflective boundary is equally divided into four subdomains.
Each subdomain measuring 62 voxels is allocated to one of four available processes, P0, P1, P2 and
P3. Subdomain voxels adjoining other subdomains are defined as out voxels. Ghost voxels are added
locally to each subdomain to encapsulate out voxels. The ghost voxels serve to reflect the state
of out voxels residing in adjacent subdomains. (B) Subdomain division into subvolumes and three-
stage inter-process communication. Each subdomain in (B) is divided into four equal subvolumes
(eight subvolumes, if 3D subdomain). To avoid biased walk events, one of the four subvolumes is
randomly chosen before the corresponding local subvolume is executed simultaneously by the four
processes. In the above example, subvolume 3 was selected randomly and it is currently being
executed in parallel by the four processes. Ghost voxels will be updated using the three-stage
communication scheme before they are accessed. The scheme updates the voxels consecutively in x-
and y-directions (and z-direction if 3D subvolume). After performing the walk and reaction events
in the subvolume, the out voxels in adjacent subdomains will be updated to reflect the state of local
subvolume ghost voxels. The updates will be performed successively in (z-,) y- and x-directions. In
the example above, the state of an out voxel of P3 subvolume 0 is first transferred to a ghost voxel
of P2 subvolume 1 in x-direction before it is communicated to the ghost voxel in P0 subvolume 3 in
y-direction. Conversely, the state of the out voxel is updated in reverse, first in y-direction followed
by x-direction.
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Algorithm 2: The main loop of the pSpatiocyte simulation algorithm.
Main loop (by all processes)
while Q 6= {} and ts < tend do

get e from Q with earliest scheduled time te
ts ← te
if e is a walk event then

get species, si ∈ e
walk molecules(si)
if si ∈ {U reactants} then update direct method next time(ts)
τe ← τ ie

else if e is a unimolecular reaction event then
react direct method()

τe ← get direct method new interval()

else if e is a log numbers event then
log molecule numbers(ts)
τe ← τne

else
log molecule coordinates(ts)
τe ← τ ce

requeue e in Q with next scheduled time, te ← ts + τe

Function update direct method next time(ts):
get unimolecular reaction event, e from Q
get scheduled time of e, te
if te =∞ then

τe ← get direct method new interval()

else
τe ← get direct method next interval(te, ts)

requeue e in Q with next scheduled time, te ← ts + τe
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si and assign it as ρi. Then, we obtain the walk probability,

αi =

{
Pi/ρi, if ρi > Pi

1, otherwise
(1)

where Pi is a user-defined upper limit of reaction acceptance probabilities and 0 < Pi ≤ 1
(by default, Pi = 1). Next, we rescale the reaction probabilities to Wij = Wijαi. Finally,
we obtain the walk interval as τ ie = τ idαi. This walk interval is fixed and identical across all
processes throughout the simulation procedure. With the above bimolecular reaction scheme,
we have shown that the rebinding-time probability distribution of a reactive molecule pair on
HCP lattice agrees well with continuum theory (see Section III.A of [43]). We have also verified
the accuracy of the reaction rate coefficient and its time-dependent behavior by comparison to
SCK theory. It should be noted that reactions that are not highly diffusion-limited have small
impact on the simulation performance since they are generally far fewer than diffusion steps
(αi = 1) in the microscopic lattice space.

One of the difficult problems in parallelizing stochastic diffusion and reaction events is main-
taining consistency at subdomain boundaries during simulation time steps. Processes should
take careful consideration when accessing or writing to voxels residing in adjacent subdomains
since they are also simultaneously accessible to the adjacent processes. Figures 2A and 2B
illustrate our scheme to achieve consistency during walk and reaction events. We define the
voxels at the edge of a subdomain and adjoining other subdomains as out voxels. We add
a virtual set of voxels called ghost voxels locally in each subdomain to represent the current
state of out voxels residing in adjacent subdomains. With updated ghost voxels, molecules in a
subdomain can walk and react across subdomains seamlessly in a time step without requiring
many inter-process synchronization requests. At the end of a walk event, the state of out voxels
in adjacent subdomains will be updated to reflect the state of local ghost voxels. Since in a
walk event a molecule can at most hop to or react with a molecule in one of its immediate
neighbor voxels, only a single layer of ghost voxels is necessary to encapsulate local out voxels
(Figure 2B).

To ensure the updated state of ghost voxels remain valid until the end of the walk event,
we further divide the subdomain equally into eight subvolumes and execute each subvolume
synchronously with all processes. In Figure 2B, four of the subvolumes are shown for each sub-
domain. Only the ghost voxels belonging to the selected subvolume is updated before executing
the molecules in the subvolume. This scheme ensures out voxels in adjacent subdomains are iso-
lated and free from modification when their corresponding ghost voxels in the local subvolume
are accessed.

Algorithm 3 provides the complete pseudocode of the walk and bimolecular reaction pro-
cedure in a subdomain. For the walk event, pSpatiocyte uses two random number generators.
The first generator is initialized with a seed that is unique to each process, whereas the second
generator is initialized with a global seed. With the globally seeded generator, a random num-
ber that is drawn locally will be identical for all processes. This scheme reduces communication
cost when we need a common random number for all processes. Unless stated otherwise, all
random numbers are drawn using the locally seeded generator from a uniform distribution with
the interval [0, 1). Both generators use the Mersenne Twister algorithm [63] to generate random
numbers.

