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Abstract— The prediction of skin lesions is a challenging 

task even for experienced dermatologists due to a little 

contrast between surrounding skin and lesions, the visual 

resemblance between skin lesions, fuddled lesion border, 

etc. An automated computer-aided detection system with 

given images can help clinicians to prognosis malignant 

skin lesions at the earliest time. Recent progress in deep 

learning includes dilated convolution known to have 

improved accuracy with the same amount of 

computational complexities compared to traditional 

CNN. To implement dilated convolution, we choose the 

transfer learning with four popular architectures: 

VGG16, VGG19, MobileNet, and InceptionV3. The 

HAM10000 dataset was utilized for training, validating, 

and testing, which contains a total of 10015 dermoscopic 

images of seven skin lesion classes with huge class 

imbalances. The top-1 accuracy achieved on dilated 

versions of VGG16, VGG19, MobileNet, and InceptionV3 

is 87.42%, 85.02%, 88.22%, and 89.81%, respectively. 

Dilated InceptionV3 exhibited the highest classification 

accuracy, recall, precision, and f-1 score and dilated 

MobileNet also has high classification accuracy while 

having the lightest computational complexities. Dilated 

InceptionV3 achieved better overall and per-class 

accuracy than any known methods on skin lesions 

classification to the best of our knowledge while 

experimenting with a complex open-source dataset with 

class imbalances. 
Keywords— Dilated Convolution, Medical Image Analysis, 

Skin Lesion Classification, Deep Learning, Convolutional Neural 

Network 

I. INTRODUCTION (HEADING 1) 

In recent times, skin cancer is one of the most common forms 

of cancer not only in the USA (5 million cases per annum) 

but also in all over the world [1-5].  Squamous cell 

carcinoma, melanoma, intraepithelial carcinoma, basal cell 

carcinoma are some of the usual kinds of skin lesions [6-8], 

but among them, melanoma is most dangerous and extremely 

cancerous (over 9000 deaths in 2017 only in the USA) [3].  

Early diagnosis of melanoma can cure nearly 95% cases [9], 

and through dermoscopy, the accuracy of skin lesions 

treatment will be 75%-84% [10-12].  

The manual skin lesions detection system is human-labor 

intensive, which needs magnifying and illuminated skin 

images to improve the clarity of spots [10, 13]. ABCD-rule 

(Asymmetry, Border, Irregularity, Color variation, and 

Diameter), 3-point checklist, 7-point checklist, and Menzies 

method are several procedural algorithms to boost the 

dermoscopy and observe the malignant melanoma in the very 

early stage [11, 14] however, and many clinicians steadily 

rely on their experiences [15]. The manual dermoscopy 

imaging procedure is more prone to mistake because it needs 

years of experience over difficult situations, vast amounts of 

visual exploration, similarities, and dissimilarities between 

different skin lesions. 

In recent times, deep learning (begin with AlexNet [16] in 

2012) provides many computerized automated systems to 

detect, classify, and diagnosis of several diseases through 

medical image analysis [17]. Last few years, dermoscopy 

produce a significant amount of well-annotated skin lesions 

images that help supervised machine learning techniques 

actively to classify, predict, and detect different skin wound 

[10, 18-20]. Hence, deep learning-based medical image 

analysis tools can be useful to assist the dermatologist to 

emphasis on several areas like skin lesion segmentation, 

classification, and detection.  

Here, we proposed a deep learning method, namely dilated 

or, atrous convolution, with transfer learning to classify seven 

different class skin lesions. Compared to traditional CNN, we 

used dilated convolution to increasing accuracy with the same 

computational complexities. We choose four pre-trained deep 

learning architectures such as VGG16, VGG19, MobileNet, 

and InceptionV3 and select a different strategy to put 

different dilation rates in separate layers. To the best of our 

knowledge, we are the first who proposed the approach to 

employ different dilation rates in the different layers of 

InceptionV3 and MobileNet network and achieve better 

overall performance than the original architectures. 

