
The accidental ally: Nucleosomal barriers can accelerate
cohesin mediated loop formation in chromatin

Ajoy Maji1, Ranjith Padinhateeri2, Mithun K. Mitra1,*,

1 Department of Physics, IIT Bombay, Mumbai 400076, India
2 Department of Biosciences and Bioengineering, IIT Bombay, Mumbai
400076, India

* mithun@phy.iitb.ac.in

Abstract

An important question in the context of the 3D organization of chromosomes is the
mechanism of formation of large loops between distant base pairs. Recent experiments
suggest that the formation of loops might be mediated by Loop Extrusion Factor
proteins like cohesin. Experiments on cohesin have shown that cohesins walk diffusively
on the DNA, and that nucleosomes act as obstacles to the diffusion, lowering the
permeability and hence reducing the effective diffusion constant. An estimation of the
times required to form the loops of typical sizes seen in Hi-C experiments using these
low effective diffusion constants leads to times that are unphysically large. The puzzle
then is the following, how does a cohesin molecule diffusing on the DNA backbone
achieve speeds necessary to form the large loops seen in experiments? We propose a
simple answer to this puzzle, and show that while at low densities, nucleosomes act as
barriers to cohesin diffusion, beyond a certain concentration, they can reduce loop
formation times due to a subtle interplay between the nucleosome size and the mean
linker length. This effect is further enhanced on considering stochastic binding kinetics
of nucleosomes on the DNA backbone, and leads to predictions of lower loop formation
times than might be expected from a naive obstacle picture of nucleosomes.

Introduction 1

The principles behind the organization of chromatin into a three-dimensional folded 2

structure inside the nucleus remains an important open question [16,40,41,62]. An 3

ubiquitous structural motif, as observed through Hi-C [13,14,25,47] and other 4

experiments [34,36,50] are the formation of large loops, ranging from kilobases to 5

megabases. These loops play both a structural as well as functional roles, bringing 6

together regions of the DNA that are widely spaced along the backbone [1, 9, 35]. In 7

recent years, much work has been done in trying to understand the mechanism of 8

formation of these large loops. There is now a significant body of experimental 9

observations that implicate a class of proteins called the Structural maintenance of 10

chromosome (SMC) protein complexes - such as cohesin and condensin in the formation 11

and maintenance of these large chromosomal loops [19,20,28,33,54,55,58,59,64]. 12

Structural maintenance of chromosome (SMC) protein complexes are known to play 13

a major role in chromosome segregation in interphase and mitosis . Both cohesin and 14

condensin consists of SMC subunits and share structural similarities. SMC subunits 15
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(SMC1, SMC3 in cohesin and SMC2, SMC4 in condensin) fold back on themselves to 16

form approximately a 50nm long arm. These two arms are then connected at one end 17

by a hinge domain and other two ends which have ATPase activity are connected by a 18

kleisin subunit (RAD21 in cohesin and condensin-associated protein H2 [CAPH2] in 19

condensin)to form a ring like structure of the whole complex [5, 21,26,27,42,43,48]. 20

This ring like structure has been hypothesized to form a topological association with the 21

DNA backbone [38,46]. In particular, experiments on cohesin have shown that such 22

topological association with the DNA can lead to very long residence times of 23

cohesin [57]. The SMC ring can then embrace two chromosome strands, either within a 24

single cohesin ring (embrace model), or within two cohesin rings mediated by an 25

external protein (handcuff model) [5]. These two chromatin strands, bound 26

topologically to the cohesin ring, can then extrude loops of chromosome, with the loop 27

formation process ending at CTCF markers on the chromosome [5,11,23,52,53]. 28

There have been previous attempts to model this loop formation process through the 29

action of SMC proteins. A common feature of these models is that the motion of these 30

SMC proteins on the DNA backbone was assumed to be active, driven by the 31

consumption of ATP [2–4,18,22], motivated by the presence of ATPase activity in the 32

