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ABSTRACT 

Brain oscillations reflect system-level neural dynamics and capture the current brain state. These 

brain rhythms can be measured noninvasively in humans with electroencephalography (EEG). 

Up and down states of brain oscillations capture local changes in neuronal excitability. This makes 

them a promising target for non-invasive brain stimulation methods such as Transcranial Magnetic 

Stimulation (TMS). Real-time EEG-TMS systems record ongoing brain signals, process the data, 

and deliver TMS stimuli at a specific brain state. Despite their promise to increase the temporal 

specificity of stimulation, best practices and technical solutions are still under development. Here, 

we implement and compare state-of-the-art methods (Fourier based, Autoregressive Prediction) 

for real-time EEG-TMS and evaluate their performance both in silico and experimentally. We 

further propose a new robust algorithm for delivering real-time EEG phase-specific stimulation 

based on short prerecorded EEG training data (Educated Temporal Prediction). We found that 

Educated Temporal Prediction performs at the same level or better than Fourier-based or 

Autoregressive methods both in silico and in vivo, while being computationally more efficient. 

Further, we document a dependency of EEG signal-to-noise ratio (SNR) on algorithm accuracy 

across all algorithms. In conclusion, our results can give important insights for real-time TMS-

EEG technical development as well as experimental design. 

KEYWORDS 

Transcranial magnetic stimulation; Electroencephalography; Closed-loop brain stimulation;  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860874doi: bioRxiv preprint 

https://doi.org/10.1101/860874
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

1. Introduction 

Large-scale brain activity undergoes ongoing cyclical changes resulting from neural 

activity interaction of cellular and circuit properties (Buzsáki and Draguhn, 2004). These neural 

oscillations represent rhythmic alternations between high and low excitability brain states 

(Schroeder and Lakatos, 2009). Electroencephalography (EEG) enables us to noninvasively 

record these brain oscillations, which are capturing the synchronous activity of neural ensembles 

(Buzsáki et al., 2012). The instantaneous phase of brain oscillations is an important feature of 

neural processing (Alekseichuk et al., 2016; Jacobs et al., 2007; Maris et al., 2016; Sauseng and 

Klimesch, 2008; Thut et al., 2012). Thus, it can serve as an indicator of brain excitability to inform 

the timing of brain stimulation delivery such as Transcranial Magnetic Stimulation (TMS). 

TMS is a non-invasive brain stimulation method that induces strong short-lasting electric 

fields in the brain (Barker et al., 1985). A TMS pulse is generated by passing a high-intensity 

electrical current through an inductive coil to create a magnetic field that penetrates the skull and 

induces a secondary electric field in the brain, which modulates neural activity (Hallett, 2007; 

Opitz et al., 2011). TMS is being increasingly explored as a tool to modulate brain activity for the 

treatment of neurological and psychiatric disorders (Lefaucheur et al., 2014). The combination of 

TMS with EEG can improve stimulation protocols by tailoring them to the individual’s ongoing 

brain state (Bergmann et al., 2016; Thut et al., 2017).  

Numerous studies have assessed the relationship between ongoing EEG oscillations and 

physiological responses to TMS. For instance, Romei et al., 2008 reported that for the same TMS 

stimuli, phosphene induction is increased for lower prestimulus alpha power in posterior brain 

regions. Dugué et al., 2011 found a higher probability of TMS-induced phosphenes during the 

peaks of occipital alpha oscillations. Reports on whether EEG power and/or phase are relevant 

markers of corticospinal excitability for TMS motor evoked potentials (MEPs) are mixed in the 

literature e.g. (Berger et al., 2014; Hussain et al., 2019; Keil et al., 2013; Schulz et al., 2014). 

However, the inferences to be drawn from these studies are limited, as they employed a post hoc 

analysis of EEG data, thus, not allowing a direct causal test of current EEG brain states on TMS 

responses. 

Real-time EEG-TMS methods that deliver stimulation based on the present brain state 

have the potential to overcome the limitations of previous EEG-TMS studies. Further, they can 

potentially deliver more efficient brain stimulation and improve research and clinical outcomes 

(Karabanov et al., 2016; Polanía et al., 2018; Zrenner et al., 2016). Recent implementations of 
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such real-time EEG-TMS systems delivered TMS based on the phase and power of the EEG mu-

rhythm to study MEP corticomotor excitability (Madsen et al., 2019; Zrenner et al., 2018). Further, 

alpha-synchronized TMS over the dorsolateral prefrontal cortex (DLPFC) has been investigated 

for depression treatment (Zrenner et al., 2019).  