Moreover, we utilize a fine-tuning technique to train these 

proposed architectures. We use the HAM10000 dataset to 

train, validation, and test, which contains 10015 

dermatoscopic images of seven skin lesions like Vascular 

lesions, Actinic Keratoses, Benign keratosis-like lesions, 

Dermatofibroma, melanoma, melanocytic nevi, and Basal 

cell carcinoma [21]. Melanoma is extremely dangerous, 
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Basal cell carcinoma, Actinic keratoses can be cancerous, and 

the other skin lesions in this dataset are benign.  

The rest of the paper ordered as follows: in section 2, 

discussion on related work. Data utilization and Methodology 

and illustrated in section 3 and section 4 respectively. The 

performance analysis of the models presented in section 5. 

Finally, section 6 comprises the conclusion and the future 

work part. 

II. RELATED WORK 

In previous times, several types of research had been done to 

detect skin cancer. Those mainly based on splitting and 

merging region, clustering, supervised learning, and 

thresholding, but every work have many pros and cons [22-

24]. Celebi et al. [25] proposed four ensemble thresholding 

methods to skin lesion border detection, and Sigurdsson et al. 

[26] developed a probabilistic feature extraction model with 

a feedforward neural network to classify skin lesions. Barata 

et al. constructed two approaches, namely global features and 

local features (utilize BoF (Bag of Features)), to detect 

melanoma using dermoscopy images [27]. To classify skin 

lessons, She et al. [28] use several features like diameter, 

color, border, and asymmetry. To attain skin lesion 

segmentation, several pre-processing methods such as 

artificial removal, color transformation, lesion localization, 

contrast enhancement can be employed [29].  

Recently several deep learning models have been build for 

classification, detection, and segmentation. Hekler et al. [30] 

execute deep learning methods to classify histopathologic 

diagnosis of melanoma, to augment the human evaluation, 

and contrasted the outcome with skillful histopathologists. 

Esteva et al. [31] implemented pre-trained inceptionv3 for 

nine class classification where they used a labeled dataset by 

dermatologists, which have 3374 dermoscopy images, 

129,450 clinical images, and achieve 72.1 ± 0.9% (mean ± 

s.d.) accuracy. Harangi et al. [32] utilize an ensemble DCNN 

(deep convolutional neural network) method, where they 

combine the result of four different architectures with 

improving the accuracy of the ISBI 2017 [1] dataset. Rather 

than training CNN (Convolutional Neural Network ) from 

scratch, Kawahara et al.  [33] attempted to employ pre-trained 

ConvNet as their feature extractor, and they classify ten 

classes of non-dermoscopic skin images. Xie and Bovik [34] 

displayed a skin lesion segmentation method where a self-

generating CNN merged with a genetic algorithm. Recently, 

Carcagni et al. [35] proposed a research work based on a 

multilevel DensNet network to classify seven different skin 

lesions of HAM10000. Gomez et al. [36] published a skin 

lesion segmentation architecture, namely Independent 

Histogram Pursuit (IHP), where they tested their method on 

five different dermatological datasets and obtained 97% 

precision on segmentation. Yunfei et al. [37] proposed a deep 

residual model for classification of skin pigmented lesions, 

which upgraded by class weight update dynamically, 

Excitation, and Squeeze module in batches. A new fully CNN 

segmentation method proposed with new pooling layers for 

skin lesions region in [38]. In [39], Mask R-CNN and U-net 

utilized for skin lesion segmentation in dermoscopic images, 

particularly on ISIC 2017 dataset. Yu et al. [40] to 

differentiate melanoma images from non-melanoma, a very 

deep residual CNN has proposed.  

In the present time, many classification deep learning models 

proposed for dermoscopy images; however, to build a future-

oriented model, we can make improvements in several 

different areas. So, for this work, we implement a hugely 

popular method called dilated convolution for classifying 

seven skin lesions with transfer learning techniques. 

Previously, dilated convolution utilized in instance 

segmentation [43], audio generation [46], optical flow [42], 

question answering [41], and object detection [44,45].   

