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Abstract

Chromosomal inversions are frequently implicated in local adaptation. Inversions can capture multiple locally

adaptive functional variants in a linked block by repressing recombination. However, this property makes it

difficult to identify the genetic mechanisms that underlie an inversion’s role in adaption. In this study, we

explore how large-scale transcriptomic data can be used to dissect the functional importance of chromosomal

inversions. Specifically, we study a 13 Mb inversion locus found almost exclusively in highland populations of

maize (Zea mays ssp. mays) known as Inv4m. Inv4m is known to have introgressed into domesticated maize

from a wild relative also present in the highlands of Mexico and is thought to be important for the

adaptation of certain maize landraces to cultivation in highland environments. First, using a large publicly

available association mapping panel, we confirmed that Inv4m is associated with locally adaptive agronomic

phenotypes, but only in highland fields. Second, we created two Near Isogenic Line populations segregating

for alternative alleles of Inv4m, and measured gene expression variation association with Inv4m across 9

tissues in two experimental conditions. With these data, we quantified both the global transcriptomic effects

of the highland Inv4m allele, and the local cis-regulatory variation present within the locus. We found
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diverse physiological effects of Inv4m, and speculate that the genetic basis of its effects on adaptive traits is

distributed across many separate functional variants.

Introduction 1

Chromosomal inversions are structural rearrangements that form when a portion of a chromosome breaks in 2

two places and reinserts in the opposite orientation. The reversed order of loci prevent recombination with 3

the non-inverted homologous chromosome. This spontaneous, long-distance genetic linkage is important for 4

speciation and local adaptation because it can capture multiple adaptive and potentially interacting loci in a 5

single haplotype [1–3]. Inversions are common across taxa [4], often pre-date speciation events, and can 6

spread through admixture [5, 6]. They have been linked to adaptive phenotypes and environmental 7

clines [7–9], mating system evolution [10–12], social organization [13], and migratory phenotypes [14]. 8

Chromosomal inversions were first discovered nearly a century ago in Drosophila [2, 15] by visualizing 9

karyotypes, and can be identified based on their effects on recombination rates among nearby markers. 10

However, both techniques are labor intensive and difficult to apply to large-scale population-level surveys 11

within or among species. Modern genome-wide sequencing technologies provide the opportunity to identify 12

inversions more rapidly and comprehensively, leading to the discovery of inversions across a wide range of 13

species [4]. In fact, structural variants (e.g. insertions, deletions, duplications, translocations, fusions and 14

inversions) have been shown to account for more variation by the number of base pairs than SNPs [16]. 15

However, while whole-genome genotyping data can help rapidly discover inversion loci, measure their 16

frequencies across populations, and test for associations with adaptation and speciation, there are still very 17

few examples where the genetic mechanisms that underlie the adaptive value of any particular inversion is 18

known. Are there are generally one or two loci of major effect within an adaptive inversion, or do inversions 19

harbor many large and small-effect variants that combine to make inversion loci highly pleiotropic 20

supergenes [17]? Because they suppress recombination across the whole locus, association mapping methods 21

like QTL mapping and Genome-Wide Association Studies have little ability to resolve independent effects of 22

different variants within the locus. This makes fine-mapping nearly impossible. Only in cases of very old 23

inversion loci which have experienced rare recombinants or gene conversion events can association methods or 24

population-genetic signatures of selection successfully identify causal loci within inversions [18]. 25

RNA sequencing technologies may be a powerful tool for gaining rapid insight into the evolutionary role 26

of inversion loci, particularly for loci for which the adaptive phenotypes regulated by the locus are unknown. 27

RNA sequencing is a very high-throughput phenotyping technology that can simultaneously measure tens of 28
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thousands of different traits on an organism. The expression of each gene responds to a different combination 29

of transcription factors, gene networks, and cellular states, so measuring gene expression provides an indirect 30

measurement of a wide range of cellular, developmental and physiological characteristics. Many of these 31

traits may be important for adaptation, but are neglected in many studies because they are difficult to 32

measure directly. At the same time, gene expression analysis can be used to scan across an inversion locus 33

gene-by-gene to identify specific genes that have different cis-regulatory genetic control among alleles. If the 34

functional variation captured by an inversion locus operates by directly altering the expression of genes in 35

the inversion, we can identify these genes by their expression changes without relying on recombination. 36