While real-time approaches are a promising technology, they come with a set of technical 

challenges. In particular, it is difficult to extract the instantaneous phase of the recorded EEG 

signals accurately in real-time. One main problem of any real-time processing system compared 

to offline methods is the trade-off between speed and accuracy. Since the data needs to be 

processed within a limited time window, algorithms have to be computationally fast, even at the 

cost of accuracy. Another problem is that during real-time computations, we are limited by 

causality in signal processing, which means that future signal samples are not available for 

processing such as filtering. In signal processing, band-pass filters extract the frequency bands 

of interest (e.g. alpha, beta). These filters invariably introduce artifacts around the edges of the 

available time-series. Since only data recorded up until the current time point are available, 

filtering inevitably distorts the data and its phase at the current moment. Thus, it is necessary to 

predict the signal and phase based on the currently available undistorted data from the near past, 

which can also compensate for any hardware delays.  

Multiple methods have been proposed for EEG forward prediction. Since continuous EEG 

signals to a certain degree are nonsinusoidal and nonstationary (Cole and Voytek, 2017; Mäkinen 

et al., 2005), this is a challenging problem. Two main methods have been suggested for real-time 

phase-dependent EEG-TMS: 1) Forward prediction in the time domain. Here, the algorithm uses 

temporal patterns in a short time window (e.g. the last 0.5 seconds of recorded data) in a 

frequency band of interest to predict the signal waveform for future time periods. One particular 

implementation is the autoregression model based prediction (Chen et al., 2013).  2) Forward 

prediction in the frequency domain. Here, the signal is projected into the Fourier domain to capture 

the main sinusoidal (Mansouri et al., 2017) or wavelet component (Madsen et al., 2019) to be 

used for phase extrapolation.  

While these methods have been successfully implemented for real-time phase prediction, 

they have certain drawbacks. Commonly used autoregressive (AR) predictions in the temporal 

domain need careful parameter optimizations, have high computational demand, and need high 

signal power in the frequency band of interest which can lead to the exclusion of participants 

(Zrenner et al., 2018). Frequency-domain algorithms, like in Mansouri et al., 2017 are 
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computationally effective and relatively parameter-free, but their accuracy relies on the periodicity 

and harmonicity of the brain signal.  

To overcome existing accuracy-complexity trade-offs, we propose a third, conceptually 

independent method that is parameter-free, fast, and provides a similar or higher accuracy 

compared to the existing methods. This algorithm, named Educated Temporal Prediction (ETP) 

leverages a short training session before the real-time application to learn each individual’s 

statistical features of the target brain oscillation. Unlike the first two methods that only use data in 

the current time window for forward prediction, ETP utilizes pre-learned features for faster or more 

accurate prediction. Since this algorithm is trained on more data (~minutes) than it has access to 

during real-time processing (~ 1 second), it can be more robust to compensate for occasional 

reductions in signal quality. In our current implementation, the ETP algorithm relies on a basic 

statistical characteristic of phasic data – the central moment of the inter-peak intervals in the time 

domain. The goal of this study is to  compare all algorithms using in silico and in vivo real-time 

implementations. 

2. Material and Methods 

2.1. Phase Prediction Algorithms 

Several different classes of algorithms to detect and predict the EEG phase for TMS 

closed-loop stimulation have been proposed in the literature. Below we summarize the key 

principles for (a) Fast Fourier Transform (FFT) based prediction, (b) Autoregressive (AR) 

forecasting, and (c) newly suggested Educated Temporal Prediction (ETP). 

Fast Fourier Transform (FFT) Prediction. The key feature of this algorithm is to use the 

frequency domain of the EEG signal for forward prediction e.g. (Mansouri et al., 2017). The 

specific implementation in our experiment (Fig. 1A) is as follows: 1) The Laplacian montage for 

the desired brain region is applied to the signal (Hjorth, 1980)  (Fig. 1E). 2) The signal is zero-

phase FIR (Finite Impulse Response) filtered in the frequency band of interest (Alpha: 8-13 Hz, 

Beta: 14-30 Hz) using the Fieldtrip toolbox (Oostenveld et al., 2010). 3) The FFT of the signal is 

calculated. 4) The dominant oscillation (maximum amplitude in the frequency spectrum) is 

detected. 5) The phase of the signal at the dominant frequency is calculated from the angular 

component of the complex FFT signal. 6) A sine wave of the dominant oscillation with given 

frequency and phase as calculated in the previous steps is used for forward prediction. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2019. ; https://doi.org/10.1101/860874doi: bioRxiv preprint 

https://doi.org/10.1101/860874
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

AutoRegressive (AR) Prediction. In this method, the signal is predicted in the time domain. A 

detailed description can be found in (Zrenner et al., 2018; Chen et al., 2013). In our 

implementation we perform the following steps (Fig. 1B): 1) The Laplacian of the electrodes 

corresponding to the region of interest is calculated. 2) The signal is zero-phase band-pass filtered 

in the frequency band of interest using an FIR filter. 3) The edges of the signal are trimmed to 

remove edge artifacts due to filtering. 4) The remaining signal is used to calculate the coefficients 

for the autoregressive model. 5) Using the AR coefficients, the signal is iteratively forward 

predicted. 6) The instantaneous phase of the predicted signal is calculated using the Hilbert 

transform. 

