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ABSTRACT 12 

Long non-coding RNAs (lncRNAs) are increasingly recognized as functional units in can-13 

cer pathways and powerful molecular biomarkers, however most lncRNAs remain un-14 

characterized. Here we performed a systematic discovery of prognostic lncRNAs in 9,326 15 

patient tumors of 29 types using a proportional-hazards elastic net machine-learning 16 

framework. lncRNAs showed highly tissue-specific transcript abundance patterns. We 17 

identified 179 prognostic lncRNAs whose abundance correlated with patient risk and im-18 

proved the performance of common clinical variables and molecular tumor subtypes. 19 

Pathway analysis revealed a large diversity of the high-risk tumors stratified by lncRNAs 20 

and suggested their functional associations. In lower-grade gliomas, discrete activation 21 

of HOXA10-AS indicated poor patient prognosis, neurodevelopmental pathway activation 22 

and a transcriptomic similarity to glioblastomas. HOXA10-AS knockdown in patient-de-23 

rived glioblastoma cells caused decreased cell proliferation and deregulation of glioma 24 

driver genes and proliferation pathways. Our study underlines the pan-cancer potential 25 

of the non-coding transcriptome for developing molecular biomarkers and innovative 26 

therapeutic strategies.  27 
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 2 

INTRODUCTION 29 

The human genome encodes numerous long non-coding RNAs (lncRNAs) that lack protein-cod-30 

ing potential and are sparsely annotated [1, 2]. A recent survey annotated nearly 20,000 high-31 

confidence human lncRNA genes of at least 200 nucleotides in length, indicating that lncRNAs 32 

are at least as common as protein-coding genes [2]. Globally, lncRNAs are transcribed at lower 33 

levels compared to protein-coding genes and exhibit transcript abundance patterns specific to 34 

tissue types and developmental stages [1, 3]. lncRNAs are involved in the regulation of cellular 35 

processes through multifunctional interactions with the genome, transcriptome and proteome [4, 36 

5]. Individual lncRNAs are increasingly recognized as key players in diverse biological pro-37 

cesses such as chromatin remodeling in X chromosome inactivation [6], post-transcriptional 38 

gene regulation through alternative splicing [7], and epigenetic silencing through histone modifi-39 

cation [8]. Computational analysis of lncRNAs enables systematic functional insights and gene 40 

prioritization. For example, k-mer analysis identified non-linear sequence similarities between 41 

lncRNAs that were informative of protein-RNA interactions and sub-cellular localization [9]. 42 

However, the vast majority of lncRNAs lack functional annotations and most of our knowledge of 43 

non-coding genes is based on a few well-studied examples. 44 

lncRNAs are increasingly implicated in cancer hallmark pathways such as proliferation, angio-45 

genesis, growth suppression, cell motility and immortality [10]. Specific well-studied lncRNAs 46 

are now recognized as biomarkers for diagnosis, prognosis and therapy of cancer. The first 47 

lncRNA-based biomarker gene PCA3 is specifically expressed in prostate cancer tissue relative 48 

to normal prostate tissue [11] and is now used in non-invasive tests that complement standard 49 

serum-based tests of prostate-specific antigen [12]. The lncRNA HOTAIR is involved in cancer 50 

progression and metastasis through chromatin remodeling and its increased transcript abun-51 

dance in breast cancer is a robust predictor of tumor metastasis and patient survival [13]. Tran-52 

scriptional profiling of normal and tumor samples has revealed numerous tissue-specific 53 

lncRNAs [1, 15, 16], indicating further potential for discovery and development of cancer bi-54 

omarkers based on the noncoding transcriptome. Some lncRNAs are also frequently mutated in 55 

cancer genomes and recent studies have identified candidate driver mutations by surveying 56 

whole-genome sequencing data in multiple cancer types [17, 18]. Projects such as The Cancer 57 

Genome Atlas (TCGA) [19], International Cancer Genome Consortium (ICGC) [20], METABRIC 58 

[21] and others have accumulated multi-omics datasets and patient clinical profiles for thou-59 

sands of cancer samples. These resources have enabled biomarker studies that associated 60 
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cancer patient prognosis with transcript abundance of protein-coding genes and their genetic 61 

and epigenetic alterations [22-25]. However, associations of lncRNAs with cancer patient sur-62 

vival and biological function remain largely unexplored. A recent study characterized recurrent 63 

hypomethylation patterns affecting a thousand lncRNAs in the TCGA PanCanAtlas cohort and 64 

identified the EPIC1 lncRNA as a marker of poor prognosis in a subset of breast cancers [26]. 65 

Another TCGA study associated mutations and transcript abundance profiles of lncRNAs with 66 

regulatory networks and molecular pathways and nominated candidate oncogenic and tumor 67 

suppressive lncRNAs, some of which were functionally validated in cancer cell lines [27]. Analy-68 

sis of cell-cycle correlated lncRNAs revealed a subset of S-phase enriched lncRNAs whose 69 

transcript abundance profiles correlated with patient survival in multiple TCGA cohorts [28]. 70 

However, those studies did not analyze robust prognostic performance of lncRNAs using ma-71 

chine-learning and cross-validation approaches, indicating further potential to systematically dis-72 

cover lncRNAs as candidate prognostic biomarkers of multiple cancer types. 73 

Here we evaluated the transcript abundance profiles of nearly 6,000 lncRNAs as prognostic bi-74 

omarkers in human cancers. Using a comprehensive machine-learning analysis, we compiled a 75 

robust catalogue of prognostic lncRNAs across nearly 10,000 tumors of 29 types from the 76 

TCGA PanCanAtlas project [22, 29]. The majority of our candidate lncRNAs showed improved 77 

prognostic potential compared to standard clinical features and molecular tumor subtypes. We 78 

associated prognostic lncRNAs with large-scale deregulation of hallmark cancer pathways, re-79 

vealing extensive functional diversity of high-risk tumors and potential roles of lncRNAs. Using 80 

functional experiments in patient-derived glioma cell lines, we show that knockdown of the 81 

lncRNA HOXA10-AS led to reduced cellular proliferation and transcriptional de-regulation of 82 

hallmark cancer pathways and driver genes. Our study highlights the translational utility of the 83 

human non-coding transcriptome for cancer biomarker discovery and provides a catalogue of 84 

high-confidence lncRNAs for functional experiments and biomarker studies.  85 
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86 
RESULTS 87 

Long non-coding RNAs (lncRNAs) show tissue-specific transcript abundance and patient 88 

survival associations in multiple cancer types  89 

We first characterized the transcript abundance of lncRNAs across 9,326 patients from 29 can-90 

cer types with matched RNA-sequencing (RNA-seq) data and clinical annotations of the TCGA 91 

PanCanAtlas dataset [22, 29] (Supplementary Table 1). We identified 5,785 high-confidence 92 

lncRNAs that were annotated by both the FANTOM CAT project [2] and the Ensembl database 93 

[30] (Supplementary Table 2). We first asked whether the lncRNAs showed tissue-specific 94 

transcript abundance patterns in the TCGA pan-cancer dataset. Unsupervised clustering of 95 

lncRNA transcriptomes using the UMAP dimensionality reduction algorithm [31] revealed a ro-96 

bust grouping of tumor samples by organ systems and histological subtypes (Figure 1A), akin 97 

to multi-omics data of protein-coding genes [29]. For example, the clusters indicated lncRNA-98 

based transcriptional similarity of lower-grade gliomas and glioblastomas of the brain (LGG, 99 

GBM), colon and rectum adenocarcinomas (COAD, READ), and four types of squamous carci-100 

nomas (BLCA, LUSC, HNSC, CESC). Highly tissue-specific lncRNA abundance patterns sug-101 

gest that the non-coding transcriptome includes uncharacterized diagnostic and prognostic bi-102 

omarkers.   103 
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As a pilot study of lncRNAs as prognostic markers in human cancers, we associated lncRNA 104 

transcript abundance with overall patient survival using Cox proportional-hazards (PH) models. 105 