Together, these two types of gene expression analysis may greatly advance our understanding of inversion loci 37

that are not feasible to study by other means. 38

In this study, we applied population genetic and gene expression analyses to study an inversion locus in 39

maize. Maize is an important crop species worldwide and also a powerful model system for studying the 40

mechanisms of recent and rapid local adaptation. Maize (Zea mays ssp. mays) was domesticated in the 41

lowland Balsas river valley of southwestern Mexico from the narrowly distributed teosinte, Zea mays ssp. 42

parviglumus, hereafter parviglumus. Since the domestication of maize approximately 9000 years ago [19,20], 43

populations of maize have been moved into high altitude environments, and landraces collected today show 44

considerable local adaptation to their home elevation in a range of traits [21]. Interestingly, population 45

genetic scans for loci associated with adaptation to elevation gradients have identified several loci common in 46

highland landraces that have been introgressed from a different subspecies of teosinte, Zea mays ssp. 47

mexicana (hereafter mexicana), which occurs in highland environments [22]. One of these introgressed 48

regions, located at approximately 171.7 to 185.9 Mb of chromosome 4, is a chromosomal inversion known as 49

Inv4m [23, 24]. Inv4m is observed in high altitude locations in Mexico, and is associated with a three day 50

acceleration of flowering time, the largest effect flowering QTL in maize yet found [25]. Inv4m also overlaps 51

with a quantitative trait locus (QTL) found in a previous study of leaf pigmentation and macrohairs in 52

teosinte [26]. 53

Are there are few loci of major effect that drive the principle selectively important phenotypes? Are there 54

major functional variants distributed throughout the locus, making this a large supergene [17]? Or do loci 55

within Inv4m have beneficial epistatic or pleiotropic interactions with other introgressed regions from 56

mexicana? 57

We first comprehensively characterized the population-genetic context of the Inv4m locus and its 58

association with key agronomic traits using dense whole-genome genotyping data. Inv4m is more closely 59

associated with altitude in the center of maize diversity in Mexico than nearly any other locus in the maize 60

December 2, 2019 3/30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/861583doi: bioRxiv preprint 

https://doi.org/10.1101/861583
http://creativecommons.org/licenses/by-nc-nd/4.0/


genome, and shows clear patterns of antagonistic pleiotropy indicative of a key role in local adaptation. 61

Then, we dissected the function of the locus by broadly characterizing its effect on genome-wide gene 62

expression across a panel of tissues. We isolated Inv4m from two separate donor sources into a common 63

lowland-type maize background (B73), and used RNA sequencing of samples from nine different tissues and 64

two developmental stages in two environments to identify molecular traits that were differentially regulated 65

by the highland and lowland alleles of the inversion. These genes suggest a range of disparate biological 66

processes affected by Inv4m, highlighting novel cell-biological or physiological traits that may be involved in 67

the local adaptation. Finally, we scanned genes within Inv4m for associations with these gene expression 68

traits and identified several outlier genes inside the Inv4m locus that are good candidates for further study. 69

Materials and methods 70

Population Genetics of Inv4m 71

We downloaded unimputed genotype-by-sequencing (GBS) data from 94,726 loci on chromosome 4 and 4,845 72

maize plants from the SeeD-maize GWAS panel [25,27] and ran a principal components analysis on all 73

positions within the Inv4m locus (between 168832447 and 182596678 in AGPv2 coordinates, [23]) with 74

< 25% missing data and minor allele frequency > 0.05. PC1 explained 22% of the genetic variation among 75

these plants in this interval. Scores on PC1 neatly divided plants into three groups, representing the two 76

homozygous classes at Inv4m and their heterozygotes. We cross-referenced plants with landrace passport 77

data from Germinate 3, the CIMMYT Maize Germinate Database germinate.cimmyt.org/maize/ and 78

extracted country of origin, latitude, longitude and elevation records. All but 7 of the plants containing the 79

minor allele at Inv4m were from Mexico, so to study associations with elevation and to calculate other 80

diversity statistics, we subsetted to only those plants collected in Mexico. 81

To calculate the association of Inv4m with elevation, we divided landraces into 100m bins, calculated the 82

allele frequency of the minor allele in each bin, and fit a loess curve to the logit-transformed allele frequencies, 83

weighted by the number of landraces in each bin. Based on this analysis, we labeled the minor allele in 84