The walk event executes the random walk of all molecules of a species when it is called.
For each molecule m of species si, a random target voxel, v1 out of 12 neighbor voxels is first
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Algorithm 3: The walk event function for species si.

Function walk molecules(si):
molecules targeting ghost voxel, Mg

i ← {}
targeted ghost voxels, Vg ← {}
get molecules of species, Mi ∈ si
foreach molecule, m ∈Mi do

get the source voxel of m, v0
get a random target voxel, v1 ∈ {12 nearest neighbors of v0}
if v1 is a ghost voxel then Mg

i ← m, Vg ← v1
else if v1 is a vacant voxel then

r = random number()

if r ≤ αi then walk succeeded, v1 ← m
else walk rejected, v0 ← m

else if mj ∈ v1 and Wij > 0 then
r = random number()

if r ≤Wij then
reaction bij accepted
delete m and mj

{v0, v1} ← product molecule(s)

else
reaction failed and walk rejected, v0 ← m

else
walk rejected, v0 ← m

the order to execute local 8 subvolumes, H ← {0, . . . , 7}
H ← random shuffle with global seed(H)

foreach h ∈ H do
set current subvolume, Vh
set all ghost voxels of Vh to be vacant
mpi sendrecv() to load molecules from out voxels of adjacent subdomains into Vh ghost voxels
foreach molecule, m ∈ {Mg

i ∩ Vh} do
get the source voxel of m, v0
get the target ghost voxel, v1 ∈ Vg
if v1 is a vacant voxel then

r = random number()

if r ≤ αi then walk succeeded, v1 ← m
else walk rejected, v0 ← m

else if mj ∈ v1 and Wij > 0 then
r = random number()

if r ≤Wij then
reaction bij accepted
delete m and mj

{v0, v1} ← product molecule(s)

else
reaction failed and walk rejected, v0 ← m

else
walk rejected, v0 ← m

mpi sendrecv() to feed state of Vh ghost voxels to out voxels of adjacent subdomains
update all species, S to reflect state (deleted or added molecules) in local out voxels
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selected. If v1 is a ghost voxel, m is appended to a list M g
i , containing molecules targeting

ghost voxel, while v1 is added to Vg, a list of the targeted ghost voxels. However, if v1 is not a
ghost voxel and is vacant, a random number r is drawn. If r is less than or equals to the species
walk probability αi, the walk is successful and m is moved to v1. Otherwise, if v1 contains a
reactant pair of species sj, then a random number r is drawn. If r is less than or equals to the
bimolecular reaction probability Wij, then the reaction is performed. If v1 is instead occupied
by non-reactive molecule, a collision occurs and m stays in its current voxel.

After completing the above procedure for all molecules of si, a list containing the execution
order of eight subvolumes is randomly shuffled using the globally seeded random number gener-
ator. For each subvolume Vh in the ordered list, we first update its ghost voxels by loading the
state of corresponding out voxels from adjacent subdomains. The update is performed using
the MPI Sendrecv function. Next, for each molecule m in M g

i that is in the current subvolume
Vh, we get its target ghost voxel v1 from Vg. If v1 is vacant, a random number r is drawn. If
r is less than or equals to the species walk probability, αi then the molecule is moved to the
target voxel v1. Otherwise, the walk fails and the molecule stays in its voxel. If v1 is instead
occupied by a reactive pair of species sj, then a random number r is drawn. If r is less than or
equals to reaction acceptance probability Wij, the reaction is executed. Otherwise, the reaction
fails and the molecule stays in its voxel. After executing all the molecules in the subvolume,
we update the out voxels in adjacent subdomains with the state of their corresponding ghost
voxels using MPI Sendrecv function. The process then repeats the above procedure with the
next subvolume in the ordered list and continues until all subvolumes have been executed.

Note that the walk event in each subvolume is performed locally at all times by each process.
Although mutual exclusion is naturally realized by this scheme, inter-process communication
is performed once at the beginning and again at the end of each subvolume execution. This
scheme of mutual exclusion however does not necessarily require eightfold communication re-
quests because the number of voxels to be sent or received is also reduced in proportion to the
subvolume boundary surface area. We have confirmed the effectiveness of this method with at
least a few thousand processes [58].

Another problem common in lattice-based parallel computations is the communication at
the subdomain vertices. Out voxels located at the vertices are accessed by many more processes
than at other locations. Generally, latency has the most impact during the short communi-
cations required at these voxels. In addition, contention between requests tends to occur be-
cause of the limited bandwidth or the number of available communication channels. From the
viewpoint of strong scaling, the communications will show poor performance especially when
involving large number of processes. To overcome these constraints, we employed the three-
stage communication scheme, which is well-established and described previously [64]. With this
scheme, it is sufficient for each process to communicate with six directly adjacent processes in
three consecutive stages. In our implementation, we adapted the scheme to update ghost and
out voxels when executing each of the eight subvolumes. An example of the communication
scheme is illustrated in Figure 2B.