SMC proteins, and the fast timescales for the formation of these large loops. Such 33

active SMC proteins have been theoretically shown to compact the chromosome 34

effectively with stable loops formed by stacks of SMC proteins at the base of the 35

loops [22]. The role of CTCF proteins in stopping the loop extrusion process has also 36

been modeled and has successfully reproduced the occurrence of Topologically 37

Associated Domains (TADs) in the simulated contact maps [53]. 38

Recent experiments have however called into question this picture of active loop 39

extrusion by cohesin. In-vitro experiments on DNA curtains have elucidated the nature 40

of the motion of the cohesin protein on the DNA backbone. These experiments show 41

that while the loading of the cohesin molecule on to the DNA is assisted by the ATP 42

activity, the motion of the cohesin protein itself on the DNA strand is a purely diffusive 43

process, and does not depend on ATP [57]. Analysis of the trajectory of cohesin on the 44

DNA yields a time-exponent of 0.97, in excellent agreement with diffusive motion [57]. 45

The measured diffusion coefficient of cohesin on bare DNA curtains is found to be 46

D ' 1µm2/s at physiological salt concentrations of cKCl ∼ 100mM [57]. Further, the 47

size of the cohesin ring implies that obstacles in the path of this diffusive trajectory can 48

slow down the motion of cohesin. In particular, nucleosomes were found to act as 49

obstacles to the diffusion of cohesin, and lowered the effective diffusion coefficient [57]. 50

In-vitroexperiments with a dense array of static nucleosomes have observed that the 51

cohesin becomes almost static, and the estimated diffusive loop formation speeds at 52

these high nucleosome densities was 7kb per hour [57], entirely too slow for the 53

formation of the large loops that are seen in Hi-C experiments [15,29,44,50]. In addition, 54

While these certain external active proteins such as FtSz can drive cohesin actively 55

along the backbone, the lifetime of these proteins are very small, unlike the topologically 56

bound cohesin, and hence they cannot lead to persistent active motion of cohesin [57]. 57

These experimental observations posit an interesting puzzle. Cohesin motion along 58

the DNA appears to be purely diffusive, and the estimated diffusion coefficient seems 59

incompatible with the formation of large loops. We investigate whether we can recover 60

the fast loop formation times observed in experiments within the framework of passive, 61

diffusive motion of cohesin. We show that the finite size of the nucleosome obstacles 62

introduces an additional length scale in the system, and an interplay of this with the 63

linker length can lead to non-monotonic looping times with varying nucleosome density. 64

We report a regime where addition of nucleosomes can speed up the looping process, 65

and we estimate looping times which explains how large loops may be formed even by a 66

passively diffusing cohesin. 67
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Figure 1. (a) Schematic of cohesin rings diffusing on DNA lattice. Nucleosomes form
extended barriers covering d lattice sites. A cohesin ring traverses a nucleosomal barrier
with a hopping rate q as compared to the bare lattice hopping rate p, with q � p; (b)
For the case of dynamic nucleosomes, nucleosomes can bind to the DNA lattice with a
rate kon and unbind with rate koff .

Model 68

We consider only the one-dimensional diffusion of cohesin on chromatin. The DNA 69

backbone is modeled as a one dimensional lattice of length L. The two subunits of the 70

cohesin-chromatin complex (either within the same ring or within different cohesin 71

rings) are modeled as two random walkers (RWs) that perform diffusive motion on this 72

1D lattice. The two cohesin subunits initally bind at neighboring sites on the DNA, and 73

then start to drift apart due to diffusion. The length of the DNA between the subunits 74

corresponds to the instantaneous size of the loop extruded. The two subunits cannot 75

occupy the same site, with a loop of size zero corresponding to the situation when the 76

subunits occupy neighbouring sites. The two ends of the DNA lattice correspond to the 77

terminal points of the loop, and can biologically correspond to CTCF motifs which are 78

known to act as endpoints for loop formation [5, 11,23,52,53]. In the context of our 79

model, this is represented by absorbing boundary conditions at x = 0 and x = L. 80