III. DATASET  

 

Fig. 1. Seven different Skin lesions from HAM10000 dataset: Actinic 

keratoses, Basal cell carcinoma, Benign keratosis-like lesions, 

Dermatofibroma, Melanocytic Nevi, Vascular lesions, Melanoma 

Here, we use HAM10000 dataset [1, 22] which contains 

10015 dermatoscopic skin lesion images of seven classes 

(Melanocytic nevi (6705 images), Melanoma (1113 images), 

Benign keratosis-like lesions (1099 images),  Basal cell 

carcinoma (514 images), Actinic keratoses (327 images), 

Vascular lesions (142 images), and Dermatofibroma (115 

images)). We applied the stratified method to split 

HAM10000 into training (80% or, 8011), validation (10% or, 

1002), and test (10% or, 1002) sets so that we can maintain 

the ration between every class because this is a class 

imbalanced dataset.  In table 1, we manifest the training, 

validation, and test sets after the stratified technique. 

TABLE I.  TRAINING, VALIDATION, AND TESTING SETS AFTER 

EMPLOY THE STRATIFIED TECHNIQUE ON HAM10000 

Class Name 
Training 

(80%) 

Validation 

(10%) 

Testing 

(10%) 

Actinic keratoses 261 33 33 

Basal cell carcinoma 412 51 51 

Benign keratosis-like 

lesions 
879 110 110 

Dermatofibroma 91 12 12 

Melanocytic Nevi 5363 671 671 

Vascular lesions 114 14 14 

Melanoma 891 111 111 

Total Images 8011 1002 1002 
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A. Data Pre-Processing 

To lessen the computational cost of our proposed 
architecture, we resize and rescale the image size from 
600 × 450. To maintain the same contorted, at first, we crop 
the center part and then reduce the dimension of the images by 
the following 4: 3 width to height ratio. We inspected different 
combinations of image shapes (320 × 320, 512 × 384, 
256 × 192, 128 × 96, and 64 × 64) for VGG16, VGG19, 
and InceptionV3. MobileNet only takes four forms of static 
square images ((128 × 128), (160 × 160), (192 × 192), 
(224 × 224)) [47]. Therefore, based on time complexity, 
space complexity, and accuracy, we select 256 × 192 image 
dimensions for the first three models and 224 × 224 only for 
MobileNet. Finally, to normalize our data, we divide each 
pixel of image values by 255.0 to rescale pixel values into the 
0-1 range. 

B. Data Augmentation  

Deep learning models require a decent amount of data to 

produce good results [48], so we use different data 

augmentation processes to train our model. We train our 

models for 200 iterations and able to create new transformed 

1,602,200 (200 × 8011) images for the whole training 

process. Hence, for each iteration, 8011 newly transformed 

augmented images have been provided. Additionally, for the 

validation set, we employ the same strategy and able to 

produce 1002 new augmented images to validate our training. 

In our training set, we applied many geometrical 

transformations for data augmentation. We employ vertical 

and horizontal flipping with a probability of 0.50 to transform 

the images. To handle the off-centered objects, random width 

and height shifting with range 0.20 have utilized. Then, the 

zoom range (−0.2, +0.2) was used to randomly zooming in 

inside. Lastly, we applied shear mapping to supplant the 

image horizontally (𝑥 + 0.2, 𝑦) or vertically (𝑥, 𝑦 + 0.2). 

 

IV. METHODOLOGY 

Four popular deep learning models, namely VGG16 [49], 
VGG19, MobileNet [47], and InceptionV3 [50] with atrous or 
dilated convolution instead of traditional convolution, had 
been used to build an accurate automated model for the 
dermatologist. To strengthen the accuracy, we utilized the 
transfer learning technique with a pre-trained ImageNet 
dataset for these dilated CNN networks. 

A. Dilated Convolution 

Initially, researchers invented an algorithm, namely “hole 
algorithm” or “algorithme à tours” for wavelet transformation 
[51], but right now in the deep learning area is known as  
“atrous convolutional” or, “Dilated Convolution”.  