Mexico ”High”, and the major allele ”Low”. We used the R function HWExact from the HardyWeinberg R 85

package to test genotype counts against the Hardy-Weinberg expectation. We calculated diversity statistics π 86

and θ separately for plants homozygous for the “High” or “Low” alleles at Inv4m across all of chromosome 4 87

in 500 marker windows using TASSEL 5 [28]. Because many more plants were homozygous for the “Low” 88

allele, we randomly sampled 371 to calculate the diversity statistics to make the sample sizes equal. 89
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Association of Inv4m with agronomic traits 90

We re-analyzed phenotypic data from the F1 Association Mapping (FOAM) panel of Romero-Navarro et 91

al [25] and Gates et al [29] to more fully characterize associations signatures of Inv4m. Full descriptions of 92

this experiment and data access are described in those references. We downloaded BLUPs for each trait and 93

line from Germinate 3, and subsetted to only those lines with GBS genotype data from Mexico. We fit a 94

similar model to the GWAS model used by Gates et al [29] to estimate the effect of Inv4m genotype on the 95

trait’s intercept and slope on trial elevation, accounting for effects of tester ID in each field and genetic 96

background and line effects on the trait intercept and slope using four independent random effects. We 97

implemented this model in the R package GridLMM [30]. We extracted effect sizes and covariances 98

conditional on the REML variance component estimates and used these to calculate standard errors for the 99

total Inv4m effect as a function of elevation. To test whether the phenotypic effects of Inv4m on yield 100

components could be explained as indirect effects via flowering time, we additionally re-fit each model using 101

Days-To-Anthesis as a covariate with an independent effect in each trial. 102

Experimental material for isolating Inv4m 103

To directly assess additional phenotypic effects of the Inv4m locus, we selected two highland landraces which 104

both carry the High allele of Inv4m, Palomero Toluqueno (PT) and Michoacán 21 (Mi21). These Inv4m 105

donors were repeatedly backcrossed to introgress the locus into the B73 reference line. Both landrace 106

accessions were obtained through the International Maize and Wheat Improvement Center (CIMMYT); PT 107

came from accession mexi5 and Mi21 from accession Michoacán 21. B73 is a modern inbred from the United 108

States, but carries the Low-type allele at the Inv4m locus. Both landraces were crossed with B73 and one 109

resulting F1 individual from each cross was backcrossed to B73 for 4 generations, selecting on a diagnostic 110

SNP for Inv4m each cycle with a cleaved amplified polymorphic sequence (CAPS) assay. DNA was extracted 111

from leaf tissue using a Urea lysis buffer extraction protocol 112

(https://github.com/RILAB/lab-docs/wiki/Wetlab-Protocols). Primers were designed to amplify the 113

fragment of DNA carrying the diagnostic SNP (Forward: CTGAGCAGGAGATGATGGCCACTC; Reverse: 114

GGAAAGGACATAAAAGAAAGGTGCA). Amplification consisted of 5 minute denaturation at 95◦C, 35 115

cycles of 95-60-72◦C for 30 seconds each, 7 minutes of final extension step at 72◦C, followed by a 4◦C hold. 116

Amplified DNA was then digested with the Hinf 1 enzyme for 1 hour at 37◦C, and the resulting product was 117

run out on a 1% agarose gel for genotyping. 118

Two of the resulting BC5 nearly isogenic lines (NILs, also known as introgression lines) were 119
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self-pollinated per population (which were heterozygous for Inv4m) to produce BC5S1 NILs segregating for 120

Inv4m approximately at a 1:2:1 ratio. 121

Reciprocal transplant experiment to identify phenotypic effects of Inv4m 122

We planted seeds from the four introgression lines (two parents per Inv4m donor) in the UC Davis controlled 123

environment facility growth chambers. Chambers were programmed to mimic temperatures in Mexican 124

lowlands (22◦C night, 32◦C day, 12 hr light) and highlands (11◦C night, 22◦C day, 12 hr light). Kernels were 125

soaked in distilled H20 for 12 hours and planted in 10.2cm x 34.3cm nursery pots (Steuwe & Sons: 126

CP413CH) in a soil mixture composed of a 3:1 ratio of Sungro Sunshine Mix #1 to sand. Pots were 127

organized in racks with 9 pots per rack (Steuwe & Sons: tray10). Plants were watered every other day with a 128

1x Hoagland solution, and emergence was recorded daily. The experiment was replicated and growth 129

chambers were switched to account for variation between instruments between replicates (See Figure S1 for a 130

graphical workflow). The first replicate of the experiment began March, 2017 and the second replicate began 131