Nucleosomes are modeled as extended objects in one dimension that cover and 81

occlude d = 150 sites on the DNA lattice. Motivated by the experimental 82

characterizations of motion of cohesin on nucleosome-bound DNA, we consider 83

nucleosomes as barriers that reduce the local hopping rate of the cohesin rings. For a 84

cohesin subunit present at a bulk site (no nucleosome on either side), the discrete 85

master equation can then be written as, 86

∂P (n, t)

∂t
= pP (n− 1, t) + pP (n+ 1, t)− 2pP (n, t)

where, P (n, t) denotes the probability for the cohesin subunit to be at site n at time 87

t. The hopping rate for cohesin in the bulk is denoted by p. At a site r which has a 88

nucleosome to it’s right, the time evolution of the occupation probability can be written 89

as, 90

∂P (r, t)

∂t
= pP (r − 1, t) + qP (r + d+ 1, t)− (p+ q)P (r, t)

while for a site l that has a nucleosome to its left, we have, 91

∂P (l, t)

∂t
= qP (l − d− 1, t) + pP (l + 1, t)− (p+ q)P (l, t)
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Figure 2. The loop formation time as a function of linker length for two cohesin
subunits on a lattice with L = 30kbp. The black curve (circles) corresponds to results for
two cohesin subunits in the presence of static nucleosomes. The blue (upper triangle) and
green (diamond) curves correspond to the analytical and simulation results for a single
subunit diffusing in the presence of static nucleosomes. Finally, the red curve (squares)
shows the result for two cohesin subunits in the presence of dynamic nucleosomes. All
cases show a non-monotonic dependence of the looping time on mean linker length, with
a regime where looping times decreases with increasing nucleosome density.

where q denotes the reduced barrier crossing rate of the cohesin ring in presence of a 92

nucleosome (q � p). Note that those hops which lead to both of the cohesin subunits 93

occupying the same site are forbidden. 94

We are interested in determining the time taken by the cohesin molecule to form a 95

loop of length L. The two rings absorb at the two boundaries at different times (tL and 96

tR) and the time taken to form the loop is defined as the maximum of these two times, 97

tloop = max{tL, tR}–this corresponds to the time when both the cohesin rings have 98

reached the CTCF sites (at the lattice boundaries). This corresponds to the First 99

Passage Time (FPT) for this stochastic problem of two random walkers in the presence 100

of absorbing boundaries. We simulate the looping process on the discrete DNA lattice of 101

length L using stochastic simulations (see Methods). Recent experiments on cohesin 102

diffusion on DNA curtains has provided accurate estimates of the cohesin diffusion 103

constant, D. We choose D = 1µm2/s corresponding to the experimental measurements 104

at physiological salt concentrations [57]. This yields a hopping rate in the bulk of 105

p = 9.1× 106/s. The reduced hopping rate when a cohesin ring has to pass through a 106

nucleosomal barrier is given by q = 114/s, from experimental estimates of cohesin 107

mobility [57]. 108

Results 109

Nucleosomal barriers can accelerate cohesin looping: 110

We first consider the case of static nucleosomes, i.e. when the nucleosomes occupy fixed 111

random positions on the DNA lattice. The results for the looping time, tloop, and the 112

effective diffusivity Deff = L2/2tloop as a function of the linker length (∆) are shown in 113
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Figure 3. The normalised effective diffusivity, Deff/D0. as a function of linker length
on a lattice with L = 30kbp. D0 represents the diffusivity on an empty DNA lattice (no
nucleosomes). The different curves correspond to the same cases as described in Fig. 2.
The non-monotonicity of the looping times is also reflected in the effective diffusivity,
with a region where the diffusivity increases with increasing nucleosome number.