The dilated convolution expands the kernel’s field of view 
with the same computational complexities by insert “hole” or 
zeros between the kernel of each convolutional layer. 
Therefore, it can use for those applications which cannot bear 
bigger kernels or, many convolutions, however, require a wide 
field of vision.  

The scenario of dilated convolution in the 1D field: 

𝑚[𝑖] =∑ 𝑥[𝑖 + 𝑟. ℎ]𝑤[ℎ]ℎ
ℎ=1                                                 (1)      

Here, for every location of i, the output is y. Furthermore, x[i] 

is the input signal where x also referred to as a feature map. 

Besides, w[h]  filtered with the length of h, and r is 

corresponding to the dilation rate with which we sample input 

signal x[i].  In the standard convolution r =1 but the dilated 

convolution rate of r is always bigger than 1. An intuitive and 

easy way to comprehend dilated convolution is that push (r-

1) zeros between every two consecutive filters in the standard 

convolution. In a standard convolution, the kernel or filter 

size is 𝑛 × 𝑛, then the resulting dilated convolution, the filter 

or kernel size will be nd ×  nd  where nd = n + (n-1). (r-1). 
One of the main reasons to implement this method is without 
missing any coverage or resolution, dilated convolutions 
support exponentially enlarging receptive fields [52]. 

Fig. 2. A scenario of dilated convolution with kernel size 3×3. From the 
top: (a) the situation of the standard convolutional layer, and the dilation rate 

is (1,1). (b) when the dilation rate becomes (2,2), and the receptive field 

enhances. (c) in the final case, the dilation rate is (3,3), and the receptive field 

extends more than the situation b 

B. Dilated VGG16 and Dilated VGG19 Architecture 

Both VGG16 and VGG19 have five blocks of convolutional 

layers were with an equal number of parameters to expand 

the context view of filters where we modify the dilation rate 

of these layers. Output feature map will shrink (output stride 

increasing) for any standard convolution and pooling if we go 

deeper in any model, which is harmful for classification 

because, in the deep layers, spatial information will be 

missing.  With dilated convolution without increase 

computational complexities, we can achieve a larger output 

feature map, which is proved to be appropriate for skin lesion 

classification in terms of accuracy.  

Both the model has 3 × 3 kernel size in every layer, and 

without increasing kernel size, we can enhance the receptive 

field dimension by adding different dilation rates in the 

existing layer in our proposed architectures. The input layer 

size is 192 × 256 × 3 (ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 ×
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𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 × 𝑅𝐺𝐵). The initial block of these 

networks have 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 1, then from block two to 

five have dilation rate 2, 4, 8, and 16 respectively. To 

implement this technique, we mostly inspired by different 

multi-grid models where we find a hierarchy of several 

different sizes of grid [53-56], many semantic image 

segmentation models [57, 58], in [58] Chen et al. pick distinct 

dilation rates within block4 to block7 in the proposed ResNet 

model. Seemingly, we utilize VGG networks to adopt 

different dilation rates in different blocks. 

  

Fig. 3. Dilated VGG16 model with different dilation rate on every block

In the all convolutional layer, we used rectified linear units 

(ReLUs) as activation function and max-pooling used for 

downsampling in between every convolutional block. After 

the last convolutional and max-pooling layer, we run global 

max-pooling operation which takes tensor with shape  

ℎ × 𝑤 × 𝑑 (ℎ × 𝑤 = spatial dimensions, 𝑑 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝𝑠) and provides output tensor with 

shape 1 × 1 × 𝑑. Then, we add two fully connected layers in 

these models with 512, 7 (dataset has seven classes) filters 

respectively with a dropout layer (𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑟𝑎𝑡𝑒 = 0.50) in 

between which utilize as a regularizer function to 

substantially weaken the overfitting rate and computationally 

reasonable at the same time [59]. “RELU” is the activation 

function for the first dense layer, and the last one has 

“SoftMax”. From Figures 3 and 4, we can notice the details 

visualization of dilated VGG16 and VGG19.  