April, 2017. 132

Two seeds were planted in each pot, one in the center and one near the corner, and a total of nine tissues 133

were sampled from the two plants when they reached a specific developmental stage. The nine tissues were 134

selected to maximize the diversity of gene expression profiles based on the transcription atlas of [31]. Plants 135

were removed from the pot and sampled when the plant in the corner reached the V1 stage, and the plant in 136

the center reached the V3 stage. Two tissue types were sampled from the V1 stage, and 7 tissue types were 137

sampled from the V3 stage (Table 1). Sampling occurred between 2 and 4 hours after simulated sunrise. 138

Plant tissue was placed in 2 ml centrifuge tubes, immediately flash frozen in liquid nitrogen, and stored at 139

-70◦C. 140

Table 1. Developmental stage and description of tissues sampled for gene expression analysis.

Developmental Stage Tissue Description
V1 Root Primary root
V3 Root Primary root
V3 SAM Stem Apical Meristem
V1 Leaf Pooled leaf tissue
V3 Sheath Leaf sheath
V3 Leaf base 5 cm of leaf base
V3 Leaf tip 5 cm of leaf tip
V3 S2 leaf base 5 cm of leaf base
V3 S2 leaf tip 5 cm of leaf tip
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Genotyping and RNA sequencing 141

We used the same DNA extraction and CAPs genotyping methods as previously described to genotype the 142

NILs for the Inv4m allele. We randomly sampled 3 biological replicates from each tissue, homozygous Inv4m 143

allele (heterozygous plants were excluded to focus on additive effects of Inv4m), donor (Mi21 & PT), and 144

temperature treatment from each experimental replicate for a total of 432 samples. Approximately 20 mg of 145

tissue for each sample was placed in a 2ml centrifuge tube and flash-frozen in liquid nitrogen and ground 146

using stainless steel beads in a SPEX Geno/Grinder (Metuchen, NJ, USA). mRNA was extracted using oligo 147

(dT)25 beads (DYNABEADS direct) to isolate polyadenylated mRNA using the double-elution protocol. We 148

prepared randomly primed, strand specific, mRNA-seq libraries using the BRaD-seq [32] protocol with 14 149

PCR cycles. Samples underwent a single carboxyl bead clean-up, quantified using the Quant-iTTM
150

PicoGreen dsDNA kit, and normalized. We took 2ng per library and multiplexed 96 samples for sequencing. 151

Each multiplexed library was sequenced on 1 lane of a Illumina HiSeq X platform, generating a mean of 152

4,241,500 reads per sample. Raw reads were quality checked using FastQC v.0.11.5 [33]. Adapter sequences, 153

low quality reads (q<20), and sequences less than 25 bp were removed using Trimmomatic v.0.36 [34]. 154

Effects of genotype at Inv4m on seedling emergence 155

The effect of Inv4m on seedling emergence were analyzed using the following random slope and intercept 156

model for each donor and temperature treatment separately: 157

yijk ∼ µ+ β1Gi + uijk + eijk

yijk is the emergence time for individual plant k in experimental replicate j in Inv4m genotype i. µ the 158

model intercept, and u = uijk is a random effects term for the experimental replicate, and eijkl is residual 159

error. Variance components, coefficients and standard errors were estimated by REML using the R function 160

lmer [35], and p-values were calculated using conditional F-tests [36]. 161

Population characterization 162

BC5S1 plants are expected to contain ∼ 3% residual DNA from the non-recurrent parent across the 163

remaining 9 chromosomes. We used the RNAseq reads from each plant to comprehensively characterize all 164

residual introgressed regions across the genome by calling variants in the expressed regions. Paired reads that 165

passed filtering were aligned to the B73 reference genome version 4 [37] using hisat2 [38], and variant loci 166
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were called using GATKv3 [39,40]. We ran MarkDuplicates, SplitNCigarReads and HaplotypeCaller on 167

every sample, including all 435 NIL samples and an additional 46 B73, 48 PT and 47 B73-PT F1 samples 168

from plants run in parallel with the NILs but were not otherwise used in this experiment, and then ran 169

GenotypeGVCFs on all samples jointly. We next used SelectVariants to extract SNPs, and 170