Parallelized unimolecular reaction event

The sequential Spatiocyte method employs the Next-Reaction method for unimolecular reaction
events [42, 44]. However, in the pSpatiocyte method, we have adopted the Gillespie’s direct-
method [65] to execute the events in parallel because of its simplicity. In the direct-method,

the propensity for a unimolecular reaction, A
kj→ B is aj = kjXA, where XA is the number of A
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Algorithm 4: Parallelized Gillespie’s direct-method for unimolecular reactions.
Persistent variables of unimolecular direct-method reaction event:
accumulated local reaction propensities from all processes, L← {L0, . . . , LN−1}
this process id, p ∈ {0, . . . , N − 1}
Function get direct method new interval():

reaction interval, τe ←∞
local reaction propensity, al ← get local propensity()

{L0, . . . , LN−1} ← mpi allgather(al)
if N > 1 then foreach i ∈ {1, . . . , N − 1} do Li ← Li + Li−1
global reaction propensity, ag ← LN−1
if ag > 0 then

r1 = random number with global seed()

τe ← − ln r1
ag

return τe

Function get direct method next interval(te, ts):
reaction interval, τe ←∞
old global reaction propensity, a0 ← LN−1
local reaction propensity, al ← get local propensity()

{L0, . . . , LN−1} ← mpi allgather(al)
if N > 1 then foreach i ∈ {1, . . . , N − 1} do Li ← Li + Li−1
global reaction propensity, ag ← LN−1
if ag > 0 then

τe ← a0

ag
(te − ts)

return τe

Function get local propensity():
local reaction propensity, al ← 0
foreach u ∈ U do

reaction propensity, au ∈ u
al ← al + au

return al

Function react direct method():
r2 = random number with global seed()

random propensity, a← r2LN−1
if Lp ≥ a and (p = 0 or Lp−1 < a) then

accumulated propensity, A← 0
if p 6= 0 then

A← Lp−1

foreach u ∈ U and if A < a do
reaction propensity, au ∈ u
A← A+ au
if A ≥ a then execute reaction(u)
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molecules in the volume. If there are m unimolecular reaction channels, the total propensity is
given by

ag =
m∑
j=1

aj. (2)

The interval, τe for the next reaction event is expressed as

τe = − ln r1
ag

, (3)

where r1 is a random number drawn from a uniform distribution in the unit interval. At the
end of the interval, the reaction channel u, out of the total m channels is selected to be executed
such that

u−1∑
j=1

aj < agr2 ≤
u∑

j=1

aj, (4)

where r2 is another uniform random number from the unit interval.
We have parallelized the direct-method using two simple schemes. First, in each process,

we use MPI Allgather to get the local propensities, al from all subdomains and sum it locally
to get the global propensity, ag. Second, we use the globally seeded random number generator
to draw r1 and r2 to determine τe and u, respectively. With these two schemes, τe and u will
be identical for all processes without additional synchronization requests. The pseudocode of
the parallelized direct-method is given in Algorithm 4.

At initialization, the scheduler gets the next time to execute the unimolecular reaction
event, te = τe by calling the get direct method new interval function and schedules it in
the priority queue, Q. The new interval is calculated from Eq. (3). In the main loop of the
simulation, if a walk event of a unimolecular reactant species has been called, the number of
reactant molecules may have changed. Therefore, at the end of the walk event, the next time
of the reaction event is updated by calling the get direct method next interval function.
It gets the updated interval from the scaling expression, τe = a0(te − ts)/ag, where a0 and ag
are the old and new global propensities, respectively, te is the old scheduled time and ts is the
the current simulation time. Finally, the scheduler executes the reaction event at the scheduled
time by calling the react direct method function and reschedules it using a new interval from
get direct method new interval. The react direct method function selects the reaction
channel to be executed according to (4).

When the reaction channel is executed, if there are two product molecules, one of them will
replace the reactant in its current voxel. Another random vacant voxel from the 12 nearest
neighbors of the reactant will be selected to occupy the second product. When the compartment
or the region near the reactant is highly crowded, no vacant voxel may be found for the product.
In the original Spatiocyte method, this will result in a failed unimolecular reaction. We have
also adopted this approach for the pSpatiocyte method. In addition, for such a highly crowded
scenario, we have added an option in the model to randomly vacate one of the neighbor voxels
of the reactant and place the second product in it. The voxel can only be vacated if the molecule
occupying it is a mobile (diffusing) species. The voxel is first vacated by moving the molecule
to a vacant neighbor voxel. If no vacant voxels are available for the molecule, the procedure is
repeated with another randomly selected neighbor molecule of the reactant. The reaction fails
if none of the nearest neighbors of the reactant can be vacated for the second product.
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Parallelized logger events

Two types of logger events are available to save the snapshots of pSpatiocyte simulation. The
species numbers logger event saves the number of molecules of each species in a comma-
separated values (CSV) file when called by the scheduler. At initialization, the log interval
is fixed and duplicated across all processes, ensuring that the scheduled execution time of the
logger event is always identical across processes. During simulation, each process writes the
molecule numbers available in its subdomain into a local file, thus avoiding inter-process com-
munication. A Python script is provided to gather and sum all the numbers from the process
files into a single conventional CSV file after the simulation.