Fig. 4. Dilated VGG19 model with different dilation rate on every block 

C. Dilated MobileNet Architecture  

MobileNet was constructed to provide small, very low 
latency, and computationally sound model for embedded 
mobile vision applications [47]. MobileNet has three kinds of 
convolutional operation: standard convolution, pointwise 
convolution, and depthwise convolution. We take five 
depthwise layers to implement the dilated convolution, and 
every layer has a stride rate (2,2). Among these depthwise 
layers, the first two layers have a dilation rate (1,1); however, 
for the third and fourth layers, we placed a dilation rate (2,2). 
Furthermore, for the final depthwise layer, we concatenate 

three depthwise 2D convolution layers parallelly with a 
dilation rate of 4,8,16, respectively. Finally, we concatenate 
these three 2D layers and produce the fifth depthwise 
convolutional 2D layer. Originally, every depthwise layer of 
MobileNet has 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 1, but implementing 
different dilation rates in distinct depthwise layers of 
MobileNet architecture is new, and we first propose this 
approach. 
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After all the convolution operation (standard, depthwise, and 

pointwise), from the last pointwise layer, we take the feature 

map and employ the global average pooling (GAP) method. 

Global average pooling converts the feature map size into 

1 × 1 × 𝑑 from  ℎ × 𝑤 × 𝑑, and here this method takes 

average value from the spatial dimension of the feature map 

(ℎ × 𝑤 = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛). GAP has several 

advantages; such as elude overfitting in the layer, in the input 

feature map, it exhibits more robust characteristics to the 

spatial translations [60]. The classifier part of the fully 

connected part is the same as the VGG networks. There are 

two fully connected layers, and in between, there is a dropout 

layer.  

 

Fig. 5. Dilated MobileNet architecture with different dilation rates on its depthwise convolutional layer, which contains stride (2,2). In the first two depthwise 
convolutional layers has a dilation rate (1,1). The third and fourth Depthwise layers experience dilation rate (2,2). For the final depthwise layer, we merge three 

parallel depthwise layers with dilation rate (4,4), (8,8), (16,16) respectively, and run concatenation operation to convert these three layers into one depthwise 

layer. In this figure, dw = depthwise; S1= stride (1,1); S2 = Stride (2,2)  

 

D. Dilated InceptionV3 

GoogleNet [62] produces InceptionV3 architecture to 

perform efficiently under the strict limitations of memory and 

computation. GoogleNet [62] first displayed back in 2014 in 

ImageNet [61] competition.  

InceptionV3 has three main parts in its networks, like 

factorizing convolution, auxiliary classifier, and coherent 

grid size reduction. Again we can divide factorizing 

convolution into three sections. First, instead of using a big 

convolution, factorizing it into the two smaller convolutions 

is computationally inexpensive. For 

Fig. 6. Dilated  InceptionV3 network with three different modules of Inception blocks (5 times inception, 4 times Inception, 2 times inception). Every layer 

of Module A, Module B, and Module C has dilation rate (2,2) 
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instance, in InceptionV3 two 3 × 3 convolutions used in the 

place of one 5 × 5 convolution because two 3 × 3 filters 

would cost us 18 (3 ∗ 3 + 3 ∗ 3), whereas only one 5 × 5 

filter cost us 25 (5 ∗ 5). So, for this model, we named this 

section as Module A and inserted 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 2 on each 

convolutional layer of this module. Secondly, in the place of 

𝑚 × 𝑚 filter shape (3 ∗ 3 = 9), this network using 1 × 𝑚 + 

𝑚 × 1 convolutions combination (1 ∗ 3 + 3 ∗ 1 = 6), which 

is 33% cheaper in terms of parameters. We call this section 

Module B and put 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 2 in every layer of this 

module. Finally, there is a section present in InceptionV3 to 

present the high dimensionality, and we called it Module C 

and placed 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 2 in the convolutional layer. To 

prevent the loss of important information, filter banks have 

been enlarged in this part where filter banks become wider 

rather than go deeper. Original InceptionV3 has 

𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 1  in every module. To the extent of our 

knowledge, we are the first who suggested putting 

𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 2 in different modules and finally achieve a 

better outcome than the original InceptionV3. 