Educated Temporal Prediction (ETP). In this method, we propose to include a short training 

phase to learn the individual statistical properties of the oscillation of interest. We use a simple 

and robust method to extract inter-peak intervals and their central moment. Assuming that brain 

oscillations are quasi-stable over the short measurement periods, one can determine the typical 

interval between subsequent signal peaks (corresponding to 360° in phase). To predict the time 

point at which the next target phase, i.e. the peak, will occur, one can add the period between 

signal peaks to the time of the last peak in the current recorded signal window. Here, we have 

implemented this algorithm as shown in Fig. 1C-D: 1) Three minutes of resting-state data is 

recorded. 2) The Laplacian montage for the region of interest is applied. 3) The data is filtered 

with a zero-phase FIR filter in the band of interest. This signal is used as the ground truth for later 

steps. 4) Signal peaks in the first 90 seconds of the training data (learning phase) are identified 

(Tn). To ensure that found peaks are meaningful and not a result of noise, a criterion of minimum 

peak distance (i.e. 62.5 ms for alpha oscillations) was introduced. 5) The median of the periods 

between those peaks was chosen as the interpeak interval (T) to be used for peak prediction. 6) 

The second 90 seconds of raw resting EEG data are used for the estimation of the accuracy of 

the phase prediction (validation phase). For this, 250 overlapping windows with a length of 500 

ms are selected. 7) The Laplacian montage of the region of interest is applied and the windows 

are individually filtered in the band of interest using a non-causal sinc filter (brick-wall filter in the 

Fieldtrip toolbox). 8) The edge (40 ms for alpha) from the end of the window is removed to avoid 

the edge artifact caused by the filter. 9) The peaks in this window with the criteria explained in 

step 4 are detected. 10) The timing of the next peak is predicted by adding T to the last detected 

peak. 11) The actual phases of the signal at the predicted peaks are measured from the Hilbert 

transform of the ground truth. 12) In an ideal case, the actual phase of all the predicted peaks 

should have no deviation from the target phase. However, due to the presence of noise, the 

achieved phase values may differ. To minimize the potential error in the phase detection, the 
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value of T is increased or decreased incrementally to achieve a zero-mean deviation from the 

target phase. The adjusted value (Tadj) is used for real-time phase estimation. In other words, the 

bias in phase detection is removed without a change in variance. The calculated phases in this 

section can also be used as an estimation of the algorithm accuracy in real-time performance. In 

the real-time segment of the experiment, using Tadj, steps 7-10 described above are applied to 

the current window to predict the next peak (Fig. 1D). If stimulation at any other phase is desired, 

we can progress the phase of the signal linearly and calculate the time projection needed from 

the last peak according to equation (1): 

𝑇𝑎𝑑𝑗∗ =
𝜃

2𝜋
𝑇𝑎𝑑𝑗      (1) 

Where Tadj* is the new value of T to be added to the last detected peak in the time window, θ is 

the target phase for the stimulation. 

 

Fig. 1 Algorithm implementation. (A) FFT algorithm. Left panel: The raw data (black) is band-pass filtered 

(purple). Right panel: the filtered data is Fourier transformed (purple), the frequency and phase of the 

dominant frequency are calculated (red). A sine wave with the calculated frequency and phase is used for 

forward prediction (red, left panel).  (B) AR algorithm. The raw data (black) is band-pass filtered (blue). 
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Signal edges on both sides are removed (gray). The autoregressive model is estimated and the signal is 

predicted (dotted red). The phase of the predicted signal is calculated using the Hilbert transform (Solid 

red). (C) ETP training. During the learning phase, the first half of the resting state data is band-pass filtered 

and the distances between peaks are calculated. The median of the peak periods are calculated as the 

initial interpeak interval T. The second half of the resting-state data is used for the validation phase, the 

data is segmented into smaller epochs and the peaks are forward projected using T. The predicted peaks 

are compared with the ground truth. Then, T is fine-tuned for optimal performance (Tadj) (D) ETP Real-time 

application. The raw data (black) is band-pass filtered (green). The edge at the end of the data is removed 

(gray). The last peak in the time window is projected in the future using Tadj. (E) Laplacian montages used 

for the regions of interest. The red electrode is the central electrode. The mean of the surrounding 

electrodes (black) is removed from the central electrode. 

 

2.2. In Silico Validation Based on Prerecorded Resting-State EEG 

Algorithm Development and Parameter Optimization. We used a separate prerecorded 

resting-state EEG dataset for the development and initial optimization of the algorithms. For this, 

data from 25 individuals (13 female) with an average age of 19 years were taken from the Child 

Mind Institute healthy brain network dataset (Alexander et al., 2017). Phase detection was 

simulated on segments of resting EEG data which acted as surrogates of the real-time data. In 

the development process, we optimized parameters such as filter type, filter order, number of 

samples for edge removal, peak detection. Priority was given to algorithm performance (i.e. phase 

accuracy) as long as the process was fast enough to run in real-time. In case the performance of 

two procedures was equivalent, the faster one was chosen. 