The coordinates logger is implemented the same way as the numbers logger but it saves
the unique identity number (ID) and integer (voxel) coordinates of each molecule within its
subdomain. The ID of a molecule is persistent across subdomains, hence it is possible to
track the trajectory of each molecule throughout the simulation. The logger can also save
the coordinates of out and ghost voxels for debugging purposes. A Python script gathers and
converts the integer coordinates into real 3D coordinates before saving them into a CSV file.

RESULTS AND DISCUSSION

To confirm the consistency of pSpatiocyte in terms of physical accuracy, we validated diffusion
and reaction processes when running on all eight cores of a workstation with Intel Core i9-
9900K CPU (8 cores, 5 GHz maximum processor frequency), 64 GB memory and Ubuntu
19.10 operating system. Parallel performances of diffusion were examined across thousands of
computational cores of the K computer [66]. pSpatiocyte performance was also compared with
Spatiocyte, Smoldyn and ReaDDy when simulating the benchmark enzymatic reaction model
on the workstation. Finally, the parallelized simulation outcomes of the well known MAPK
model are provided as an application example. All simulations were performed on lattices with
reflective boundaries.

Validation of diffusion

We initially observed the trajectories of molecules diffusing across subdomains to verify the
coordinates logger, inter-process communications and the overall simulation algorithm. Figure
3A displays the trajectories of five molecules diffusing with D = 0.06µm2s−1 for 10 s. The
simulation was executed with eight processes, employing all cores of the workstation. At the
beginning of the simulation, the molecules were placed randomly in a compartment volume of
10µm3 with lattice dimensions 4763, divided into eight subdomains. All trajectories in Figure
3A appear consistent with molecules performing Brownian motion.

We then validated the consistency of pSpatiocyte in reproducing the correct diffusion be-
havior in a dilute volume that is equally distributed to eight processes. The MSD of a molecule
performing random walk in 3D space is given as 6Dt. We monitored the diffusion of a single
molecule placed at the center of a 9603 lattice with voxels measuring 2.5 nm in radius. No
other molecules were present on the lattice. We then performed random walks repeatedly with
the same initial conditions aside from the random number generator seed. 100 random walks
were performed for 40 ms and the average MSDs were computed from the ensembles. Figure
3B shows the log-log plots of the results for three different diffusion coefficients. The slopes,
the vertical distances, and the absolute values coincide well with the expected theoretical lines.
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Figure 3: Parallelized 3D diffusion in dilute and crowded conditions. (A) Trajectories of
five molecules diffusing across lattice subdomains. (B) Mean-squared displacements (MSDs) of
molecules diffusing in a sparsely populated compartment. (C) MSDs of molecules diffusing in
crowded conditions. D0 is the diffusion coefficient specified in the model, whereas D is effective
rate fitted to the resulting MSD. The fraction of voxels occupied by immobile crowder molecules are
indicated by φ.
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When a compartment is crowded with obstacles as in the cell [67], the effective rate of dif-
fusion is expected to decrease. To evaluate if pSpatiocyte is able to replicate the rate reduction
when running with eight processes, we obtained the MSD of a diffusing molecule in a compart-
ment occupied by immobile crowder molecules. The fraction of compartment voxels occupied
by the crowder molecules is given by φ. We evaluated three different φ conditions, with 1000
independent simulation runs for each condition. Each run adopted a unique seed for drawing
random numbers. Hence, the random placement of immobile crowders at initialization was dif-
ferent in each run. The averaged MSDs and the fitted effective diffusion rates are displayed in
Figure 3C. As expected, a significant decrease in the diffusion rate corresponding to an increase
in φ is clearly observed. Further detailed analysis is required to compare the effective diffusion
rates in crowded condition on HCP lattice with the rates in continuous space as reported by
Novak et al. [68].

Validation of reactions

We validated parallelized irreversible and reversible reactions separately because they have
distinct underlying physics.

Irreversible reaction

A unimolecular reaction given by

A
k→ B + C, (5)

is irreversible. In pSpatiocyte, the reaction is executed according to the parallelized Gillespie’s
direct-method. We applied three different reaction rates, k in an uncrowded volume and com-
pared the results with that of an ordinary differential equation (ODE) solver. The simulation
was executed on eight CPU cores with parameters D = 10µm2s−1, voxel radius rv = 5 nm and
9603 lattice size. The initial number of reactant molecules was 64,000. Figure 4A and 4B show
the simulation results of the reactant and products, respectively. In all cases, the outcomes of
simulation agree very well with the ODE solver.