Figs. 2 and 3 for a lattice of length L = 30kbp. Starting from the completely empty 114

lattice (∆ = L = 30kbp), as we increase the number of nucleosomes (and hence decrease 115

∆), the loop formation time slowly increases (Fig. 2 black curve), and hence the effective 116

diffusivity decreases (Fig. 3 black curve). This is expected since the nucleosomes act as 117

extended barriers to the diffusion, and hence increasing the number of nucleosomes 118

increases the time taken to form a loop. Contrary to naive expectations however, this 119

increase in tloop does not continue beyond a certain number of nucleosomes. Remarkably, 120

beyond the point when the linker length becomes comparable to the nucleosome size 121

itself, ∆ ' d, reducing the nucleosome spacing ∆ decreases the loop formation time, and 122

hence increases the effective diffusivity. At the densest configuration of nucleosomes, the 123

first passage time can reduce by two orders of magnitude from the slowest case at ∆ = d, 124

and correspondingly, the diffusion coefficient can increase by two orders of magnitude. 125

In order to obtain an theoretical understanding of the non-monotonicity of the loop 126

formation times, and hence effective diffusivities, we solve the looping problem for a 127

single cohesin subunit (RW). The mean looping time or the mean first passage time 128

(MFPT) for a single diffusing walker starting from a bulk site k in a lattice of length L, 129

Tk,L can be written as a recursion relation, 130

Tk,L =
1

2p
+

1

2
Tk+1,L +

1

2
Tk−1,L,

while, for a site that has a nucleosome to the right, 131

Tr,L =
1

p+ q
+

p

p+ q
Tr−1,L +

q

p+ q
Tr+d+1,L,

and for a site l that has a nucleosome to the left, 132

Tl,L =
1

p+ q
+

q

p+ q
Tl−d−1,L +

p

p+ q
Tl+1,L.
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Figure 4. Distributions of loop formation times for three different values of inter-
nucleosome spacing for the case of static nucleosomes for two RWs on a lattice of
L = 30kbp. The distribution for ∆ = d is the broadest, consistent with the mean tloop
being the highest in this case. The inset shows the distributions for the case of dynamic
nucleosomes for three different unbinding rates, and again the distribution for koff = 1/s
is the broadest.

These recursion relations for the first passage times can be solved numerically subject to 133

the absorbing boundary conditions, 134

T0,L = TL,L = 0.

The comparison of the theoretical results with our simulations for a single RW is shown 135

in Fig. 2 (dashed blue curve and solid green curve respectively). As can be seen from 136

the figure, a single RW displays a similar non-monotonocity as in the case of two RWs, 137

and this behaviour is captured by the analytical results for the looping time. The 138

corresponding plots for the effective diffusion coefficient are shown in Fig. 3 (dashed 139

blue curve and solid green curve). The non-monotonicity of the looping time and hence 140

the effective diffusion coefficient is thus an integral feature of this random walk process 141

in one dimension in the presence of extended barriers. 142

Physically, this can be understood as follows - the extended barriers pose an effective 143

energy barrier that the cohesin subunit must overcome. Competing with this energy 144

cost, there is also the entropic cost that is associated with the hopping of cohesin on the 145

linker region between two nucleosomes. The effective free energy barrier is highest when 146

the length of the nucleosome is comparable to the mean length of the linker DNA, 147

leading to large escape times in this region. For linker lengths smaller than this critical 148

value, the attempt rate for barrier crossing increases as the linker region shrinks, leads 149

to faster barrier crossings and hence smaller looping times. This was verified explicitly 150

by changing the nucleosome size in our simulations, and the largest loop formation time 151

was always obtained when the mean linker length was equal to the assumed nucleosome 152

size. 153

In addition to the mean loop formation time, we also calculate distributions of 154

looping times. The distributions are shown in (Fig. 4) for three different values of the 155

linker length. The looping time distribution is unimodal, with a peak at a finite looping 156

time, and falls off exponentially as t→∞. The non-monotonic nature of the mean 157

looping times is also reflected in the full distribution, with the peak of the distribution 158
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being shifted to the right when the linker length becomes comparable to the size of the 159

nucleosome, as can be seen for the case of ∆ = 150bp in Fig. 4(red curve). For linker 160

lengths either smaller or larger than the nucleosome size, the distribution shifts to the 161

left, commensurate with the observation of smaller loop formation times in these cases. 162