Algorithm validation. After development, we used another dataset to estimate the accuracy and 

speed of each algorithm to ensure the generalizability of the results. This dataset included resting-

state EEG from 13 healthy adults sampled at 1 kHz with a high number of electrodes (Sockeel et 

al., 2016). Each individual’s data was epoched with a 500 ms window length and a 50% overlap. 

We used the three algorithms, FFT, AR and ETP, to predict the phase over three brain regions : 

left prefrontal cortex (PFC), left motor cortex (M1) and left occipital cortex (OC). These predicted 

values were compared to the ground truth (continuous EEG data with a two-pass high-order FIR 

filter and Hilbert transformed to extract phase) to measure the performance. The computation 

time needed for each algorithm to process the data was also recorded for each epoch. 

2.3. In Vivo Real-Time Experiments 

System Validation. In order to technically validate the closed-loop system, including hardware 

and software, we created a test scenario using a dummy head model made of a plastic frame and 

soft fabric soaked with the saline solution and a known electrical input signal (alternating current 
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at 10 Hz) generated with the XCSITE 100 amplifier (Pulvinar Neuro, Chapel Hill, North Carolina, 

US). Since the signals recorded by all EEG electrodes are perfect oscillations (within technical 

limits) with a high signal-to-noise ratio (SNR), we expected to detect the phase correctly using all 

algorithms (refer to Fig. S1 for results). 

Human Participants Testing. The study protocol was approved by the Institutional Review Board 

of the University of Minnesota. All volunteers gave written informed consent prior to participation. 

Eight healthy participants (three female, average age = 27) without a history of neurological 

disorders took part in the main experiment, where we targeted the alpha oscillations. In one 

participant, due to a high level of noise during the measurement, the recordings of the motor 

region for all the methods were removed. In the main experiment, we targeted the alpha band (8 

- 13 Hz). To test whether the algorithms can perform well in a different frequency band, four 

participants (two females) were called back to test the beta band condition. For this test, we 

changed the band-pass filter frequency to (14-30 Hz), while keeping all the other parameters the 

same. 

Experimental Protocol. The volunteers were asked to sit in a comfortable chair in a relaxed 

position throughout the experiment. The participants were instructed to maintain a resting state 

with eyes open during the recordings. The experimental paradigm is illustrated in Fig. 2. Five 

minutes of resting-state were recorded at the beginning and at the end of the session. We tested 

the three algorithms to predict the EEG alpha phase over three brain regions (left PFC, left M1, 

left OC) in a total of nine blocks, of five minutes each. The order of regions and the order of 

algorithms within each region was randomized. For the ETP method, there was a separate 

training block in which three minutes of resting-state data were recorded immediately prior to the 

real-time block. 

 

Fig. 2 Experimental Protocol. Resting-state EEG is recorded at the beginning and end of the experiments. 

For each three brain regions that are randomized in order, three algorithms are tested in real-time. Prior to 

the real-time ETP block, resting-state is recorded and the algorithm is trained.  
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Electrophysiological Recordings. Scalp EEG was recorded using a 64-channel EEG amplifier 

(actiCHamp, Brain Products GmbH, Germany) with active Ag/AgCl electrodes (actiCAP slim, 

Brain Products GmbH, Germany). The data were recorded at a sampling rate of 10 kHz with 24 

bits resolution. The impedance between the scalp and each electrode was kept below 20 kΩ. 

Since we are interested in recording the signal coming from a local brain region, we used the 

Laplacian montage that subtracts the mean values of the surrounding electrodes from the 

electrode of interest. This allows for common-mode rejection of signals coming from sources 

outside of the region of interest. Fig. 1E illustrates the exact montages that were used for this 

study. 

Real-time Digital Signal Processing. EEG data from the amplifier was streamed to the 

processing computer (Microsoft Windows 10, 4 cores 3.60 GHz CPU, 16 GB RAM) using the Lab 

Streaming Layer (LSL, https://github.com/sccn/labstreaminglayer) software in real-time. Custom 

scripts (https://github.umn.edu/OpitzLab/CL-phase) were used in MATLAB R2017b to receive 

and process the EEG data and send the triggers to the TMS machine (Magstim Rapid2, UK). The 

last 500 ms of the streamed data was selected and fed to the algorithms to perform the phase 

estimation and prediction. The 500 ms window was updated upon receiving each new sample. In 

order to perform accurate real-time analysis, it is essential to process the current window of data 

before the next sample is received. This ensures that the system runs smoothly and sustains real-

time performance during the whole session. Thus, the streaming data were downsampled before 

performing the analysis on each window. Since the ETP and FFT methods are computationally 

fast, we downsampled the EEG data to 1 kHz. For the AR algorithm, due to high computational 

demand and consistency with previous work (Zrenner et al., 2018), the data were downsampled 

to 500 Hz. 