We investigated the effects of crowding on the dissociation rate of (5), with the two different
ways of finding a vacant voxel for the second product molecule. In the original approach, the
reaction fails if all neighbor voxels of the reactant are occupied. In the second approach, if
they are all occupied, the simulator attempts to vacate one of them. The reaction also fails if
no voxels can be vacated for the product. Figure 4C shows the log-log plots of the reactant
concentration using the two approaches when φ is between 0.5 and 1.0. At φ = 1.0, all voxels of
the HCP lattice are occupied, giving about 74% volume occupancy. With the original approach,
the dissociation rates agree well with the ODE result up to φ = 0.7, which translates to about
52% volume occupancy. In the second approach, the rates are comparable up to φ = 0.9.
In vitro results of crowding experiments showed that the dissociation rate of molecules are
unaffected even when the volume occupancy reaches 30% [69]. However, it is still unknown if
occupancies above 50% would affect the dissociation rate as we have found with our original
approach. The results show that the original approach is sufficient for simulating the estimated
30% volume exclusion in the cytoplasm [70]. In cases where the dissociating molecules are much
smaller that the voxel size, such as messengers, metabolites and ions, the sequential version of
Spatiocyte simulates them at the compartment scale using the Next-Reaction method. Since
this feature is not yet supported by pSpatiocyte, we leave it for future work
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Figure 4: Parallelized unimolecular and bimolecular reactions. (A) Time profiles of A in the

dissociation reaction A
k→ B + C. (B) The corresponding time profiles of B and C. (C) Effects

of volume occupancy on the rate of the dissociation reaction on HCP lattice. Curves indicate the
concentration profile of A. φ denotes the fraction of voxels occupied by crowder molecules. In the
original method, the reaction fails if there are no vacant voxels among the 12 nearest neighbors of the
reactant molecule to place the second product molecule. In the vacated voxels approach, a diffusing
molecule from a nearest neighbor is selected randomly and moved to one of its nearest neighbors
to allocate a vacant voxel for the product. Simulation model parameters: total volume was 90µm3

with 643 lattice, initial number of A molecules was 50,000, crowder molecules were added to achieve
φ as shown, the diffusion coefficient of A, B, C and crowder molecules was 10µm3s−1, and 100 runs

for each φ. (D) Time profiles of reactants and products in the reversible reaction B + C
kf

�
kr

A.
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Reversible reaction

A bimolecular reaction is dependent on the diffusion of reactant molecules because the reaction
takes place as the molecules meet and collide in space. For simplicity, we considered a forward
bimolecular reaction with a single product and a reverse unimolecular reaction, as an example
of reversible reaction,

B + C
kf

�
kr

A, (6)

where kf and kr denote the effective forward and reverse reaction rates, respectively. The
effective forward rate can be converted to the intrinsic rate that is used by pSpatiocyte,

k′f =
kfkD
kD − kf

, (7)

where kD = 8πrv(DB + DC) [43]. DA and DB are the diffusion coefficients of B and C,
respectively. The intrinsic reverse reaction rate is given as

k′r =
k′fkr

kf
. (8)

The forward reaction is executed by the walk event when molecules of the reactant species
collide on lattice, whereas the reverse reaction is performed by the unimolecular reaction event.
The parameters of the simulation include kf = 2µm3s−1, kr = 1.35 s−1, D = 10µm2s−1 and
rv = 5 nm. The initial number of A and B molecules was 64,000 each and the lattice size
was 9603. The simulation volume was distributed to eight processes. As comparison, an ODE
solver was used to generate the output of the reversible reaction with the effective rates, kf and
kr. The results of the simulation are provided in Figure 4D. The closely matching curves of
pSpatiocyte and the ODE solver verify the parallel simulation accuracy of reversible bimolecular
reactions.

Performance of parallelized 3D diffusion

In Spatiocyte simulations, diffusion of molecules typically takes place at step intervals that are
several orders of magnitude smaller than that of reactions if they are not highly diffusion-limited.
The fine intervals are needed for the very short displacements between voxels. Since diffusion
computations at these fine intervals dominate the total computation cost of most simulations,
we used a diffusion model to evaluate the parallel simulation performance of pSpatiocyte. The
simulation parameters and conditions are the same as in the diffusion model in the previous
section, except for the lattice resolution and occupancy.

To estimate the parallel performance of pSpatiocyte, we measured its strong and weak
scaling efficiencies. Strong scaling measures how fast a program is able to process a fixed
workload by splitting it into smaller sizes and distributing them to an increasing number of
CPUs or cores. On the other hand, weak scaling measures how large of a problem a program
can handle without the loss of speed. To measure the efficiency of weak scaling, the amount of
workload given to each CPU or core is fixed and the total workload processed by the program
is increased by adding CPUs or cores with the corresponding amount of workload.

For strong scaling, we used three different voxel radii to measure performance. Given
that the physical dimensions of a compartment remain the same, smaller voxels would result
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Figure 5: Parallelized 3D diffusion performance of pSpatiocyte. Diffusion model is the same
as in Figure 3 but with 30% of the total voxels occupied by diffusing molecules. (A) Speedup
ratios relative to 64 cores. Red, green, and blue lines represent lattices with 5123 (coarse), 10243

(intermediate), and 20483 (fine) voxels, respectively. (B) Efficiency of strong scaling on increasing
number of CPU cores. The resolutions of lattice are the same as in A. (C) Components of simulation
elapsed times. The average times taken for initialization and computation are given by init and
calc, respectively. For inter-process communications, the pack and unpack times are the durations
required to manage data before sending and after receiving it, respectively. The time spent on
the MPI Sendrecv function is denoted by mpi. The duration to duplicate communicator objects
is indicated by dup. (D) Average elapsed times per voxel per simulation step. Voxel sizes from
smallest to largest denote 323, 643, 1283, 2563, and 5123 voxels per process, respectively. (E)
Efficiency of weak scaling on increasing number of CPU cores. Colors have the same representation
as in D.

in higher resolution and finer lattice. We denote voxels having 10, 5, and 2.5 nm radii as
coarse, intermediate, and fine lattices, respectively. The molecule occupancy, φ was fixed at 0.3,
whereas the voxel sizes determined the spatial resolution of the compartment. The compartment
resolution was 5123 (coarse), 10243 (intermediate) or 20483 (fine). For computations using the
maximum 663552 cores of the K computer, the resolution was set to 512× 480× 540 (coarse),
1024×960×1080 (intermediate) or 2048×1920×2160 (fine) to ensure that the model conforms
to the physical configuration of the processes.