This is a generic feature for this problem of 1D random walks with extended barriers in 163

one-dimension, and continues to hold true for a single random walker. 164

Nucleosome (un)binding kinetics can decrease loop formation 165

times: 166

We now turn to the case of dynamic nucleosomes, which can stochastically bind and 167

unbind to the DNA lattice. Inside the nucleus, nucleosomes are dynamic and can 168

regulate their binding and unbinding rates in response to gene activity. It hence 169

becomes important to estimate the loop formation times by cohesin in the context of 170

dynamic nucleosomes. 171

The loop formation times for the case of dynamic nucleosomes are consistently 172

smaller than that obtained for static nucleosomes, and the first passage time can be 173

reduced by as much as two orders of magnitude. For different values of koff , we obtain 174

the mean linker length ∆(koff). Higher values of koff correspond to lower nucleosome 175

densities and hence larger linker lengths. We show the variation of the loop formation 176

time with this mean linker length for dynamic nucleosomes in Fig. 2 (red curve). The 177

non-monotonicity of the loop formation time persists, as in the case of static 178

nucleosomes. However, the peak of the FPT curve is now shifted to smaller values of ∆, 179

with the maximum loop formation time occuring around ∆ ' 50bp. The mean looping 180

time drops sharply as the koff (or equivalently, mean ∆) is increased, and approaches 181

the empty lattice value for mean separations as small as ∆ ≈ 200bp. 182

This efficient speedup of the loop formation process is also apparent on considering 183

the mean diffusivity, as shown in Fig. 3. The diffusivity drops only by two orders of 184

magnitude even at the ∆ corresponding to the slowest loop formation times (∆ ' 50bp). 185

At ∆ = 200bp, the effective diffusivity is Deff ' 0.1D0. The distributions of looping 186

times is also consistent with the non-monotonic nature of the mean looping. The inset 187

of Fig. 4 shows the looping time distribution for three different values of koff . The 188

distribution is broader for koff = 1/s (red curve) than it is for unbinding rates both 189

smaller (koff = 0.001/s, black curve) and larger (koff = 10/s, green curve) than this 190

value. This mechanism thus provides a route to correlate gene activity of a chromatin 191

segment to its loop formation efficiency, via the variations in the mean separation 192

between nucleosomes. 193

Statistical positioning of nucleosomes can marginally accelerate 194

looping: 195

It is well known that the stochastic binding and unbinding of nucleosomes results in an 196

oscillatory occupancy profile from the start of the Transcription Start Site 197

(TSS) [17,31]. We assume, consistent with several experimental studies, that the TSS 198

are correlated to the CTCF markers which define the endpoints of the 199

loop [5, 11, 23, 52, 53]. This oscillatory profile can be interpreted as an effective potential 200

landscape in which the cohesin random walker executes its diffusive dynamics. 201

In order to determine whether the dynamic nature of the nucleosomes itself or the 202

effective potential landscape imposed by the spatial variations of nucleosomal occupancy 203

profiles ahead of a TSS is responsible for the predicted increase in the effective 204

diffusivity, we investigate the variations of loop formation times on a lattice with 205

periodic boundary conditions. The characteristic oscillatory profile of nucleosomal 206
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Figure 5. The effect of statistical positioning on mean looping times. Shown are the
plots of the survival probabilities for a finite lattice (with statistical positioning, dashed
lines) and a periodic lattice (no statistical positioning, solid lines), for two different lattice
sizes, L = 3kbp and L = 10kbp. The unbinding rate is koff = 0.01/s. The zoomed view
illustrates the deviation of the survival probability from a single exponential for short
looping times. The inset shows the nucleosomal occupancy probability as a function of
the lattice site for the finite and periodic lattices. The plots for L = 3kbp have been
vertically shifted so as to avoid overlap with the L = 10kbp plots. As expected, the
periodic lattice shows no effect of statistical positioning.