We used individual lncRNAs as predictors in combination with standard clinical variables such 106 

as patient age, sex, tumor stage and/or grade available in TCGA. Nearly half of lncRNAs were 107 

significantly associated with overall patient survival in at least one cancer type (2,740 of 5,785, 108 

47%, Wald test, FDR < 0.05), with the majority of lncRNAs found in kidney renal cell carcinoma 109 

(KIRC) and lower-grade glioma (LGG) (Figure 1B). Most of these lncRNAs were associated 110 

with survival in only one cancer type (2,203/2,740 or 80%), confirming tissue-specificity of 111 

lncRNA transcription. The majority of lncRNAs appeared hazardous (81%) as their transcript 112 

abundance was associated with poor prognosis. Interestingly, 18% of lncRNAs were zero-di-113 

chotomized based on their discrete transcriptional activation patterns, as one group of patients 114 

showed high transcript abundance of a given lncRNA while the other patient group showed 115 

complete lncRNA silencing. These characteristics suggest a high potential for biomarker discov-116 

ery in non-coding cancer transcriptomes.  117 

Having identified thousands of survival-associated lncRNAs in the pilot analysis, we asked 118 

whether these represented robust and independent signals of transcript abundance. We per-119 

formed an exhaustive co-expression analysis of all 1,116,955 pairs of survival-correlated 120 

lncRNAs in their corresponding cancer types and found that a large fraction (35%) were signifi-121 

cantly correlated in transcript abundance (Spearman correlation, rho > ±0.3 and FDR < 0.05; 122 

Figure 1C). As expected, lncRNA pairs with matching prognostic risk were often positively cor-123 

related while pairs of lncRNAs with opposing risk correlated negatively. Thus, this large pool of 124 

putatively survival-associated lncRNAs represent a considerably narrower space of transcrip-125 

tional signatures that are confounded by factors such as epigenetic or transcriptional co-regula-126 

tion, patient clinical characteristics and tumor subtypes. This analysis indicates that many 127 

lncRNAs are expected to be transcriptionally correlated with patient survival in statistical tests 128 

however their confounders and high rate of co-expression limit their use in prognostic models 129 

designed to evaluate previously unseen patients. A systematic computational strategy is needed 130 

to distinguish representative and robust lncRNAs as prognostic biomarkers.  131 
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  132 

Elastic net proportional-hazards framework identifies 179 prognostic lncRNAs 133 

To identify robust and non-redundant prognostic lncRNAs, we implemented a machine-learning 134 

strategy of Cox-PH models with elastic net regularization by adapting earlier studies on the 135 

prognostic evaluation of omics data [25, 32] (Supplementary Figure 1). Briefly, multivariate re-136 

gression models with high-confidence lncRNAs as predictors and patient overall survival as re-137 

sponse were fitted separately for each cancer type across 1,000 cross-validations with 70/30% 138 
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data splits for training and testing. Each model initially included a pool of nominally survival-as-139 

sociated lncRNAs for the given cancer type that were evaluated based on training data (Cox PH 140 

P < 0.05). The subsequent feature selection step extracted a subset of lncRNAs as high-confi-141 

dence predictors for that cross-validation iteration. These multivariate models were then evalu-142 

ated on test data using the concordance index (c-index), an accuracy measure for risk models 143 

with censored survival data [33]. We also fitted baseline models as controls that included only 144 

clinical variables as predictors (e.g., tumor stage, grade, patient age and sex, as available in 145 

TCGA), and additional combined models that included as predictors both the set of clinical vari-146 

ables and all pre-selected transcript abundance profiles of lncRNAs. We evaluated the entire 147 

series of multivariate lncRNA-based survival models trained through cross-validations.  148 

Prognostic models of lncRNA-based predictors showed consistently superior performance in 149 

terms of concordance index values in nine cancer types, compared to baseline models that only 150 

included clinical variables (Wilcoxon rank-sum test, FDR < 0.05; Supplementary Figure 2). 151 

Combining clinical variables and lncRNA transcript abundance profiles as predictors further im-152 

proved prognostic performance of our models in 12 of 28 cancer types. To evaluate false-posi-153 

tive rates of our strategy, we also generated 100 simulated datasets for each cancer type by 154 

randomly reassigning patient survival data within each cohort of a specific cancer type. As ex-155 

pected, c-indices from the simulated datasets were consistently lower than those obtained from 156 

true data and centered on the performance value of a random predictor (c = 0.5), lending confi-157 

dence to our strategy (Supplementary Figure 3). These observations underline the added 158 

value of analyzing lncRNAs as prognostic biomarkers and suggest follow-up validation analyses 159 

in additional patient cohorts.  160 

We prioritized 179 high-confidence prognostic lncRNAs in 21 cancer types that were detected 161 

as strong predictors in at least 50% of cross-validated models following the feature selection 162 

step of the elastic net framework (Figure 2A, Supplementary Table 3). The majority of 163 

lncRNAs (123/179 or 69%) were detected as unfavorable markers with respect to high transcript 164 

abundance (median HR = 2.3) while 56 lncRNAs were detected as favorable (median HR = 165 

0.48). The largest numbers of prognostic lncRNAs were detected in multiple common cancer 166 

types: breast (21), bladder (14), ovarian (14), colorectal (12) and head and neck cancer (12). 167 

Lower-grade glioma (12) showed the strongest lncRNA candidates in terms of statistical signifi-168 

cance. To quantify the 179 lncRNAs as prognostic markers individually and in combination with 169 
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commonly used clinical variables, we separately considered each lncRNA regarding its prog-170 

nostic model fit and also model performance in cross-validation experiments. The vast majority 171 

of individual lncRNAs (173/179) showed significantly higher prognostic accuracy across 1,000 172 

cross-validations compared to baseline models comprising common clinical variables, with me-173 

dian increase of 0.11 in concordance index (Wilcoxon rank-sum test, FDR < 0.05; Figure 2B). 174 

Thus, our catalogue of lncRNAs provides complementary prognostic information to common 175 

clinical variables in a diverse set of human cancers.  176 

We verified that our observed prognostic signals were specific to lncRNAs and did not solely re-177 

flect the prognostic signals of adjacent protein-coding genes. We identified 147 protein-coding 178 

genes located within ±10 kbps of 96/179 lncRNAs, including 106 genes that were antisense to 179 

lncRNAs (Supplementary Table 4). Prognostic models of lncRNA transcript abundance profiles 180 

exhibited higher concordance measures overall, compared to matching prognostic models of 181 

protein-coding genes (Rank-sum test, P = 7.88x10-22; Figure 2C). lncRNA-based prognostic 182 

models showed higher concordance index values in 139/147 cases compared to similar models 183 

of adjacent protein-coding genes, with a median improvement of 0.05 in c-index (c=0.58 for 184 

lncRNAs vs c=0.53 for protein-coding genes). Thus, the catalogue of prognostic lncRNAs is not 185 

transcriptionally confounded by adjacent protein-coding genes and represents a distinct non-186 

coding search space for prognostic biomarker discovery.  187 
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 188 

Top prognostic lncRNAs in cancer types of unmet need  189 

We studied the 179 lncRNAs and the adjacent protein-coding genes for known associations with 190 

cancer. For example, CCAT1 (ENSG00000247844) located in the chr8p24 super-enhancer lo-191 

cus is known to regulate MYC transcription through chromatin long-range interactions [34]. We 192 

found CCAT1 as a marker of poor prognosis in lung adenocarcinoma (LUAD) (HR = 1.9, HR 193 

range = 1.4-2.5, Cox PH FDR = 1.6x10-4; Figure 3A). Overall, the 149 protein-coding genes lo-194 

cated within ±10 kbps of the 179 lncRNAs included 10 known cancer genes of the Cancer Gene 195 

Census database [35] (BCL10, HEY1, HOXA11, HOXA9, IRS4, LASP1, MYB, NCKIPSD, 196 

RNF43, SETD2; Fisher’s exact P = 0.050), suggesting that a subset of the prognostic lncRNAs 197 

may be involved in the regulation of cancer driver genes through transcription regulatory and 198 

chromatin architectural interactions. Improved lncRNA-based survival predictions were found in 199 

several cancer types with poor outcomes that currently lack reliable prognostic biomarkers, such 200 

as colon, pancreatic and liver cancer. We reviewed the top candidates in these cancer types.  201 