Note that we examined the relative speedups instead of the floating point operations per
second (FLOPS) because on lattice, integer or logical instructions dominate the overall com-
putational cost. The speedups measured from the elapsed times are shown in Figure 5A. Here,
we used the results of the coarse lattice with 64 cores as the baseline reference to calculate the
speedups since simulations with fewer cores were not possible due to memory size limitation.
For the intermediate and fine lattices, the results from 64 cores were extrapolated using the
time consumed per voxel on the coarse lattice. The parallel efficiencies of strong scaling are
summarized in Figure 5B. For the fine lattice with 663552 cores, we obtained a speedup of
7686. The corresponding strong scaling efficiency was at 74.1%. In contrast to the coarse and
intermediate lattices, the results from the fine lattice were the closest to the ideal curve. By
extrapolating the results from Figure 5A, we can predict that the speedup and efficiency on
the fine lattice would be about 13000 times and at 40%, respectively if two million cores were
utilized.

To identify the cause of the performance deterioration on the coarse lattice, we determined
the major components of elapsed time as shown in Figure 5C. We found that the times taken for
initialization, computation, pack and unpack events were decreasing at least with up to 262144
cores, whereas the MPI time saturated and exceeded these times when it was over 32768 cores.
To improve the performance, the constant duplication time due to redundant communicator
objects should be eliminated by sophisticated programming. The saturation of MPI time is
likely the most significant factor that needs to be addressed to improve the scaling performance
further. However, such saturated timings generally originate from the latency of inter-process
communication, which is dependent on the hardware and firmware. Therefore, the immediate
approach for improving strong scaling is to reduce the computation time and ensure that it is
as close to the latency as possible.

Figure 5D displays the weak scaling performance of pSpatiocyte in elapsed time per voxel
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per step. Here, the labels on the horizontal axis, smallest, smaller, medium, larger and largest,
denote the subdomain lattice dimensions, 163, 323, 643, 1283 or 2563 on each process, respec-
tively. In an ideal weak scaling performance setting, these times would be identical for all
lattice sizes since they would be independent of the number of cores and voxel sizes. In spite
of the variation in the absolute values, all lattice dimensions provided good scaling properties.
We scrutinized the elapsed times of the smallest and smaller lattices and it revealed that the
times are dominated by the constant communication latency. This explains the source of the
larger absolute times in the smaller lattices. The efficiencies of parallel computation in terms
of weak scaling are summarized in Figure 5E. For each lattice size, the elapsed time with 64
cores was used as a reference to calculate the parallel efficiency. Although the efficiencies tend
to deteriorate on higher number of cores, we were still able to achieve 60% efficiency with more
than half a million cores.

Performance benchmark

We compared the runtime of pSpatiocyte with Spatiocyte (git 5e88f40), Smoldyn (v2.61) and
ReaDDy (v2.0.2-py37 55 g78bd07) when executing the benchmark Michaelis-Menten enzymatic
reaction model [41] on the same workstation. ReaDDy has both serial and parallel versions. All
simulators were evaluated on a single core. Additionally, the parallel simulators pSpatiocyte
and ReaDDy were executed on two, four and eight cores. We used the same model parameters
as in [41,71] but increased the size of the reaction volume tenfold to 909µm3. The larger volume
raises the computational cost to an adequate level when running the model in parallel on all
eight cores of the workstation. For Smoldyn and ReaDDy, we set the simulation interval, ∆t
to 1 ms. In pSpatiocyte and Spatiocyte models, the event with the smallest interval is the
walk event and it was set to 0.5 ms. We also evaluated pSpatiocyte with a smaller walk event
interval of 0.2 ms to see how the runtime scales with the interval. Smaller simulation interval
results in an overall higher computational cost and up to a certain extent, better accuracy.

Figure 6A displays the results of the performance benchmark. The runtimes shown are
the averages of three independent runs of each simulator to execute the model for 10 s. The
resulting concentration profiles from each simulator are plotted in Figure 6B. On a single core,
pSpatiocyte with ∆t = 0.5 ms is about two times faster than with ∆t = 0.2 ms. It is also about
2.4 times faster than the sequential version of Spatiocyte. On a single core, the main difference
between pSpatiocyte and its sequential counterpart is the new pointer-free voxel accessing
scheme adopted by the former. This scheme has likely lowered the memory bandwidth usage
and cache misses, contributing to the significant reduction in simulation runtime. The execution
time of pSpatiocyte is about 7.7 times shorter than Smoldyn on a single core. It is also roughly
30- and 38-fold times faster than the serial and parallel versions of ReaDDy, respectively.