occupancy arises due to the finite boundaries at the ends of the lattice (CTCF markers), 207

and hence is absent for the case of periodic lattice. This was explicitly verified for 208

dynamic nucleosomes on a ring, where the nucleosomal occupancy shows a flat profile 209

without any oscillations (see Fig. 5inset). 210

We plot the survival probability S(t), defined as the probability that at least one of 211

the two cohesin subunits survives till time t, as a function of time for a finite lattice and 212

for a periodic lattice for two different lattice sizes (L = 3000bp and L = 10000bp) for a 213

nucleosome unbinding rate of koff = 0.01/s. We plot the survival probabilities using a 214

ensemble cloning scheme (see Methods for details) in order to reliably access the tails of 215

the distributions. As shown in Fig. 5, the difference in the survival probability 216

distributions in the presence and absence of statistical positioning is relatively minor, 217

showing that the nucleosome kinetics is primarily responsible for the small looping times 218

for dynamic nucleosomes. However, the distribution for the case of periodic boundary 219

conditions (when there is no effect of statistical positioning) consistently lies above the 220

curve for the finite lattice. The mean looping times can be derived from the survival 221

probability as, tloop = 〈t〉 =
∫∞
0
S(t)dt. This gives tfin,3kbploop = 29.7s and tper ,3kbploop = 30.8s, 222

while for the 10kbp lattice, we obtain, tfin,10kbploop = 338.4s and tper ,3kbploop = 354.8s, which 223

also shows that the mean time for the periodic case is marginally higher than for the 224

finite lattice. This implies that although the bulk of the speedup observed in the case of 225

dynamic nucleosomes is due to the binding and unbinding of nucleosomes on the DNA 226

backbone, statistical positioning can have a subtle effect in speeding up the formation of 227

loops, and this can possibly become important for larger loop sizes. 228
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Figure 6. Scaling of the loop formation time with loop size for different inter-
nucleosomal spacings, for static and dynamic nucleosomes. The t ∝ L and t ∝ L2 lines
(dashed lines) are shown as guides to the eye. In all cases, the loop formation time grows
diffusively with the size of the loop, consistent with the underlying diffusive dynamics.

Loop formation time grows diffusively on loop length: 229

We now turn to the question of how mean looping times scale with the size of the loop 230

(lattice size), and the related question of how to characterize mean looping speeds. 231

Previous analysis suggests that cohesin can spread diffusively on DNA over distances of 232

7kb in one hour [57]. 233

Although our work suggests that looping time scales non-monotonically with the 234

mean inter-nucleosome spacing (or equivalently, with koff for dynamic nucleosomes), for 235

a fixed value of ∆ (or koff ), the mean loop formation time scales with the lattice size as 236

L2, as expected from diffusive transport. This is shown on Fig. 6 for different values of 237

∆ for static nucleosomes, and for koff = 100/s for dynamic nucleosomes. 238

Based on this analysis, we can now estimate looping speeds as predicted by this 239

barrier-mediated diffusion model. For the case of static nucleosomes, at a mean 240

nucleosome spacing of ∆ = 20bp, our analysis predicts that cohesin would form a 30kbp 241

loop in a mean time of 2447s, corresponding to an effective looping speed of around 242

45kbp in one hour. For loop sizes of L = 100kbp, we obtain an effective looping speed of 243

13kbp in one hour. For dynamic nucleosomes, at koff = 10/s, for a loop size of 244

L = 30kbp, we obtain a mean looping speed of 300kbp per hour, a greater then 40−fold 245

speedup as compared to the 7kbp per hour speeds calculated earlier. 246

Discussion 247

We show that contrary to naive expectations of reduced diffusivities when cohesin faces 248

a nucleosomal barrier, the true picture is far more nuanced. The macroscopic 249

manifestation of extended microscopic barriers depends on the inter-barrier separation, 250

the mean linker length. While the mean loop formation time initially increases with 251

decreasing linker length, below a certain critical linker length (∆d), this trend reverses, 252

with the mean time now decreasing with decreasing linker lengths. At physiological 253