BZRAP1-AS1 was found as a top significant lncRNA in the pancreatic adenocarcinoma cohort 202 

(PAAD) (ENSG00000265148; also known as TSPOAP1-AS1). Increased RNA abundance of 203 
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BZRAP1-AS1 associated with improved patient prognosis (HR = 0.39, HR range = 0.23-0.57, 204 

Cox PH FDR = 5.2x10-5; Figure 3B). Interestingly, BZRAP1-AS1 is partially co-located in the 205 

genome with RNF43, a known driver gene with frequent mutations in pancreatic cancer (7%) 206 

and a potential therapeutic target [36, 37]. RNF43 mRNA abundance alone did not appear prog-207 

nostic in our dataset, potentially highlighting an independent function of this lncRNA. BZRAP1-208 

AS1 was recently reported as a survival-associated lncRNA in pancreatic cancer using a com-209 

plementary transcriptomics dataset [38], validating our results obtained from the TCGA dataset.  210 

AC097468.7 was identified as a top significant lncRNA in the colon adenocarcinoma (COAD) 211 

cohort for its unfavorable transcript abundance profile. High abundance of AC097468.7 212 

(ENSG00000235024) in a minority of tumors (41/425 or 9.6%; median 1077 FPKM-UQ) was as-213 

sociated with worse prognosis (HR = 2.8, HR range = 1.7-4.9, Cox PH FDR = 2.7x10-4; Figure 214 

3C), while the majority of tumors in the COAD cohort showed zero transcript abundance of the 215 

lncRNA and relatively better prognosis. The intergenic lncRNA is located between the genes 216 

NHEJ1 and IHH within 10 kbps of both genes. NHEJ1 is a core component of the non-homolo-217 

gous end joining (NHEJ) pathway that conducts DNA double strand break repair and maintains 218 

genome stability [39, 40]. Indian hedgehog (IHH) signaling regulates differentiation of colono-219 

cytes while epigenetic activation of IHH causes decreased self-renewal of colorectal cancer-initi-220 

ating cells and increased sensitivity to chemotherapy [41][42]. We speculate that the prognostic 221 

lncRNA AC097468.7  is involved in the regulation of these pathways through interactions with 222 

adjacent protein-coding genes. In summary, these examples demonstrate the potential of our 223 

catalogue to develop novel biomarkers and find functional lncRNAs for multiple important can-224 

cer types.  225 

Computational validation of AC114803.3, CTC-297N7.5 and LINC00324 as prognostic 226 

lncRNAs in liver hepatocellular carcinoma 227 

To investigate the 12 prognostic lncRNAs in hepatocellular carcinoma of the liver (LIHC), we 228 

studied an additional cohort of 42 patient tumors. The validation cohort was derived from the 229 

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) project [20] and was filtered to 230 

exclude tumors from TCGA. We found three lncRNAs with matching prognostic scores and sig-231 

nificant P-values in both cohorts based on median dichotomization of transcript abundance val-232 

ues (AC114803.3, CTC-297N7.5, LINC00324) (Figure 3D-F).  233 
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AC114803.3 was identified as a top significant lncRNA in both the discovery and the validation 234 

cohorts of liver cancer. Increased transcript abundance of this lncRNA was associated with 235 

worse prognosis in the TCGA cohort (HR = 2.6, HR range = 1.7-3.7, Cox PH FDR = 1.8x10-5) 236 

and confirmed in the PCAWG validation cohort (HR = 10.6, HR range = 3.1-36, P = 0.0001) 237 

(Figure 3D). In the discovery cohort, AC114803.3 (ENSG00000230432) showed a discrete acti-238 

vation pattern with high transcript abundance in a minority of patients with poor prognosis 239 

(84/365 or 23% patient tumors with median 4239 FPKM-UQ) whereas a lack of RNA expression 240 

was observed in the other lower-risk group representing the majority of patients (0 FPKM-UQ). 241 

The discrete activation pattern was also observed in the validation cohort (11/42 tumors with 242 

median 0.093 FPKM-UQ, zero otherwise). AC114803.3 is an antisense lncRNA co-located with 243 

the PTPRN gene that encodes a signaling protein and autoantigen in insulin-dependent diabe-244 

tes [43]. A previous study found that DNA hypermethylation of PTPRN was associated with in-245 

creased progression-free survival in ovarian cancer [44]. DNA hypermethylation is a repressive 246 

epigenetic mark inversely correlated with transcription, thus the study provides complementary 247 

evidence to our observation of high transcript abundance of the antisense lncRNA AC114803.3 248 

as a hazardous prognostic marker.  249 

Two lncRNAs CTC-297N7.5 and LINC00324 were also found as markers of improved prognosis 250 

of LIHC through validation in the external dataset. Increased transcript abundance of CTC-251 

297N7.5 (ENSG00000263400) was associated with improved prognosis in the TCGA cohort 252 

(HR = 0.41, HR range = 0.29-0.61, FDR = 3.2x10-5) and validated in the PCAWG cohort (HR = 253 

0.16, HR range = 0.032-0.76, P = 0.0080) (Figure 3E). CTC-297N7.5 (also known as 254 

TMEM220-AS1) is an antisense lncRNA co-located with TMEM220 encoding a poorly charac-255 

terized transmembrane protein. This lncRNA has been reported recently as a prognostic factor 256 

in hepatocellular carcinoma [45], further validating our analysis. As the third prognostic lncRNA, 257 

increased transcript abundance of LINC00324 (ENSG00000178977) was associated with im-258 

proved prognosis in the TCGA LIHC cohort (HR = 0.43, HR range = 0.29-0.62, FDR = 6.0x10-5) 259 

and validated in the PCAWG cohort (HR = 0.18, HR range = 0.04-0.84, P = 0.011) (Figure 3F). 260 

This intergenic lncRNA has been functionally associated with the proliferation of gastric cancer 261 

cells [46]. Our computations validation analysis is limited by the available datasets and an over-262 

all lower detection of lncRNA transcript abundance in the PCAWG dataset. In summary, compu-263 

tational validation of our candidate lncRNAs in additional transcriptomics datasets and inde-264 

pendent studies provides further support to these non-coding transcripts as prognostic bi-265 

omarkers.  266 
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 267 

 268 

Transcript abundance information of lncRNAs improves prognostic performance of 269 

known molecular and clinical tumor features  270 

We asked whether the prognostic lncRNAs represented the transcriptomic footprints of well-de-271 

fined clinical and molecular tumor subtypes. We investigated the statistical interactions of prog-272 

nostic lncRNAs and of various molecular and clinical tumor annotations defined by TCGA [47]. 273 

We limited the analysis to a subset of lncRNAs (113/179) that were detected in 12/21 cancer 274 

types for which annotations of tumor features or subtypes were available in TCGA. We found 275 

224 instances where transcript abundance of lncRNAs (36/113) associated with clinical or mo-276 

lecular tumor features (Chi-square test or Spearman correlation test, FDR < 0.05; Figure 4A, 277 

Supplementary Table 5). As expected, the majority of these features were also prognostic indi-278 

vidually in univariate survival analyses (175/224 or 78%, Wald test, FDR < 0.05). The prognostic 279 

lncRNAs we identified in lower-grade glioma (LGG) associated with the largest number of mo-280 

lecular and clinical features, likely owing to well-defined subtypes of this form of brain cancer. 281 
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For example, transcript abundance profiles of the majority of prognostic lncRNAs in LGG were 282 

significantly associated with documented prognostic features such as IDH mutation status and 283 

MGMT promoter methylation [48, 49]. These data indicate that transcript abundance profiles of 284 

prognostic lncRNAs capture the transcriptomic signatures of known clinical subtypes and molec-285 

ular features, further supporting the utility of these lncRNAs as prognostic biomarkers. 286 