Lastly, after the last module of this model, we use global max 

pooling, and the classifier or fully connected part is the same 

as our previous implementation. From figure 3, we can find 

the details process of dilated InceptionV3.  

E. Transfer Learning and Fine Tune Technique 

We apply a similar fine-tuning procedure for all the dilated 

networks which are already pre-trained with ImageNet 

dataset [61] so that every layer of these models has some 

weight from ImageNet before initiate our training. Firstly, we 

detach fully connected layers or top layers part of the existing 

models. Next, we attach a new fully-connected part as a 

classifier (this part we already described). To perform feature 

extraction, we freeze all layers instead of the classifier part 

and run this fully connected part for five epochs to give some 

weight; otherwise, the gradient would be so high because all 

the freeze layers have some pre-trained weight from 

ImageaNet. Finally, we unfroze the other layers and run the 

training for 200 epochs to put the extra weight of the 

HAM10000 dataset on every layer of our proposed models. 

 

V. RESULT 

To construct our models, mainly we use Keras for the 

frontend development and TensorFlow for the backend. Next, 

Pandas and Scikit Learn utilized respectively for data pre-

processing, and to evaluate these proposed models. Training 

every model for 200 iterations and take 32 as the mini-batch 

size. The models executed on Intel Core i7-8750H with 4.1 

GHz and an NVIDIA GeForce GTX 1050Ti GPU. Adam 64 

optimizer used as the optimization function with a learning 

rate 10-4 initially. One callback function utilized to lessen the 

learning rate factor by (0.1).5 during the training when the loss 

of validation is not diminishing for seven iterations. Thus, the 

new learning rate: 

𝑁𝑒𝑤_𝑙𝑟 =  𝑙𝑟 ∗  (0.1).5                                                   (2)                                       

𝑁𝑒𝑤_𝑙𝑟 = new learning rate; 𝑙𝑟 = present learning rate.  

Here, the lower bound for the overall learning rate is 0.5𝑒 −
6. 

A. Top-1 Test Accuracy of Four Models  

Before proposed these models, we tried numerous 

combinations for these four architectures. After the 

experiment with several combinations, we able to fixed 

which design for each model produces the best top1-accuracy 

and per-class accuracy. Furthermore, we examine different 

image resolution (64×64,128×96, 256×192, 320×320) for 

proposed VGG16, VGG19, and InceptionV3. Overall, these 

three networks produce the best outcome for 256×192 image 

resolution. On the other hand, among the different image size 

combinations for dilated MobileNet (128×128, 160×160, 

192×192, 224×224) and 224×224 image shape provide the 

highest accuracy. From table 2, we can see the dilated 

InceptionV3 showed the foremost top-1 accuracy among 

these four models, and it displayed superior computational 

complexities. However, dilated MobileNet provides lightest 

computational complexities with only 3.7 million parameters.  

TABLE II.  COMPARISON BETWEEN FOUR DIFFERENT DILATED DEEP 

LEARNING ARCHITECTURES BASED ON PEAK VALIDATION ACCURACY, TOP-1 

ACCURACY, AND PARAMETERS 

Proposed 

Model  

Peak 

Validation 

Accuracy (%) 

Top-1 Test 

Accuracy 

(%) 

Parameters 

(in millions) 

dilated VGG16 90.10 87.42 14.98 million 

dilated VGG19 86.39 85.02 20.29 million 

dilated 
MobileNet 

89.48 88.22 
3.76 million 

dilated 

InceptionV3 
90.95 89.81 

22.85 million 

 

B. Recall, Precision, and F-1 Score 

HAM10000 is a high-class imbalanced dataset. So, evaluate 

the proposed architectures we displayed recall, precision, and 

F1 score for each model. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑓1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Precision means the percentage of the pertinent outcomes 

(how many picked entries are pertinent?). Recall, or 

sensitivity implies the rate of total apposite results accurately 

classified by the particular selected model (how many 

pertinent components are chosen?). F1-score means the 

harmonic mean of precision and recall. In table 3, we showed 

the recall, precision, f1-score of four proposed architecture. 