nucleosome separations, this can lead to speed-ups of around two orders of magnitude 254
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compared to the diffusive speed estimated in previous studies. This counter-intuitive 255

result is due to the extended nature of the nucleosomal barriers, which introduces an 256

additional length scale in the system that competes with the inter-nucleosome spacing 257

to give rise to this non-monotonic behaviour of the mean looping times. 258

This non-monotonic dependence of the looping time with linker length forms a 259

testable prediction of our model. At extremely high densities of nucleosomes, our 260

analysis predicts effective diffusivities that are comparable to the empty lattice 261

diffusivity. An important consistency check can be made by comparing with 262

experimental observations of almost stationary cohesin at very high nucleosome 263

densities. These observations were made for a DNA strand of 48.5kbp containing 10-50 264

nucleosomes [57]. These correspond to mean linker lengths between ∼ 800− 5000bp, in 265

which regime our model predicts extreme slowdown of cohesin diffusion, consistent with 266

observations. In order to verify the non-monotonic nature, we would need to observe an 267

even higher density nucleosomal array, with 200 nucleosomes on a 48.5kbp DNA strand. 268

Further, we illustrate how binding and unbinding of nucleosomes from the DNA 269

backbone, can speed up diffusion of cohesin by upto two orders of magnitude compared 270

to the static case. There is widespread experimental evidence that cells can tune the 271

binding-unbinding kinetics of nucleosomes in response to different signals, and in 272

general, active genes are characterised by more dynamic nucleosomes [12, 30, 32, 49]. We 273

show that this offers the cells a route to controlling the speed of loop formation by 274

varying the nucleosome kinetics and hence linker length. This dependence of the looping 275

time on the nucleosome kinetics also offers a tantalizing possibility of introducing 276

directionality in the cohesin motion through an underlying asymmetry in the 277

nucleosome positioning. Recent studies have opened the possibility of asymmetric 278

nucleosome distributions near CTCF sites [10], and such an asymmetry can bias the 279

underlying landscape in which cohesin performs its diffusive motion, leading to an 280

effective drift term. While we have not explicitly investigated the effect of such an 281

asymmetry in the current work, our results in Fig. 2 and Fig. 3 suggest such an 282

asymmetry can further decrease looping times in real biological scenarios. 283

In addition to the effect of this extended barrier outlined in our work, several other 284

factors may play a role to decrease looping times. Experiments have found while the 285

motion of cohesin on the DNA backbone is itself diffusive, cohesins can be transiently 286

pushed along the DNA by other active DNA motor proteins, such as FtSz [57]. 287

Although this active push is short lived, as the FtSz protein changes direction, it can 288

result in additional speed up of the loop formation process. Additionally, a recent 289

theoretical proposal argues for a novel collective ratchet effect driven by a 1D osmotic 290

pressure that favours the extrusion of larger loops [7, 8]. The mechanism underlined in 291

this work stands apart from these other proposals in that it highlights the non-trivial 292

role of the extended nucleosomal barriers. Other factors such as motor activity or 293

collective effects would then serve to provide additional speed-ups to the estimates 294

calculated in the present work. 295

Our works opens up a tantalizing possibility for the case of binding site search on 296

DNA by a generic DNA-binding protein (DBP). The question of how DBPs search for 297

target sites has a long history, with the leading hypothesis being that of facilitated 298

diffusion, a combination of 3D and 1D diffusion [6, 24,39,56,60,61]. During the phase 299

of one-dimensional diffusion of the DBP on the DNA backbone, the proteins encounter 300

nucleosomes. Although the specific topological association of cohesin on DNA may not 301

be applicable to general proteins, one can imagine a DBP unbinding from the backbone 302

and then re-attaching past the nucleosome site, which would then correspond to an 303

effective reduced barrier crossing rate in the context of our model. The same physical 304

phenomenon as outlined in this paper would then also be applicable, with the finite 305

length of the nucleosomal barrier leading to effective speed-ups for certain linker lengths. 306
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This can result in faster 1D-search leading to lower effective search times. 307