Real-Time Stimulation Triggers. During the real-time phase estimation, a TTL (Transistor-

transistor logic) pulse was sent from the parallel port of the computer to trigger the TMS machine. 

Due to an overall processing delay (~1-2 ms) and a lag of the TMS machine to deliver the 

magnetic pulse from the time it receives the trigger, there is a total trigger delay one needs to 

account for. Since this delay is stable over time, it was experimentally measured during the system 

validation and adjusted in the code. Note that the total delay is system-specific and should be 

measured for each system separately. In our experiments, triggers were sent when the estimated 

phase approached the proximity of the desired phase adjusted with the technical delay. Since 

TMS pulses are very strong compared to the EEG signals, they cause large artifacts that would 

distort the phase estimation to determine the ground truth in offline processing (Ilmoniemi and 
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Kičić, 2009; Herring et al., 2015). Therefore, in this study, since we are mainly interested in 

comparing the accuracy of different methods, we did not apply a TMS pulse and only recorded 

the time at which the triggers were sent. This way, the EEG signal was not distorted, allowing us 

to estimate the ground truth phase for algorithm comparison. 

2.4. Data Analysis and Statistics 

Algorithm Performance. We quantified the performance of each algorithm calculating its bias, 

variance, and accuracy. Bias shows the typical difference of the outcome from the target. Here, 

we used the average difference between the estimated phase and the target phase. Variance 

quantifies how spread the outcome distribution is. We used the standard deviation to report to 

quantify the spread. We defined the accuracy in equation (2): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  1 −
1

𝑁×180
∑ |𝜃𝑖 − 𝜃0|𝑁

𝑖=1      (2) 

Where N is the number of trials for which the phase is estimated, θi is the estimated phase (°) for 

the trial i, and θ0 (°) is the desired phase. Accuracy of 1 means that the phase has been estimated 

precisely all the time. Accuracy of 0.5 is a uniformly random phase estimation. Accuracy of 0 

means that all phases have detected as the opposite of the target phase (e.g. troughs instead of 

peaks). 

Statistical Comparison Between the Algorithms. To test whether there is a statistical 

difference between the algorithm performance, we used a general linear mixed-effects model 

(GLME) with accuracy as the dependent variable, algorithm type as the fixed effect, and brain 

region as the random effect variables. In case the result of GLME was significant, we used the 

Wilcoxon signed-rank test to compare each pair of algorithms. 

Signal-to-Noise Ratio (SNR) Measurements and Accuracy Regression. One key factor for 

closed-loop performance is the signal-to-noise ratio in EEG recordings. Especially the presence 

or absence of a prominent alpha rhythm has been used as participant selection criteria in previous 

studies (Zrenner et al., 2018). We hypothesized that phase estimation accuracy will depend on 

data quality and alpha power. To test this, we calculated the SNR for each experimental EEG 

block during post-processing. SNR was measured by calculating the Power Spectral Density 

(PSD) using Welch’s method with 2s epochs and Hamming windows and then dividing the total 

power in the alpha band by the total power over all frequencies (1-45 Hz). To quantify this 

relationship, we calculated the linear regression model between the SNR and phase accuracy of 

each experimental block for the three algorithms separately. 
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Resting-State Analysis. The ETP algorithm expects that EEG oscillations in the band of interest 

are quasi-stable over the experiment (in our case, approx. 1 h). To test this, we compared the 

resting-state data recorded pre-experiment with post-experiment data. Resting-state data were 

preprocessed to remove noise and artifacts (Delorme and Makeig, 2004; Oostenveld et al., 2010). 

We calculated the PSD and identified the frequency of maximum PSD for each volunteer in pre 

and post data. We used the Wilcoxon signed-rank test to evaluate any possible systematic shifts 

in the alpha peak frequency for all of the three brain sites throughout the experiment. 

3. Results 

3.1. In Silico Validation Based on Prerecorded Resting-State EEG 

First, we evaluated the performance of each algorithm in silico. Fig. 3A shows the polar 

histograms of the difference between the detected phase and the desired phase in the alpha band 

for FFT, AR, and ETP methods. Fig. S4 also illustrates the polar histograms separately for each 

brain region. Qualitatively, all algorithms target zero degrees correctly; however, ETP shows the 

least spread, thus, higher in accuracy, while FFT shows the most spread around the target phase. 