We asked whether the lncRNA transcript abundance profiles provided complementary infor-287 

mation to clinical and molecular tumor features. We investigated the 224 cases where the 36 288 

lncRNA transcript abundance profiles significantly associated with various tumor features, by 289 

comparing combined prognostic models (i.e., lncRNAs and tumor features as predictors) with 290 

control prognostic models (i.e., only tumor features as predictors) (Figure 4B). The majority of 291 

combined models (209/224 or 93%) showed improved prognostic performance and model fit 292 

(Cox PH ANOVA, FDR < 0.05). For example, combining the transcript abundance of lncRNA 293 

RP11-279F6.3 (ENSG00000259641) with tumor stage resulted in an improved prognostic 294 

model in renal papillary cell carcinoma compared to a baseline model that only incorporated 295 

clinical stage as a predictor (median c = 0.93 vs. c = 0.87; Cox PH ANOVA FDR = 2.0x10-4). 296 

Similarly, transcript abundance of RP5-1086K13.1 (ENSG00000224950) combined with co-de-297 

letion of chr1p and chr19q was a significantly better prognostic model in LGG compared to a 298 

baseline model that only used these chromosomal alterations for prediction (median c = 0.71 vs.  299 

c = 0.59, Cox PH ANOVA; FDR = 4.4x10-7). These results are limited by the molecular and clini-300 

cal tumor features annotated by TCGA, as well as the lower overall transcript abundance and 301 

high tissue specificity of lncRNA transcription. Our analysis shows that integrating transcriptomic 302 

profiles of lncRNAs can improve the prognostic potential of previously established tumor fea-303 

tures such as molecular subtypes and common genomic mutations. 304 
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Prognostic lncRNAs in gliomas are associated with developmental, immune response 306 

and neurotransmission pathways 307 

To study potential functional associations, we asked whether transcript abundance profiles of 308 

prognostic lncRNAs were associated with transcriptome-wide changes in high-risk tumors. For 309 

each lncRNA, we identified differentially regulated genes and mapped their biological context 310 

using pathway enrichment analysis [50]. The majority of prognostic lncRNAs (121/179 or 68%) 311 

associated with clear transcriptional signatures in lncRNA-stratified high-risk tumors, including at 312 

least 30 protein-coding genes with a two-fold change in transcript abundance (FDR < 0.05; 313 

Supplementary Figure 4, Supplementary Table 6). These genes were enriched in 3,048 GO 314 

biological processes and Reactome pathways in total (FDR < 0.01 from g:Profiler; Supplemen-315 

tary Table 7). The majority of detected pathways (75%) were enriched in the transcriptional sig-316 

natures of a few lncRNAs (one to five) while a small subset of processes (5%) related to extra-317 

cellular matrix organization were enriched in the signatures of more than 15 lncRNAs. This pan-318 

cancer pathway analysis highlights the extent of functional diversity of high-risk tumors stratified 319 

by lncRNA abundance. 320 

We studied the 12 prognostic lncRNAs identified in lower-grade glioma and evaluated their tran-321 

scriptome-wide associations. We used a stringent approach that systematically accounted for 322 

the tumor mutation status of IDH1/2 genes, a known marker of improved prognosis in glioma 323 

[51]. All groups of lncRNA-stratified high-risk LGG tumors were characterized by transcriptomic 324 

differences that were significant beyond IDH mutations (Figure 5A). To find pathways and pro-325 

cesses commonly deregulated in these high-risk tumors, we performed an integrative analysis 326 

of the 12 lncRNA-stratified mRNA abundance signatures. This analysis revealed 325 biological 327 

processes and pathways that mapped to 1,345 protein-coding genes co-expressed with one or 328 

more of the 12 prognostic lncRNAs (ActivePathways [52] FWER < 0.05; Figure 5B). The path-329 

way analysis highlighted 70 known cancer genes that were more frequently differentially ex-330 

pressed than expected from chance alone (Fisher’s exact test, P = 0.006; including key onco-331 

genes EGFR and TERT). The pathway analysis revealed three broad functional themes: devel-332 

opmental processes (e.g., forebrain development), immune system (e.g., T-cell activation) and 333 

neurotransmitters (e.g., trans-synaptic signaling). The majority of pathways (192/325 or 59%) 334 

were deregulated in the transcriptomic signatures of multiple prognostic lncRNAs, however only 335 

few pathways were apparent in all lncRNA-based transcriptomic signatures. These prognostic 336 
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lncRNAs of LGG are co-regulated with diverse processes involved in brain development, neuro-337 

transmitter activity and tumorigenesis, suggesting that a subset of lncRNAs modulate cancer-338 

related biological processes in brain tumors.  339 

Transcript abundance of HOXA10-AS and HOXB-AS2 defines a malignancy gradient 340 

across low- and high-grade gliomas  341 

To further study the functional roles of prognostic lncRNAs in LGGs, we performed a transcrip-342 

tome-wide comparison of lower-grade glioma and high-grade glioblastoma (GBM) tumors in 343 

TCGA. We focused on neurodevelopmental processes deregulated in high-risk LGG tumors ap-344 

parent in our pathway analysis, such as the Reactome pathway activation of anterior HOX 345 

genes in hindbrain development during early embryogenesis that was enriched in mRNA signa-346 

tures of high-risk tumors (FWER = 0.003). In this pathway, developmental transcription factors 347 

HOXA1, HOXA2, HOXA3, HOXA4 and HOXC4 were co-activated with the two prognostic 348 

lncRNAs HOXA10-AS and HOXB-AS2 in high-risk LGG tumors. An extended set of significantly 349 

enriched GO processes related to brain and central nervous system development was also 350 

found. These processes included 118 differentially expressed genes including known brain can-351 

cer genes EGFR, GLI1, and CNTNAP2. The potential neurodevelopmental mechanisms altered 352 

in high-risk gliomas highlighted the HOX-associated lncRNAs as high-priority targets for further 353 

study.  354 

HOXA10-AS transcript abundance appeared as highly hazardous in the LGG cohort (HR = 3.8, 355 

HR range = 2.38-5.19, Cox PH FDR = 5.0x10-8) and a similar highly significant association was 356 

observed for HOXB-AS2 (HR = 4.6, HR range = 2.2⎯5.1, FDR = 1.4x10-6). When combined with 357 

IDH mutation status, zero-dichotomized transcript abundance profiles of HOXA10-AS and 358 

HOXB-AS2 improved LGG prognostic models compared to univariate models with IDH mutation 359 

status alone (HR = 2.97, HR range = 2.0-4.4, FDR = 8.0x10-7, and HR = 2.15, HR range = 1.4-360 

3.4, FDR = 0.002, respectively) (Figure 5C-D). In particular, the subset of ~10% LGG patients 361 

with no IDH mutations and high lncRNA abundance were stratified as the highest-risk group 362 

compared to all other patients. Thus, the two lncRNAs may represent novel molecular bi-363 

omarkers of advanced LGGs whose discrete transcriptional activation patterns in combination 364 

with IDH mutation status indicate dismal outcome.  365 

We quantified the transcriptional activation of HOXA10-AS and HOXB-AS2 in lower-grade glio-366 

mas and glioblastomas. Hierarchical transcriptome clustering of HOXA10-AS and HOXB-AS2 367 
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together with the 118 developmental genes across the LGG and GBM cohorts revealed a malig-368 

nancy gradient of gliomas (Figure 5E). The major low-risk cluster of tumor transcriptomes con-369 

tained LGGs with little or no transcription of the two prognostic lncRNAs. In contrast, the cluster 370 

of high-risk LGGs was clearly defined by an increased abundance of HOXB-AS2 and HOXA10-371 

AS. This high-risk set of LGGs was clustered together with GBMs, while GBMs were defined by 372 

even higher transcript abundance of the two prognostic lncRNAs as well as oncogenes such as 373 

EGFR and GLI1.  In LGG, HOXB-AS2 and HOXA10-AS were characterized by bimodal tran-374 

script abundance: high transcript abundance was observed in few tumors (19% and 21% re-375 

spectively), and silencing with zero transcript abundance of the two lncRNAs in the majority of 376 

tumors. Further, the majority of GBM tumors showed high transcript abundance of HOXB-AS2 377 