Furthermore, we displayed macro avg., micro avg., and 

weighted avg. of these evaluation parameters.  
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TABLE III.  PRECISION, RECALL, F1-SCORE, MICRO AVERAGE, MACRO 

AVERAGE, AND WEIGHTED AVERAGE. FOR THE TEST SET OF THE HAM10000 

OF PROPOSED  DILATED VGG16 

 

TABLE IV.  PRECISION, RECALL, F1-SCORE, MICRO AVERAGE, MACRO 

AVERAGE, AND WEIGHTED AVERAGE. FOR THE TEST SET OF THE HAM10000 

OF PROPOSED  DILATED VGG19 

TABLE V.  PRECISION, RECALL, F1-SCORE, MICRO AVERAGE, MACRO 

AVERAGE, AND WEIGHTED AVERAGE. FOR THE TEST SET OF THE HAM10000 

OF PROPOSED  DILATED MOBILENET  

Class Name Precision Recall F1-Score 

Actinic keratoses 0.79 0.45 0.58 

Basal cell carcinoma 0.94 0.65 0.77 

Benign keratosis like 
lesions 

0.65 0.86 0.74 

Dermatofibroma 0.90 0.75 0.82 

Melanocytic Nevi 0.96 0.94 0.95 

Vascular lesions 0.92 0.79 0.85 

Melanoma 0.73 0.79 0.76 

Micro Avg 0.88 0.88 0.88 

Macro Avg 0.84 0.75 0.78 

Weighted Avg 0.89 0.88 0.88 

 

TABLE VI.  PRECISION, RECALL, F1-SCORE, MICRO AVERAGE, MACRO 

AVERAGE, AND WEIGHTED AVERAGE. FOR THE TEST SET OF THE HAM10000 

OF PROPOSED  DILATED INCEPTIONV3 

Class Name Precision Recall F1-Score 

Actinic keratoses 1.00 0.61 0.75 

Basal cell carcinoma 0.90 0.71 0.79 

Benign keratosis like 

lesions 
0.71 0.84 0.77 

Dermatofibroma 0.90 0.75 0.82 

Melanocytic Nevi 0.93 0.97 0.95 

Vascular lesions 0.91 0.71 0.80 

Melanoma 0.83 0.70 0.76 

Micro Avg 0.89 0.89 0.89 

Macro Avg 0.88 0.75 0.81 

Weighted Avg 0.89 0.89 0.89 

 

C. Confusion Matrix 

Because of the class imbalance issue, we need a confusion 

matrix to get a clear idea of our proposed models. Through 

this, we can able to evaluate where our models can make 

mistakes and confusion matrix used to sketch the 

performance of this architecture. For instance, in the second 

row of the confusion matrix of dilated VGG16 model, we find 

that it correctly labeled 43 images as Basal cell carcinoma; 

however, the architecture mistakenly labeled 2 images as 

Actinic Keratoses, 1 image as Benign Keratosis like lesions, 

1 image as Dermatofibroma, 2 images as Melanocytic Nevi, 

and 5 images as Melanoma skin lesion.  

In figure 7, 8, 9, and 10 we provide four confusion matrix for 

four proposed models. In these four figures: AK= Actinic 

keratoses, BCC=Basal cell carcinoma, BK=Benign keratosis-like 

lesions, Der=Dermatofibroma, MN=Melanocytic Nevi, VL= 

Vascular lesions, Mel=Melanoma.  