The runtime of pSpatiocyte (∆t = 0.5 ms) also scales favorably with the number of ad-
ditional cores used in the simulation. When the number of cores was increased from one to
two, the runtime was reduced by 1.87 times. Similary, the runtime was shorter by about 1.82
times when the number of cores increased from two to four. On eight cores, it is about 1.7
times faster than on four cores. Similar scaling behavior was also observed with ∆t = 0.2 ms.
On eight cores, pSpatiocyte (∆t = 0.5 ms) is roughly 55 times faster than the parallel version
of ReaDDy. It also required about 45- and 14-fold shorter runtimes than Smoldyn and Spa-
tiocyte, respectively to complete the simulation on the workstation. Overall, the benchmark
results show that pSpatiocyte has a significant performance advantage over other well-known
microscopic particle simulators.
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Figure 6: Performance benchmark of the Michaelis-Menten reaction on a workstation. Model
parameters [41, 71]: total volume 909µm3, diffusion coefficient 10 µm2s−1, k1 = 0.01 µm3s−1, k2
= k3 = 1 s−1. The initial numbers of E and S molecules are 9090 and 90910, respectively. Duration
of simulation 10 s. Simulation or walk event interval (∆t) and runtime (T ) are as indicated. (A)
Comparison of simulator runtimes on different number of CPU cores. (B) Concentration profile
outcomes from the simulators.

Parallelized simulation of MAPK model

In the dual phosphorylation-dephosphorylation cycle of the MAPK cascade, shown in Figure
7A, molecular rebinding effects at the microscopic scale can alter the macroscopic dynamics
of the system [36]. MAPK kinase (KK) phosphorylates MAPK (K) in a two-step process to
generate a doubly phosphorylated MAPK (Kpp), whereas the phosphatase, P dephosphorylates
Kpp twice to recover K. Upon unbinding from their products, the enzymes go through an
inactive state (denoted by ∗). The time required to reactivate the enzymes is given by τrel '
1/ka, where

P∗
ka→ P, (9)

KK∗
ka→ KK. (10)

If the enzyme-substrate reactions are diffusion-limited and τrel is short, a newly dissociated
enzyme can rebind to its product to catalyze it again, before escaping into the bulk. Takahashi
et al. [36] have previously shown with eGFRD particle simulations that these rebinding events
can change the response sensitivity of the phosphorylation state, which could result in the
loss of bistability. We have also recently replicated the results with Spatiocyte [43]. These
spatiotemporal correlations between enzyme and substrate molecules, and fluctuations at the
molecular scale are difficult to be captured by RDME and PDE-based methods.

As an example of pSpatiocyte biological application and to further verify the method, we
have simulated the MAPK model with the same parameters from [36] but increased the volume
tenfold (10µm3) to raise the computational cost. The initial molecule numbers of K, KK and P
were 1200, 300 and 300, respectively. There were no initial molecules for the remaining species.
The model was simulated for 300 s with τrel = 1µs. For all species, D = 4µm2s−1. The
lattice size was 4763 with rv = 2.5 nm. Figure 7B shows the concentration profiles in the first
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Figure 7: Parallelized simulation results of MAPK model. (A) Dual phosphorylation-
dephosphorylation cycle of the MAPK cascade. (B) Concentration profiles when KK0/P0 = 1
and D = 4µm2s−1. Simulation was executed with all eight-cores of the workstation. (C) Scalability
of pSpatiocyte at low molecule number. Shown are the runtimes of pSpatiocyte when simulating
the MAPK model (KK0/P0 = 1) for 10 s with varying number of cores and diffusion coefficients.
The model consists of 1800 total molecules. (D) Response curves for different diffusion coefficients.
All simulations were executed with all eight cores of the workstation.
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100 s of the simulation. The total runtime of the simulation was 5466 s using all eight cores
of the workstation. In contrast, it took 76650 s to complete the simulation with Spatiocyte.
Thus, pSpatiocyte is about 14 times faster than its sequential counterpart. As comparison,
in Figure 7B we have also plotted the predictions of the corresponding mean-field (ODE)
MAPK model [36]. The model describes the diffusion of molecules implicitly by renormalizing
the reaction rates. pSpatiocyte concentration profiles coincide well with the ODE outcomes,
although in the former, there were fluctuations from the small number of reacting molecules.

The total number of molecules in the MAPK model is 1800, which is a small number for
high-performance simulations. To evaluate how well pSpatiocyte scales with such low number
of molecules, we compared the runtimes with varying number of cores and diffusion coeffi-
cients. Figure 7C shows the runtimes when the model was executed for 10 seconds. With
D = 0.06µm2s−1, pSpatiocyte is about twofold faster on four cores than on a single core. In-
creasing the number of cores from four to eight did not noticeably improve the runtime further.
However, with D = 4µm2s−1, the speedup achieved with four cores is 2.6 times. With the
addition of another four cores, the speedup increased to 3.4 times. This is notable because
pSpatiocyte is still able to achieve a favorable speedup although each core only executed on av-
erage 225 molecules. Compared to the slower diffusion model, the shorter diffusion interval (τ id)
when D = 4µm2s−1 increases the computational cost more than the communication overhead,
resulting in improved speedups.