(68%) and HOXA10-AS (70%) and their overall transcript abundance was higher in GBMs than 378 

in LGGs (Supplementary Figure 5), indicating that HOX-antisense lncRNA expression posi-379 

tively correlated with tumor grade. HOXB-AS2 and HOXA10-AS were not significant prognostic 380 

in the GBM cohort, perhaps owing to the overall poor prognosis of these advanced tumors 381 

(Supplementary Figure 6). This neurodevelopmental gene signature may represent a tran-382 

scriptomic subtype of LGG that is marked by discrete transcriptional activation of the two HOX-383 

antisense lncRNAs with prognostic relevance and functional roles.   384 
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 385 

HOXA10-AS knockdown in patient-derived glioblastoma cells reduces proliferation and 386 

deregulates cell cycle genes and glioma drivers 387 

The prognostic and pathway associations of HOXA10-AS transcript abundance prompted us to 388 

investigate this lncRNA functionally. We performed a siRNA-mediated knockdown experiment of 389 

HOXA10-AS followed by a six-day cell proliferation experiment using the primary patient-derived 390 

GBM cell line G797 [53, 54]. To minimize off-target effects on the protein-coding gene HOXA10 391 

antisense to the lncRNA, we used two siRNAs against the unique exon three of the lncRNA. 392 
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siRNA-mediated inhibition of HOXA10-AS led to two-fold reduction in transcript abundance of 393 

the lncRNA relative to non-targeted controls (T-test, P ≤ 0.020; Figure 6A). HOXA10-AS -inhib-394 

ited cells showed ~40% lower cell proliferation at the 6-day timepoint (P ≤ 0.0011; Figure 6B). 395 

Transcriptional inhibition of HOXA10-AS and the resulting reduction in cell proliferation was ro-396 

bustly observed in experiments conducted with either of the two targeting siRNAs. These find-397 

ings indicate the function of HOXA10-AS in regulating cell proliferation in glioma and confirm a 398 

recent report on this lncRNA [55].  399 

To further understand the role of HOXA10-AS in the hallmark pathways of glioma, we con-400 

ducted whole-transcriptome RNA sequencing (RNA-seq) of HOXA10-AS depleted cells three 401 

days after siRNA transfection. We found a pronounced transcriptional response of 2,428 differ-402 

entially expressed genes in HOXA10-AS-inhibited cells relative to non-targeted controls (Brown 403 

FDR < 0.05, log2 fold-change > 1.2 using TREAT [56]; Figure 6C). The two targeting siRNA in-404 

duced highly correlated transcriptome-wide changes (Pearson correlation test, R = 0.84, P < 10-405 
300) and confirmed reduced transcript abundance of HOXA10-AS in siRNA-treated cells (P < 406 

0.023, L2FC < -0.95; Figure 6D-E). We interpreted the transcriptomic changes induced by 407 

HOXA10-AS knockdown using pathway enrichment analysis and found 84 biological processes 408 

and molecular pathways enriched in the differentially expressed genes (FWER < 0.05 from Ac-409 

tivePathways [52]; Figure 6F). The pathways and processes were associated with 2,108 differ-410 

entially expressed genes through the sensitive data fusion approach implemented in Active-411 

Pathways. Known cancer genes were significantly enriched (137 observed vs 91 expected, 412 

Fisher’s exact P = 2.4x10-7) and included 12 up-regulated genes that are well recognized in the 413 

biology and mutational driver landscape of glioma (GOPC, RB1, PTEN, STAG2, QKI, MDM2, 414 

NBN, PIK3CA, ATRX, HIF1A, ATM, PDGFRA; Figure 6G) [35, 57, 58]. For example, the en-415 

riched GO process regulation of mitotic cell cycle (FWER = 0.03) provides an explanation to our 416 

observed phenotype of reduced glioma cell proliferation and implicates HOXA10-AS in the tran-417 

scriptional rewiring of cell proliferation pathways. 128 genes of this pathway were deregulated in 418 

HOXA10-AS inhibited cells, including two upregulated tumor suppressors RB1 and PTEN. Addi-419 

tional enriched pathway themes such as DNA repair (MDM2, NBN, ATRX, ATM), protein ubiqui-420 

tination (PTEN, ATM, MDM2, HIF1A), lipid metabolism (PTEN, QKI, PIK3CA, ATM) and TGF-421 

beta signaling (HIF1A) suggest further roles of HOXA10-AS in mediating cell proliferation in gli-422 

oma. Finally, we asked whether our observed transcriptional and proliferative differences of 423 

HOXA10-AS depleted cells would be explained by the antisense homeobox gene HOXA10 that 424 
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modulates the tumorigenic potential of glioblastoma stem cells [59]. HOXA10 showed no signifi-425 

cant differences in transcript abundance in HOXA10-AS depleted cells compared to control-426 

transfected cells in RNA-seq data and RT-qPCR assays (Supplementary Figure 7), suggesting 427 

that our functional and transcriptional evidence of altered cell proliferation is specific to the 428 

lncRNA HOXA10-AS and is not significantly confounded by any off-target effects of our knock-429 

down experiment. In summary, these findings provide functional evidence to one of our pre-430 

dicted prognostic lncRNAs as a regulator of hallmark cancer processes in glioma. 431 

 432 

DISCUSSION 433 

The current knowledge of cancer driver genes and molecular classifiers is primarily derived from 434 

the protein-coding genome while the vast non-coding genome remains understudied. Our find-435 

ings of lncRNAs as prognostic factors in multiple cancer types are consistent with the increasing 436 

appreciation of lncRNAs in diverse cellular processes and human diseases. Our study highlights 437 

a facet of the non-coding genome that has great potential for basic and translational discover-438 

ies. Our machine learning analysis identified a subset of lncRNAs as robust predictors of patient 439 

survival in cross-validation experiments, suggesting that these transcripts should be further 440 

evaluated as prognostic biomarkers in diverse molecular datasets. To establish one lncRNA as 441 

a bona fide modulator of cancer hallmark processes, we functionally validated a prominent can-442 

didate lncRNA HOXA10-AS in patient-derived glioblastoma cells and observed significantly re-443 

duced cell viability upon lncRNA depletion, differential expression of glioma driver genes as well 444 

as transcriptome-wide changes enriched in proliferative, DNA damage response and metabolic 445 

pathways. These data suggest further functional and mechanistic experiments to validate 446 

HOXA10-AS as a potential therapeutic target. The integrative analysis and experimental valida-447 

tion data lend confidence to our overall catalogue of lncRNAs. However, our analysis remains 448 

inconclusive to whether all or most candidate lncRNAs are functional in cancer cells or alterna-449 

tively represent passive indicators of transcriptional activity. On the one hand, functionally inac-450 

tive ‘passenger’ lncRNAs may be modulated transcriptionally or epigenetically as part of global 451 

gene regulatory programs that control hallmark cancer pathways such as proliferation. These 452 

markers of large regulatory programs would be expected to outperform any prognostic models 453 

based on individual protein-coding genes. For example, we observed that a subset of lncRNAs 454 

with hazardous risk profiles were sharply up-regulated in high-risk tumors and completely si-455 

lenced in lower-risk tumors. These lncRNAs may be epigenetically repressed in the majority of 456 
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tumors and aberrantly activated in the high-risk minority group of tumors. Such a binary zero-457 

dichotomization pattern is a promising property for biomarker development owing to a natural 458 

threshold separating high-risk and low-risk patients, although further validation in independent 459 

cohorts is required. On the other hand, a subset prognostic lncRNAs may be functional in cells 460 

and act as functional ‘drivers’ that activate oncogenic processes or inhibit tumor suppressive 461 

pathways through interactions with DNA, RNA and proteins. However, further experiments are 462 

needed to validate the prognostic lncRNAs as drivers of cancer phenotypes, such as large-scale 463 

genome editing screens that are increasingly targeting the non-coding genome encoding 464 

lncRNAs [60]. Our findings of prognostic lncRNAs are ultimately limited by the transcriptional 465 

and clinical information that was available for inference and validation. The TCGA tumor cohorts 466 

that we studied are under-represented in rare and early-stage malignancies and the available 467 

clinical variables and patient follow-up data are limited. It is plausible that lncRNA transcription 468 

in cancers is associated with unrecorded environmental, genetic and phenotypic variables that 469 

confounded our inference of prognostic markers. We used RNA-seq datasets that had been op-470 

timized for mRNA quantification and thus additional lncRNAs likely remain uncharacterized or lie 471 

below the detection limit of RNA-sequencing protocols. Future multi-omics datasets with deep 472 

clinical profiles of patients will enable further discoveries and validation of non-coding RNAs. 473 