 

Fig. 7. Confusion Matrix for proposed dilated VGG16 

Class Name Precision Recall F1-Score 

Actinic keratoses 0.61 0.58 0.59 

Basal cell carcinoma 0.79 0.65 0.71 

Benign keratosis like 

lesions 
0.66 0.82 0.73 

Dermatofibroma 0.67 0.33 0.44 

Melanocytic Nevi 0.93 0.93 0.93 

Vascular lesions 0.91 0.71 0.80 

Melanoma 0.67 0.65 0.66 

Micro Avg 0.85 0.85 0.85 

Macro Avg 0.75 0.67 0.70 

Weighted Avg 0.85 0.85 0.85 

Class Name Precision Recall F1-Score 

Actinic keratoses 0.64 0.42 0.51 

Basal cell carcinoma 0.80 0.84 0.82 

Benign keratosis like 
lesions 

0.72 0.76 0.74 

Dermatofibroma 0.67 0.67 0.67 

Melanocytic Nevi 0.94 0.96 0.95 

Vascular lesions 1.00 0.79 0.88 

Melanoma 0.72 0.66 0.69 

Micro Avg 0.87 0.87 0.87 

Macro Avg 0.78 0.73 0.75 

Weighted Avg 0.87 0.87 0.87 
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Fig. 8. Confusion Matrix for proposed dilated VGG19 

 

Fig. 9. Confusion Matrix for proposed dilated MobileNet 

 

Fig. 10. Confusion Matrix for proposed dilated InceptionV3 

D. Compare with Recent Work 

Here, we compare our outcomes with some recent 

architectures on the HAM10000 dataset. For comparison, we 

use the recall, weighted average of precision, and the f-1 

score of these seven different classes of the HAM10000 

dataset. The proposed dilated InceptionV3 network produces 

superior outcomes in these three evaluation criteria than 

existing architectures. To compare with these state-of-art 

architectures, we evaluate average recall, average precision, 

and average F-1 score. 

TABLE VII.  THE COMPARISON RESULT OF OUR PROPOSED 

ARCHITECTURES WITH SOME EXISTING MODELS 

Source  Model  Avg. 

Recall 

Avg. 

Precision 

Avg. F-

1 Score 

[40] Original 

Densenet-121 

0.49 0.36 0.30 

[40] Combining 
Multilevel 

Learnings in a 

DenseNet 
(Ensemble 

DenseNet 

Architecture) 

0.88 0.76 0.82 

[65] Fine Tune 
MobileNet 

0.89 0.83 0.83 

 

 

Our 

Proposed 

Models 

Dilated 

VGG16 

0.87 0.87 0.87 

Dilated 
VGG19 

0.85 0.85 0.85 

Dilated 

MobileNet 

0.89 0.88 0.88 

Dilated 
InceptionV3 

0.89 0.89 0.89 

 

VI. CONCLUSION AND FUTURE WORK 

All over the world, skin cancer is considered one of the 

deadliest types of cancer. Here, we construct a computer-

aided skin lesion classifier system using four different dilated 

deep neural network architectures (VGG16, VGG19, 

MobileNet, and InceptionV3) with transfer learning 

techniques. Several different data preprocessing and 

augmentation rules applied to lessen the effect of class 

imbalance characteristic of HAM10000. We tried several 

evaluation approaches such as top-1 accuracy, recall, 

precision, f-1 score, and confusion matrix to compare our 

proposed model with the basic one. These models produce 

better outcomes than any known methods on skin lesions 

classification after considering image noise presence, the 

number of classes, and the issue of class imbalance. Among 

all the proposed architectures, InceptionV3 delivered 

superior classification accuracy, and MobileNet exhibits 

fewer parameters. 

There are still many shortcomings exist which we will have 

to fix in the future. Every proposed architecture has been pre-

trained with the ImageNet dataset; however, ImageNet is not 

well assembling for skin lesion images. Thus, utilizing a fine-

tuning method to provide every layer an additional weight 

which increases the time and space complexities. Hence, to 

build a suitable application for medical, we need to shrink all 

the complexities.  
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