Additionally, a difference in performance accuracy can be seen between brain regions with 

occipital cortex showing the highest accuracy followed by M1 and finally PFC (Fig. 3B). Table 1 

summarizes the performance metrics (mean, standard deviation, and accuracy) for all algorithms 

and brain regions. As can be seen, all methods have a negligible bias in phase estimation; 

however, AR (mean accuracy = 68%) and ETP (71.8%) algorithms manifest lower spreads and 

therefore higher accuracies compared to the FFT (57.2%) algorithm (by 10.8% and 14.6% higher 

accuracy, respectively). ETP performs slightly better than AR by 3.8% in terms of accuracy. The 

general linear mixed effect model confirms significant differences between the algorithms 

accuracy (F(2,114) = 235, p < 1e-40). Non-parametric pairwise tests indicate a statistically 

significant difference between the accuracy of each algorithm pairs (AR vs. ETP: p < 1.e-6, AR 

vs. FFT: p < 1e-7, ETP vs. FFT: p < 1e-7). 

Since computation speed is essential for real-time performance, we also report the median 

computation times for each method in Table 1. ETP works significantly faster than the two other 

methods. FFT and AR perform at a similar speed, although the AR method runs at a lower 

sampling rate which means it is inherently slower. Note that the computation times are hardware-

specific and, in order to ensure that the system can run in real-time, the processing time should 

be kept below the sampling frequency.  
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To test how well the algorithms generalize, we additionally performed phase estimation in 

the beta band. Since beta oscillations are faster, less stationary and cover broader frequency 

band, all algorithms perform worse compared to the alpha band results (Fig. S2 + S5 and Table 

S1). However, the same pattern between the algorithms still holds. ETP (mean accuracy = 64.7%) 

shows 3.5% higher accuracy than AR (61.2%), and AR is 5.7% more accurate than FFT (55.5%). 

The results for computation speeds are comparable to that of the alpha band. 

 

 

Fig. 3 Phase estimation results for the in silico dataset in the alpha band. (A) Polar histograms of the 

difference between the estimated phase and ground truth for each algorithm. The phase values are binned 

into 36 bins. A zero degrees phase would be the ideal outcome since the detected phase matches the 

desired phase.  (B) Box plot of the accuracy measurements with the individual datapoints over the three 

brain sites for each algorithm.  
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Table 1 Summary of the performance metrics and computation time for AR, ETP, and FFT algorithms over 

the brain regions for the in silico dataset in the alpha band. 

Algorithm Region Mean (°) SD (°) Accuracy Median Time (ms) 

AR 

All 5.44 73.59 0.68 0.78 

PF 5.46 79.30 0.65 0.79 

M1 6.37 75.88 0.67 0.81 

OC 4.49 65.59 0.73 0.74 

ETP 

All 0.37 67.35 0.72 0.06 

PF 0.16 73.54 0.69 0.06 

M1 0.38 69.49 0.71 0.06 

OC 0.56 59.01 0.76 0.06 

FFT 

All 5.55 92.36 0.57 0.82 

PF 4.91 98.20 0.54 0.82 

M1 5.92 94.33 0.56 0.82 

OC 5.83 84.57 0.62 0.81 

 

3.2. Real-Time Experiments 

After comparing the algorithms in silico using prerecorded EEG data, we implemented 

them in the laboratory for true real-time validation. Similar to the in silico validation, for the in vivo 

tests, we targeted the peak (zero phase) of the alpha rhythm. The polar histograms are illustrated 

in Fig. 4A (for separate polar histograms per each brain region see Fig. S6). Fig. 4B breaks down 

the accuracy of each algorithm over different regions with box plots. The real-time results further 

validate the findings reported in the in silico results, with ETP (mean accuracy = 70.2%) 

performing marginally better than AR (66.6%), while ETP and AR perform considerably better 

than FFT (61.1%). Table 2 summarizes the performance metrics of each method in terms of bias, 

standard deviation, and accuracy for each brain region. As can be seen, ETP shows 3.6% and 

9.1% higher accuracy relative to AR and FFT, respectively. Also, AR accuracy is 5.5% higher 

than FFT. General linear mixed effect model shows significant differences between the algorithms 

accuracy (F(2,66) = 31, p < 1e-9). Non-parametric pairwise tests confirm that there is a 

staristaically significant difference between the accuracy of each algorithm pairs data (AR vs. 

ETP: p < 1.e-3, AR vs. FFT: p < 1e-4, ETP vs. FFT: p < 1e-04). 

We also evaluated a real-time phase estimation in the beta band. The polar histograms 

for beta phase estimations can be found in Fig. S3 and Fig. S7. ETP (mean accuracy = 65.4%) 

performs considerably better in the beta band as opposed to the other methods with 6.7% and 
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10% higher accuracy than AR (58.7%) and FFT (55.4%), respectively. These results are expected 

because the FFT method relies on finding the dominant oscillation to predict the signal and the 

beta band doesn’t have such stable narrowband oscillaions as the alpha rhythm. For the AR 

method, optimal parameters such as filter order, edge removal, and autoregressive order are 

highly dependent on the frequency band of interest. Parameters used here were based on 

previous research (Zrenner et al., 2018) for the µ-rhythm in the motor cortex and tuned for the 

frequencies similar to the alpha band. Thus, it is likely that AR will need to be adapted for different 

frequencies for optimal performance. Our results indicate that ETP, which is a parameter free 

method, is readily extendable to different EEG rhythms. 