Our study is a step towards systematic characterization of non-coding RNA genes as molecular 474 

biomarkers and functional regulators of oncogenesis. 475 

  476 
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METHODS   495 

Data Collection 496 

We downloaded RNA-seq data of the TCGA project for 32 tumor types from the Genome Data 497 

Commons (https://portal.gdc.cancer.gov). Overall survival data was retrieved from the latest 498 

publication of the TCGA PanCanAtlas project [22, 29]. We selected 29 cancer types where co-499 

horts of at least 50 patients were available. We only analyzed one tumor specimen per patient 500 

and maintained the tumor with a smaller TCGA serial number for patients with multiple speci-501 

mens. Additional information on patient clinical variables such as alcohol consumption, smoking 502 

status and molecular subtypes was downloaded using the R package TCGABiolinks [47]. We 503 

intersected clinical information and transcript abundance data for each cancer type and retained 504 

patient cohorts where matched datasets were available. For lncRNA annotations, we down-505 

loaded the latest comprehensive annotation set of 5’ lncRNA CAGE peaks from the FANTOM-506 

CAT project [2]. We studied 5,785 lncRNAs that were annotated by FANTOM-CAT and the 507 

ENSEMBL database and for which RNA abundance data were available in TCGA . 508 

Processing TCGA RNA-seq data 509 

For all cancer types of the TCGA dataset, we retrieved processed RNA-seq files as FPKM-UQ 510 

measurements and raw counts from the Genome Data Commons website. lncRNAs often have 511 

low transcript abundance and we first removed the lncRNAs that were not detected in any pa-512 

tient tumor sample across all cohorts in TCGA RNA-seq data (n=94). Further, we evaluated me-513 

dian transcript abundance of each lncRNA in every cancer type and included two classes of 514 

lncRNAs in further analyses. First, we included lncRNAs with a median FPKM-UQ above 0. 515 

Second, we also included a set of lncRNAs with binary transcript abundance profiles. These 516 

lncRNAs showed median transcript abundance of zero FPKM-UQ representing the majority of 517 

tumor samples, while a minority of tumor samples (at least 15) showed transcript abundance of 518 

at least 100 FPKM-UQ. To evaluate tissue specificity of lncRNA transcription profiles, we used 519 

the UMAP (Uniform Manifold Approximation and Projection) dimension reduction method [31] 520 

and the corresponding R package to perform clustering of log1p-transformed FPKM-UQ lncRNA 521 

transcript abundance values across the entire TCGA cohort. 522 

Training survival models and evaluating generalizability 523 
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For each cancer type, we evaluated the association between all lncRNAs and overall patient 524 

survival. We also evaluated the association between available clinical variables and overall sur-525 

vival for comparison. For each cancer type, we split samples randomly into two groups, with 526 

70% as the training set and 30% as the test set. Patients within each training cohort were me-527 

dian-dichotomized by the transcript abundance of each lncRNA. In case of lncRNAs with me-528 

dian transcript abundance of zero, patients with lncRNA transcript abundance above zero were 529 

labeled as high-abundance and those with zero abundance were labeled as low-abundance. 530 

We used the elastic net framework with a Cox proportional hazards link function to train patient 531 

survival models and to perform feature selection. All univariate models were built using the R 532 

package “survival”. Elastic net modelling was performed using the R package “glmnet” where 533 

the penalty hyperparameter λ was determined by fivefold cross-validation within each training 534 

set. We used the fixed hyperparameter value α=0.5 for the elastic net model. We employed 535 

1000-fold cross-validation with 70/30% random split of training and testing data for each cancer 536 

type. Within each fold, initial elastic-net multivariate models included as predictors all lncRNAs 537 

that were univariately survival-associated in the training set (univariate Cox proportional-haz-538 

ards (PH) P<0.05). Feature selection during model fitting and regularization determined a non-539 

redundant subset of lncRNAs as predictors in the training data. Subsequent cross-validation 540 

evaluated the models using concordance index (c-index), an accuracy measure extended to 541 

survival analysis [33]. The multivariate Cox PH elastic net models were then applied to the re-542 

maining 30% of the test set to obtain a concordance index (c-index) using the R package “sur-543 

vcomp”. Besides lncRNA-based predictors, clinical variables that were available for each cancer 544 

types were also used to build a multivariate model using the training set and applied on test set 545 

in a similar manner. Of clinical variables, patient age was always available for all tumor types in 546 

TCGA, while other features such as tumor stage, grade and ethnicity were available for a subset 547 

of cancer types. Lastly, the available clinical variables were integrated with the lncRNA tran-548 

script abundance profiles selected by the elastic net into one multivariate model (the combined 549 

model) that was also trained and tested separately. Thus, there were three distinct performance 550 

metrics (c-indices) obtained overall for each round of training. The entire outlined process was 551 

repeated 1000 times, randomly splitting the data at each iteration. For each cancer type, we 552 

subsequently compared the three distributions of c-indices using the two-sided U test to a set of 553 

reference models that only utilized clinical variables for survival predictions. Finally, to assess 554 

the performance of our models on random data, we shuffled survival outcome across all TCGA 555 

patients of a given cancer type while maintaining the order of all predictor variables (lncRNAs 556 
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and clinical variables). This permutation strategy disrupted the association of survival infor-557 

mation and molecular and clinical predictors, The analysis of this simulated data allowed us to 558 

evaluate the statistical calibration of our method. We generated 100 random datasets and con-559 

ducted 100 cross-validations on each of these datasets. We compared c-indices between mod-560 

els fitted using shuffled outcome data and real outcome data using a two-sided U-test. As ex-561 

pected, we found considerably lower performance of our models on random data that centered 562 

on the expected performance values of random predictors (c≈0.5), indicating that our models 563 

were well calibrated and not prone to statistical inflation and overfitting. 564 

Selecting top prognostic lncRNAs 565 

To prioritize lncRNAs, we summarized the number of times each lncRNA was maintained as a 566 

prognostic feature in all the elastic-net survival models across cross-validations. To obtain the 567 

most consistent candidates, we considered the lncRNAs in each cancer type that were included 568 

in at least 50% (≥500/1000) of iterations. This list of lncRNAs was further evaluated individually. 569 

For validation, we fitted multivariate Cox PH models using each lncRNA candidate together with 570 

available clinical variables in respective cancer cohorts to confirm that the prognostic effect of 571 

lncRNAs remained present even when accounting for common clinical variables. We also evalu-572 

ated Schoenfeld residuals to confirm that the proportionality assumption of the Cox-PH model 573 

was met (Supplementary Table 3). Finally, we removed a small subset of candidate lncRNAs 574 

that showed opposing hazards in different cancer types. To evaluate the performance of individ-575 

ual lncRNA candidates within the TCGA dataset, we conducted a second round of internal 576 

cross-validation. Using one lncRNA candidate at a time, we split the respective cancer patient 577 

cohort into training (70%) and testing samples (30%) as described above. Univariate Cox PH 578 

models were fitted and evaluated on the test datasets to obtain a distribution of c-indices for 579 

each lncRNA candidate. Similarly, we conducted internal cross-validation of clinical variables as 580 

a baseline reference, by fitting multivariate Cox PH models and evaluating their performance on 581 

test sets using the c-index. We also compared combined models where clinical variables were 582 

used together with lncRNA transcript abundance profiles for patient survival prediction. These 583 

distributions of c-indices were compared using the two-sided Wilcoxon rank-sum tests and re-584 