In summary, our work highlights the non-trivial role of extended nucleosome barriers 308

on the diffusion of cohesin on DNA. The extended barriers introduce an additional 309

lengthscale which can reduce looping times beyond certain critical nucleosome densities. 310

This non-trivial acceleration of DNA looping may serve to explain how cohesin forms 311

large chromosomal loops even though it moves passively on the DNA backbone. 312

Materials and Methods 313

Static nucleosomes: 314

In case of static nucleosomes, nucleosomes are placed on the DNA lattice maintaining a certain 315

constant linker length (∆) between two consecutive nucleosomes. We verified that our results 316

do not change if the nucleosomes are positioned randomly keeping the mean linker length to be 317

the same. The two cohesin subunits, modeled as two RWs are initialized at two consecutive 318

lattice sites near the middle of the lattice. At each timestep, we first choose one of the two 319

subunits randomly, and update its position in accordance with the hopping rates p (if the 320

subunit is not adjacent to a nucleosome) or q (if the subunit occupies a site adjacent to a 321

nucleosome). We then repeat this for the other cohesin subunit. The two subunits are not 322

allowed to occupy the same lattice site. We record the times tL and tR when the left and right 323

RWs get absorbed at the boundaries. The looping time tloop is the maximum of these two 324

times. The simulation is repeated for 1000 ensembles in order to obtain the mean looping time. 325

Dynamic nucleosomes: 326

In the case of dynamic nucleosomes, nucleosomes bind and unbind to the DNA lattice 327

stochastically. We choose a fixed binding rate (kon) = 12/s [49, 51, 63] while the unbinding rate 328

(koff ) is varied in order to achieve different mean linker lengths. We first allow the system to 329

reach a steady state nucleosomal occupancy in the absence of cohesin. Once the system reaches 330

steady state, we position the cohesin subunits near the midpoint of the lattice. At each 331

timestep, we choose the N+2 entities (N number of nucleosomes and two RWs) in random 332

order. If a bound nucleosome is picked, it can unbind from the DNA with a rate koff ; if an 333

unbound nucleosome is picked, it can bind to the DNA with a rate kon. If either of the cohesin 334

subunits are picked, they hop to an adjacent empty lattice site with a rate p or hop across a 335

nucleosome with a rate q. The system evolves until both the cohesin subunits are absorbed at 336

the two lattice boundaries. We again note the looping time tloop and the mean looping time is 337

obtained after averaging over ∼ 1000 such ensembles, as before. 338

Ensemble cloning: 339

In order to access the tails of the first passage (and survival probability) distributions, we use 340

an ensemble cloning scheme, which can access these regions to a high degree of 341

accuracy [37, 45]. As shown in Fig. 7, we start with 1000 distinct initial configurations at t = 0 342

and then allow all the 1000 systems to evolve for a time T . After this time T , in some systems 343

both the RWs reach the end points of the lattice and are absorbed yielding a looping time tloop. 344

In the remaining systems at least one of the RWs survives. We then clone these surviving 345

systems to bring back the total number of systems to 1000 and again evolve for a time T . We 346

repeat this procedure until we reach a desired accuracy for the survival probability. 347

At t = 0, the survival probability is S(0) = 1. Let, M(T ) denote the number of systems 348

which survive after evolving for time T . Then the survival probability at time T is, 349

S(T ) = S(0)(M(T )/1000). At this point, we clone these M(T ) surviving systems to bring back 350

the number of systems to 1000 and allow the systems to evolve for another interval of time T . 351

Let, after this second iteration, the number of surviving systems be M(2T ). Hence, the 352

survival probability after this second iteration becomes, S(2T ) = S(T ) × (M(2T )/1000). The 353

time T is chosen such that roughly half the number of systems survive after each iteration. 354

Thus the sruvival probability after k iterations is of the order of ∼ 2−k, and hence this 355

procedure allows one to access the tails of the survival probability distribution. 356
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Figure 7. Schematic of the ensemble cloning scheme used to estimate survival
probabilities.
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