 

 

 

Fig. 4 Phase estimation results for the real-time experiment in the alpha band. (A) Polar histograms of the 

difference between the estimated phase and ground truth for each algorithm. (B) Box plot of the accuracy 

measurements with the individual datapoints over the three brain sites for each algorithm. 
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Table 2 Summary of the performance metrics for AR, ETP, and FFT algorithms over the brain regions for 

the real-time experiment in the alpha band 

Algorithm Region Mean (°) SD (°) Accuracy 

AR 

All 8.39 76.00 0.67 

PF 10.66 77.20 0.66 

M1 9.43 75.26 0.67 

OC 5.07 75.54 0.67 

ETP 

All 0.02 69.87 0.70 

PF 1.34 73.82 0.68 

M1 -1.10 66.87 0.72 

OC -0.18 68.91 0.71 

FFT 

All 1.31 85.63 0.61 

PF 1.16 87.90 0.60 

M1 -0.47 84.01 0.62 

OC 3.23 84.99 0.61 

 

Signal-to-Noise Ratio (SNR) Measurements and Accuracy Regression.  To evaluate the 

importance of SNR for the phase prediction performance, we applied a linear regression model 

between the algorithm accuracies and SNR during the measurement. We defined SRN as the 

ratio of the alpha power to the total power of the signal. Fig. 5 illustrates the regression results for 

each algorithm. In summary, all methods show a statistically significant increase in phase 

estimation accuracy for higher SNRs (FFT: R2
adj = 0.54, F(21) = 26.3, p < 0.01; AR: R2

adj = 0.41, 

F(21) = 16.3, p < 0.01; ETP: R2
adj = 0.44, F(21) = 18.4, p < 0.01). The regression slopes are 

comparable between the methods (0.31 for FFT, 0.28 for AR, and 0.32 for ETP).  

 

 

Fig. 5 Dependence of phase accuracy during the alpha band stimulation on SNR for each algorithm. The 

linear regression lines are shown in red and the confidence intervals in grey. 
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Resting-state EEG Analysis. To test whether EEG oscillations are stable throughout the 

experiment, we compared the frequency of maximum PSD in the alpha band between the pre- 

and post-experiment resting-state recordings across participants for all three sites using non-

parametric paired test. We found no systematic differences (Prefrontal region: p-value = 0.53, 

Motor: p-value = 0.99, Occipital: p-value = 0.58; all degrees of freedom = 22).  

4. Discussion 

Real-time EEG based TMS applications have high potential to develop more precise 

stimulation protocols tailored to the individual’s ongoing brain state. However, optimal technical 

solutions are still being developed and evaluated. We introduced a new education-based method 

in which the algorithm learns important features from a short prerecorded EEG session. We 

further compared the accuracy of three conceptually distinct algorithms (temporal prediction, 

frequency domain prediction, and education-based prediction) to target the peaks of the alpha 

rhythm over three different brain regions. We compared the performance of these algorithms first 

in silico using prerecorded EEG data and second in vivo real-time experiments in human 

participants. We found the FFT method to perform least accurate among the three studied 

algorithms, likely due to reducing the signal to a single-frequency sine wave in the observed time 

window. Since EEG signals are non-stationary and composed of several frequency components, 

such simplification can impair forward prediction. Our proposed education-based algorithm (ETP) 

outperformed the two other methods but was otherwise close in accuracy to the AR method. The 

performance of the ETP method might be due to the robustness of the algorithm since it learns 

EEG signal patterns beforehand and doesn’t rely only on a short and possibly noisy segment of 

data that it has access to at the moment of online processing. In addition, we did not exclude any 

volunteer or data epoch to evaluate performance across a more representative sample. However, 

as indicated by the found correlation between algorithm accuracy and SNR, higher accuracies 

could be achieved by excluding participants or time windows with low SNR or oscillatory power. 

For real-time applications, computation speed is essential. Hence, we compared the run-time 

speed of all three algorithms. For a given sampling rate, the AR algorithm is the most 

computationally demanding. This is due to the heavy calculations needed to compute 

autoregressive coefficients. On the other hand, because of the simplicity of the ETP method, its 

computation time is significantly lower than the other two methods. Thus, ETP can run on lower-

end hardware and is more accessible to use. Another upside to fast computation time is that it 

provides more room for future developments in real-time processing. One drawback of using the 

ETP method is that it needs to be trained on prerecorded data. However, in our case three minutes 
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of resting-EEG data were fully sufficient for training, which can be easily integrated in a real-time 

experiment. Further, the ETP algorithm is computationally robust and does not need to tune 

several parameters such as the AR method. For example, the order of the autoregressive model 

used in the AR algorithm is highly dependent on the sampling rate and frequency of interest on 

each application, and no trivial method for this optimization is available (Krusienski et al., 2006; 

McFarland and Wolpaw, 2008). For all three algorithms used, filter type and order can strongly 

affect the performance and careful consideration is essential for their proper optimization along 

with any algorithm-specific parameters. 