We also simulated the MAPK model with different initial ratios of KK0/P0 and diffusion
coefficients, and obtained the steady-state Kpp/K0 curves as shown in Figure 7D. The outcomes
of the corresponding mean-field models of a distributive (with D = 4µm2s−1) and a processive
(with D = 0.06µm2s−1) system are also shown. In the distributive scheme, the enzyme needs
to detach from the substrate before it can catalyze it the second time. The double encounters
between enzyme and substrate molecules can lead to ultrasensitive switchlike response. Con-
versely, in the processive scheme, a single encounter between them is sufficient to generate the
dual modifications of the substrate. At fast diffusion (D = 4µm2s−1), pSpatiocyte response
curve agrees well with that of the distributive mean-field model. However, at much smaller
diffusion coefficient (D = 0.06µm2s−1), it instead reproduces the graded response curve of the
processive model.

How slower diffusion in the pSpatiocyte model weakens the switchlike response curve can
be explained as follows. At D = 4µm2s−1, the resulting diffusion interval, τ id and walk event
interval, τ ie for the enzymes are the same (1µs) because the walk probability, αi = 1. Since
τ id and τrel have the same intervals, after catalyzing the substrates the first time, the enzymes
KK∗ and P∗ can escape into the bulk before they can reactivate and rebind with the substrates.
In constrast, at D = 0.06µm2s−1, it gives τ id = 72µs and τ ie = 2µs for the enzymes because
αi = 0.028. Since τ id � τrel, the enzymes have enough time to rebind with their substrates
upon reactivation, before they can escape. This processivelike mechanism leads to the graded
response curve as shown in Figure 7D. Overall, we note that pSpatiocyte correctly reproduces
the expected ultrasensitivity dynamics of MAPK [36].

CONCLUSION

We have developed a high spatiotemporal resolution parallel stochastic method to simulate
intracellular reaction-diffusion systems on HCP lattice. To realize large-scale parallel computa-
tions, we have introduced several advanced simulation schemes, including a twisted Cartesian
coordinate system with pointer-free voxel access, a parallelized event scheduler with priority
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queue, synchronized random subvolume executions and parallelized Gillespie’s direct-method
using globally seeded random number generators, and three-stage inter-process data transfers.

We have also validated the physical correctness of the simulator. The simulated diffusion
rates in dilute conditions showed very good agreement with theory. In crowded conditions,
the diffusion rates decreased, as expected. Further work is required to compare the crowded
diffusion behavior on lattice with the relation between diffusion and excluded volume fraction
obtained in continuous space [68]. Both irreversible and reversible reaction curves coincided
very well with predicted ODE results. Parallel performance of diffusion on the K computer was
sufficiently high for large-scale computations. From the viewpoint of strong scaling, pSpatiocyte
achieved a 7686-fold speedup with 663552 cores compared to the runtime with 64 cores on a
20483 lattice. The efficiency was equivalent to 74.1%. In terms of weak scaling, efficiencies of
at least 60% were obtained.

In the Michaelis-Menten enzymatic reaction benchmark, pSpatiocyte performed significantly
better than other well-known microscopic particle simulators. On a workstation with eight CPU
cores, pSpatiocyte is about 55 times faster than the parallel version of ReaDDy and 45 times
faster than Smoldyn. In addition, the parallelized simulation of the MAPK model revealed that
the program can correctly capture the weakening of ultrasensitive response by enzyme-substrate
rebindings at very short timescales. The accurate simulation of the model also demonstrated
that pSpatiocyte is applicable in real biological problems. On the same workstation with
eight cores, pSpatiocyte required 14-fold faster execution times than the sequential version of
Spatiocyte to simulate the MAPK model. Notably, pSpatiocyte is able to achieve 3.4 times
speedup with all cores on the workstation although the average number of molecules executed
per core is only 225.

In recent papers by Smith and Grima [72] and Novak et al. [73], RDME reactions with non-
mass-action propensities such as Hill-type and Michaelis-Menten were shown not converging to
the chemical master equation. At present, both sequential and parallel versions of Spatiocyte
only support elementary reactions, namely unimolecular and bimolecular reactions. Since all
complex reactions, including Hill-type and Michaelis-Menten, can be broken down to elementary
(mass-action) reactions, the currently supported reactions should be sufficient for most modeling
purposes. Nonetheless, for the convenience to directly model complex reactions, it would be
beneficial to support them in the future. Further work would also be needed to solve the
convergence problem.

Recently, several GPU-based high-performance simulators of reaction-diffusion systems have
been reported [46, 48, 50–52, 74]. The ability to run fast simulations on common workstations
equipped with GPUs supports wider application of the simulators. Implementing the Spatiocyte
method to run on GPUs should be straightforward since most of the parallelization schemes
presented in this work can also be applied on a GPU.

ABBREVIATIONS

1D: one-dimensional; 2D: two-dimensional; 3D: three-dimensional; CPU: Central processing
unit; FLOPS: Floating point operations per second; GPU: Graphics processing unit; HCP:
Hexagonal close-packed; MAPK: Mitogen-activated protein kinase; MD: Molecular dynamics;
MPI: Message passing interface; MSD: mean-squared displacement; PDE: Partial differential
equations; RDME: Reaction-diffusion master equation; SCK: Smoluchowski-Collins-Kimball
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