sulting P-values were adjusted using the Benjamini-Hochberg false discovery rate (FDR) proce-585 

dure [61]. 586 

Validating prognostic lncRNAs in additional cohort of hepatocellular carcinoma 587 
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We used an independent dataset of transcriptomics and patient clinical information available in 588 

the ICGC/TCGA Pan-cancer Analysis of Whole Genomes (PCAWG) project [20]. We focused 589 

on the liver cancer cohort and removed any patient samples profiled in the TCGA project to cre-590 

ate an entirely independent validation cohort comprising primarily of liver cancers (hepatocellu-591 

lar carcinomas, HCC) of Japanese individuals [62], resulting in a cohort of 42 tumors with uni-592 

formly processed RNA-seq data [63]. Twelve lncRNAs identified in the TCGA LIHC cohort were 593 

queried for prognostic signals in the validation cohort. Within the validation cohort, we consid-594 

ered lncRNAs with FPKM-UQ values greater than 0.05 measured in at least five patients. We 595 

dichotomized patients by lncRNA transcript abundance as described above. To evaluate signifi-596 

cance of patient survival associations, we fitted univariate Cox-PH models with binary predictors 597 

reflecting lncRNA transcript abundance and plotted their Kaplan-Meier survival curves using the 598 

‘Survival’ and 'survminer' packages in R. We considered those lncRNAs with nominal P-values 599 

from Wald tests as significant (P < 0.05). 600 

Comparing survival associations of lncRNAs and adjacent protein-coding genes 601 

We identified protein-coding genes that were located within 10,000 bps of lncRNA genes using 602 

the Genome Reference Consortium Human Build 38 (GRCh38) and the bedtools software [64]. 603 

We identified pairs of 96 lncRNAs and 147 protein-coding genes that we evaluated further for 604 

differences in patient survival associations. For each pair, we fitted univariate Cox-PH models 605 

using median-dichotomized lncRNA transcript abundance labels as described above, and com-606 

pared these to Cox-PH models fitted using median-dichotomized transcript abundance values of 607 

corresponding protein-coding genes. We compared the sets of two models using cross-valida-608 

tion performance (i.e., c-indices) and also model fits (i.e., FDR-adjusted P-values from the Wald 609 

test). We also fitted multivariate models using transcript abundance values of both the protein-610 

coding gene and the lncRNA gene, and compared those models to univariate models of protein-611 

coding genes using ANOVA. Multiple testing correction was performed using the Benjamini-612 

Hochberg FDR procedure. 613 

lncRNA associations with clinical and molecular tumor subtypes 614 

We conducted a systematic analysis of clinical and molecular subtypes of TCGA tumors using 615 

data curated in the R package TCGABiolinks [47]. These clinical and molecular features in-616 

cluded basic clinical variables included in our elastic net framework described above (patient 617 

age, sex and tumor stage and/or grade, etc. as available in TCGA), and additional variables 618 
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such as molecular subtypes, specific prognostic mutations and tumor histology annotations. 619 

These comprehensive sample-specific annotations were only available for 12/21 cancer types 620 

for which high-confidence prognostic lncRNAs were predicted, and we further analyzed only the 621 

113/179 lncRNAs predicted in these cancer types. For each lncRNA, we evaluated whether the 622 

transcript abundance was significantly associated with clinical and molecular features. Dichoto-623 

mized lncRNA transcript abundance profiler (high vs. low) were compared to clinical and molec-624 

ular features using chi-squared tests as most clinical and molecular variables per patient were 625 

recorded as binary categories. For numerical clinical and molecular variables (such as age), we 626 

analyzed the spearman correlation between the variables and lncRNA transcript abundance. 627 

We adjusted P-values for multiple testing using the Benjamini–Hochberg FDR procedure and 628 

selected significant associations (FDR < 0.05). All clinical features from the analysis that were 629 

significantly associated with our lncRNA candidates were also evaluated for associations with 630 

overall patient survival. For the lncRNAs associated with at least one clinical or molecular fea-631 

ture, we extracted the corresponding (c-index) from a Cox-PH model (model 1). Next, we fitted 632 

univariate Cox-PH models with the clinical or molecular feature as a predictor of overall patient 633 

survival within the respective cancer cohort. For each model we extracted its c-index, HR and 634 

Wald test P-value (model 2). Finally, we fitted a multivariate model with both the clinical or mo-635 

lecular feature with the lncRNA transcript abundance profile that it was associated with (model 636 

3). This allowed us quantify the combination of lncRNA transcript abundance and previously an-637 

notated clinical and molecular features. Tests with Cox PH models were defined as: 638 

Test #1: Anova (model 1, model 3), to assess the improvement of the survival associa-639 

tion when using both lncRNA transcript abundance and clinical/molecular features as 640 

predictors, compared to lncRNA-based predictors alone.  641 

Test #2: Anova (model 2, model 3), to assess the improvement of the survival associa-642 

tion when using both lncRNA transcript abundance and clinical/molecular features as 643 

predictors, compared to clinical and molecular features as predictors alone.  644 

To obtain the final list of lncRNA-associated clinical and molecular features that showed signifi-645 

cant improvement in survival association in combination with lncRNA transcript abundance, we 646 

considered two criteria: a significant likelihood ratio test (FDR < 0.05) from the Test #2 above, 647 

and an absolute increase in c-index in cross-validation experiments.  648 

Pathway enrichment analysis of lncRNA-associated protein-coding genes 649 
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For each prognostic lncRNA, tumors of a given type were first classified as high-risk or low-risk, 650 

based on median dichotomization of the lncRNA as described above. We conducted differential 651 

transcript abundance analysis to identify protein-coding genes that were differentially expressed 652 

in high-risk tumors. We used raw sequencing read counts from the TCGA RNA-seq datasets 653 

and applied the Limma method for differential transcript abundance analysis [65]. We consid-654 

ered all protein-coding genes with a filter on effect size (absolute fold change (FC) > 2, FDR < 655 

0.05). We highlighted known cancer genes curated in the COSMIC Cancer Gene Census da-656 

taset [35]. We then used g:Profiler web server [66] to identify significantly enriched Reactome 657 

pathways and GO biological processes in the differentially expressed protein-coding genes as-658 

sociated with each lncRNA. We filtered gene sets (pathways and processes) to only include at 659 

least 10 and less than 250 annotated genes and a minimum of five pathway-annotated genes 660 

differentially expressed in the lncRNA-stratified set of high-risk tumors. Pathway enrichments 661 

were filtered by statistical significance (FDR < 0.05 in g:Profiler). An additional stringent version 662 

of this analysis was conducted for the 12 prognostic lncRNAs in LGG. First, protein-coding 663 

genes with differential mRNA abundance were detected in the LGG cohort by specifically ac-664 

counting for IDH mutation status as covariate in the Limma framework. Second, pathway enrich-665 

ment analysis was conducted using the data fusion approach implemented in the ActivePath-666 

ways package [52]. ActivePathways prioritized protein-coding genes that showed differential 667 

transcriopt abundance signals for multiple prognostic lncRNAs in the LGG cohort. All nominally 668 

significant genes were considered for input pathway enrichment analysis according to default 669 

parameter settings of ActivePathways (gene-based Brown P<0.1). Resulting enriched pathways 670 

were adjusted for multiple-testing correction and filtered according to default settings (Active-671 

Pathways, Holm family-wise error rate (FWER)<0.05). Pathway enrichment maps were built in 672 

Cytoscape using standard procedures and manually curated for groups of related pathways as 673 

functional themes [50]. For LGG, we focused on a subset of neurodevelopmental pathways and 674 

associated protein-coding genes for further enquiry into the top prognostic lncRNAs in LGG, 675 

HOXA10-AS and HOXB-AS2. We generated heatmaps to summarize the expression of these 676 

genes in LGG and GBM using the “ComplexHeatmap” package [67]. The heatmap was gener-677 

ated using log1p transformed FPKM-UQ values and a hierarchical clustering with Pearson cor-678 

relation distance was applied. Relative risk was calculated for LGG patients using a multivariate 679 