A widespread implementation of real-time TMS-EEG has several potential advantages for 

future research. For example, brain-state dependent EEG-TMS studies can remove the need for 

post hoc analysis since the brain state of interest can be controlled during the experiments. 

Furthermore, closed-loop systems using neural biomarkers can be investigated in clinical 

applications to improve brain stimulation treatments. For instance, repetitive TMS (rTMS) to the 

left DLPFC is widely used for treating medication-resistant major depression (Avery et al., 2006; 

O’Reardon et al., 2007). Currently, the treatment protocol does not consider the current brain 

state. However, it is known that EEG oscillations play an important role in major depression which 

can be utilized for treatment plans (Fingelkurts and Fingelkurts, 2015; Leuchter et al., 2015). 

Timing TMS to a high-excitable state might mean that the brain will be more responsive (Zrenner 

et al., 2019), possibly leading to better treatment outcomes or shorter treatment duration. 

Beyond the algorithms evaluated in this study other less common methods to estimate the 

signal phase exist. (Madsen et al., 2019) used wavelet transforms, which are conceptually similar 

to the FFT method. Recently, machine learning algorithms have been suggested to estimate the 

instantaneous phase from unfiltered EEG data (McIntosh and Sajda, 2019). This is similar to the 

ETP method since it uses prerecorded data to extract features which can inform the real-time 

application. However, all existing algorithms have room for improvement in accuracy. Due to 

challenges in implementing real-time phase estimation (such as causality, filtering edge artifact, 

and system delay), further efforts are needed to improve the performance of such online phase 

estimation and prediction algorithms. Here, we propose a simple and parameter-free education-

based method that only uses easy to access temporal features in the signal (i.e. inter-peak 

intervals). In the future, more sophisticated algorithms combining temporal, frequency, and spatial 

features present in resting-state EEG can be developed for more accurate phase prediction in 

real-time applications. Due to the increasing adoption of brain state-dependent neuromodulation 
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approaches in research and clinical applications, further technical developments can help reach 

the full potential of this emerging field. 
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Supplementary Data 

Table S1. Summary of the performance metrics and speed for AR, ETP, and FFT algorithms over the three 

brain regions for the in silico dataset in the beta band. 

Algorithm Region Mean (°) SD (°) Accuracy Median Time (ms) 

AR 

All 0.04 85.75 0.61 0.69 

PFC 0.78 85.29 0.62 0.69 

M1 0.57 84.65 0.62 0.69 

OC -1.23 87.30 0.60 0.69 

ETP 

All 0.81 79.84 0.65 0.08 

PFC 1.26 79.98 0.65 0.09 

M1 0.27 79.31 0.65 0.08 

OC 0.92 80.24 0.64 0.08 

FFT 

All 2.17 95.06 0.56 0.83 

PFC 3.51 95.64 0.55 0.83 

M1 2.82 94.02 0.56 0.83 

OC 0.16 95.53 0.55 0.83 

 

Table S2. Summary of the performance metrics for AR, ETP, and FFT algorithms over the three brain 

regions for the real-time experiment in the beta band. 

Algorithm Region Mean (°) SD (°) Accuracy 

AR 

All -0.17 89.36 0.59 

PFC -4.18 87.82 0.60 

M1 -3.93 90.34 0.58 

OC 7.59 89.92 0.59 

ETP 

All -2.17 78.51 0.65 

PFC -6.03 77.22 0.67 

M1 -2.80 80.25 0.64 

OC 2.33 78.05 0.66 

FFT 

All -5.09 93.70 0.55 

PFC -3.22 91.47 0.58 

M1 -9.46 95.17 0.54 

OC -2.58 94.46 0.55 
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Figure S1. Phase estimation results of the dummy head experiment for the system validation. 

 

 

Figure S2. Phase estimation results for the in silico dataset in the beta band.  

 

Figure S3. Phase estimation results for the real-time experiment in the beta band.  
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Figure S4. Phase estimation results for the in silico dataset for each algorithm and brain region in the alpha 

band.  
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Figure S5. Phase estimation results for the in silico dataset for each algorithm and brain region in the beta 

band.  
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Figure S6. Phase estimation results for the real-time experiment for each algorithm and brain region in the 

alpha band.  
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Figure S7. Phase estimation results for the real-time experiment for each algorithm and brain region in the 

beta band.  
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Figure S8. Individual’s maximum alpha frequency between pre- and post-experiment resting-state EEG 

over different regions. 
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