Cox-PH model accounting for dichotomized transcript abundances of both HOXB-AS2 and 680 

HOXA10-AS. 681 

Cell Culture of patient-derived GBM cell lines 682 
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The human glioma G797 cells were prepared as described previously as a bulk patient-derived 683 

cell cultures [53, 54]. We selected the G797 patient-derived cell line as a suitable candidate for 684 

our experiments based on previously generated RNA-seq data [53] that indicated a relatively 685 

high native transcript abundance of lncRNA HOXA10-AS in these cells. G797 cells were main-686 

tained in serum-free NeuroCult™ NS-A Basal Medium (STEMCELL Technologies Canada Inc) 687 

supplemented with N2, B27, EGF (10 ng/ml), and FGF-2 (10 ng/ml), as described previously 688 

[68]. 689 

siRNA mediated knockdown of HOXA10-AS 690 

A TriFECTa DsiRNA kit (hs.Ri.HOXA10-AS.13) containing one non-targeting control DsiRNA 691 

(NT1) and DsiRNAs targeting HOXA10-AS, and an additional DsiRNA targeting HOXA10-AS 692 

(CD.Ri.209973.13.8) were purchased from Integrated DNA Technologies. The targeting se-693 

quences were: H1, AGACGATTTCAACTGAAGTAATGAA; and H4, 694 

GGTACCTGGAGACGATTTCAACTGA. Transfection of DsiRNAs was performed using Lipofec-695 

tamine RNAiMAX Reagent (Thermo Fisher Scientific) as per manufacturer’s protocol. Exon3 of 696 

HOXA10-AS is directly antisense to protein-coding exons of HOXA10. To avoid off-target effects 697 

of knocking down HOXA10-AS, we purposefully avoided this region in siRNA design and in-698 

stead selected siRNAs targeting exon2 of HOXA10-AS, a region unique to HOXA10-AS and not 699 

overlapping with HOXA10. We confirmed successful knock-down of HOXA10-AS by RT-PCR 700 

using primers flanking exon2 of HOXA10-AS. With depletion of HOXA10-AS we did not observe 701 

a significant change in HOXA10 transcript abundance in either our RT-qPCR or RNA-seq exper-702 

iments. 703 

PrestoBlue Cell Viability assay 704 

PrestoBlue Cell Viability assays (A13262, Thermo Fisher Scientific) were performed as per 705 

manufacturer’s protocol. Briefly, 5,000 cells were seeded into each well of 96-well plates on day 706 

0 of DsiRNA transfection. On each day of viability assay, cells were incubated with 100ul fresh 707 

complete medium with the PrestoBlue reagent for 40 min. Then the fluorescence readout was 708 

obtained using a SpectraMax Gemini EM Microplate Reader (Molecular Devices) with the exci-709 

tation/emission wavelengths set at 544/590 nm. Cell viability is reported at the 6-day timepoint 710 

of the experiment.  711 

RNA isolation, cDNA synthesis, and real-time QPCR analysis 712 
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RNA samples were extracted from cells three days post DsiRNA transfection using Quick-RNA 713 

Microprep Kit (Zymo Research), treated with DNase I (Zymo Research), quantified using the 714 

Qubit, and reverse transcribed into cDNA using SuperScript IV VILO (Invitrogen). Primers were 715 

designed to span and/or overlap exon junctions using Primer3Plus. Primers were validated 716 

against a standard curve and relative mRNA expression levels were calculated using the com-717 

parative Ct method normalized to PPIB mRNA [69]. Real-time quantitative PCR (qRT-PCR) re-718 

actions were performed on an CFX384 (Biorad) in 384-well plates containing 12.5 ng cDNA, 719 

150 nM of each primer, and 5 μl of 2X SensiFAST SYBR No-ROX kit (Bioline) in a 10 μl total 720 

volume. The following RT-qPCR primers were used: HOXA10-AS (NR_046609.1; forward: 721 

CAGAGAGAAGGGTGGAGGTG; reverse: CTCAGGAGCCTCGTGTCTTT), HOXA10 722 

(NM_018951.3; forward: CCTTCCGAGAGCAGCAAAG; reverse: 723 

TGCGTTTTCACCTTTGGAAT), control gene PPIB (NM_000942.4; forward: 724 

GGAGATGGCACAGGAGGAA; reverse: GCCCGTAGTGCTTCAGTTT). 725 

RNA-seq libraries were prepared using Illumina TruSeq Stranded mRNA Sample Prep Kit 726 

(20020594) as per manufacturer’s protocol. The barcoded cDNA libraries were then checked 727 

with Agilent Fragment Analyzer for fragment size and quantified with ddPCR (BioRad) using 728 

ddPCR™ Supermix for Probes (No dUTP) (BioRad cat#1863023) running in BioRad CFX96 729 

Touch Real-Time PCR Detection System. The quality checked libraries were then loaded on a 730 

NextSeq 500 running with Nextseq 500/550 high output v2.5 75 cycle kit (Single Read 75 cy-731 

cles, Cat#: 20024906). The real-time base call (BCL) files were converted to FASTQ files using 732 

Illumina bcl2fastq2 (v2) conversion software. 733 

Analysis of transcriptomics (RNA-seq) data 734 

RNA-seq data processing analysis was carried out using standard procedures and custom R 735 

scripts. First, sequenced reads were aligned to the human reference genome GRCh38 and 736 

passed through a quality assessment pipeline using the package Rsubread [70]. High read 737 

mappability was observed in the dataset and all replicates were included. Next, the mapped 738 

reads were counted across all genes using the edgeR R package [71]. Counts-per-million 739 

(CPM) values were calculated for all genes to normalize read counts resulting from per-replicate 740 

differences of sequencing depths. We focused on transcript abundance values of consensus 741 

coding sequence genes (CCDS) database V22 [72] and filtered other classes of genes from our 742 

dataset. We also filtered lowly expressed genes and only included genes with above-baseline 743 

transcript abundance (CPM > 0.5) in at least two replicates. Next, trimmed mean of M values 744 
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normalization was performed to remove composition bias between libraries [73]. Two design 745 

matrices for comparing the three technical replicates corresponding to distinct siRNAs (H1 and 746 

H4, respectively) against the three replicates of the control siRNA (NT1) were generated. Tran-747 

script abundance values were subsequently transformed with the voom procedure of the limma 748 

package [65]. Differential transcript abundance analysis was conducted by first fitting a linear 749 

model to the voom-transformed CPM values. Next, an empirical Bayes shrinkage method was 750 

performed on the variances and a statistical test using a pre-defined a fold-change (FC) thresh-751 

old (abs(log2(FC)) > 1.2) was conducted to estimate statistical significance of differential tran-752 

script abundance, using the TREAT method [56]. The resulting P-values from the two siRNA ex-753 

periments (H1 vs NT1; H4 vs NT1) were merged using the Brown method [74] to prioritize 754 

genes differentially regulated in both HOXA10-AS depletion experiments and to deprioritize spe-755 

cific off-targets of each of the siRNAs. The merged p-values were corrected for multiple testing 756 

using the Benjamini-Hochberg procedure and significant genes were selected (FDR < 0.05). To 757 

evaluate the agreement of the two siRNAs, we conducted a Pearson correlation test of log10-758 

transformed p-values from the two siRNA experiments. We confirmed that a very small number 759 

of significant genes showed opposite fold-changes in the two experiments (3 genes or 0.12%), 760 

indicating a strong agreement of the two siRNAs (H1, H4) in depleting HOXA10-AS and an 761 

overall lack of major off-target effects. Pathway enrichment analysis of differentially expressed 762 

genes was conducted using ActivePathways [48] with all genes and corresponding P-values 763 

from the two siRNA experiments (H1 vs NT1; H4 vs NT1) as input and default parameter set-764 

tings (FWER < 0.05). Enrichment maps were generated in Cytoscape using the EnrichmentMap 765 

app and standard protocols [47]. Pathway-annotated genes from the ActivePathways analysis 766 

were curated for known glioma genes using the COSMIC Cancer Census database [35] and 767 

previous GBM sequencing studies [57, 58].   768 

   769 
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