VariantFiltration to remove SNPs with FS score < 30 and QD > 2.0. We further filtered for SNPs called 171

homozygous-reference in all B73 samples, and which exhibited allele frequencies > 1/8 and > 7/8 in either 172

the PT-NIL or Mi21-NIL populations (expected frequencies of each variant should be 0.25 or 0.5 depending 173

on recombination between the two BC5 parents of each population, but we allowed for some sampling error). 174

We used this set of highly filtered SNPs for each population to genotype each of the NIL plants. For each 175

plant, at each locus we first combined all genotype likelihoods across all RNA samples from the same plant. 176

We then identified the approximate breakpoints of the introgressed regions by inspecting the density of 177

variant sites. We identified 3 regions (on chromosomes 2, 4 and 5) in the PT-NIL population and 2 regions in 178

the Mi21-NIL population (on chromosomes 3 and 4). Within these introgressed regions, we used R/QTL [41] 179

to assign genotype probabilities across the Inv4m locus for each plant, allowing error.prob = 0.2. Finally, 180

we observed that several genes outside these 5 introgressed regions each of which exhibited >= 2 SNPs 181

relative to the reference. We hypothesized that these genes have probably a different chromosome location in 182

the landraces relative to B73, and actually reside inside one of the 5 introgressed regions. We therefore 183

assigned their genotype to the most common genotype among these variant loci. 184

RNA quantification 185

To quantify gene expression, we ran kallisto v.0.42.3 [42] separately on each sample using the B73 186

AGPv4.36 transcript models downloaded from the maize genome database [37]. We limited to only one 187

bootstrap replicate, and then combined transcripts from the same locus into a total estimated transcript 188

count per gene. Genes were retained where at a third of the samples had 10 or more reads. Gene counts were 189

normalized using the weighted trimmed mean of M-values (TMM) with the calcNormFactors function in 190

edgeR [43]. Normalization using TMM reduces bias of very highly and lowly expressed genes. The voom 191

function [44] in the limma package [45] was used to convert normalized reads to log2-counts per million 192

(log2CPM), estimate a mean-variance relationship, and assign each observation a weight based on its 193

predicted variance. Observation-weights were used in downstream analyses to account for heteroscedasticity. 194

We estimated batch effects using the removeBatchEffects function in limma using the experimental replicate 195

as batch, which corrected the log2CPM expression values. Global patterns of gene expression across the 196
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experiment were visualized with the plotMDS function from edgeR. 197

Analysis of Inv4m effects on gene expression 198

We divided genes into three groups to estimate the effects of Inv4m or other introgressed landrace alleles, 199

based on whether each gene resided in a “clean” genomic region with only B73’s allele present in the 200

populations, inside the Inv4m locus itself, or if it resided within one of the genomic blocks containing 201

residual landrace DNA but outside Inv4m. Each group of genes served a different purpose in the analysis of 202

Inv4m. Genes in the “clean” region were used to assess the effects of Inv4m on global gene expression and 203

indirectly assess the effects on development and physiology more broadly. Genes inside the Inv4m locus were 204

scanned for candidate alleles underlying Inv4m’s effects. Genes in the residual introgression blocks were used 205

as controls to assess the similarity of PT and Mi21 alleles in other genomic loci, as well as compare effect size 206

and expression correlation with Inv4m. 207

For genes that resided in “clean” genomic regions with only B73’s allele present in the populations

(approximately 89.8% of genes expressed in both donors), we estimated the effect of the Inv4m locus

separately in each Inv4m donor, temperature treatment, and tissue using the linear model:

yij = µ+ βInv4mi + eij eij ∼ N(0, φijσ
2),

where yij is a normalized, batch-corrected log2CPM value for a single gene in a single sample, µ is the 208

intercept for that gene in the particular population, environment and tissue, β is the corresponding effect of 209

the landrace Inv4m allele, and eij is the model residual, which is assumed to be independent of all other 210

residuals and have variance proportion to φij , the empirical weight factor calculated by voom. We fit this 211

model to the whole set of “clean” genes using the lmFit function from limma, and extracted β and its 212

standard error (|β|/t). We leveraged the correlations in effect sizes across tissues and environments to 213

improve effect size estimates and identify a union set of genes regulated by Inv4m by combining results 214

across tissues and environments using the mash method [46] implemented in the mashr R package. mash was 215

run separately for the two NIL populations. 216

We also fit a separate model to test for interactions between Inv4m and the temperature environment,

separately for each Inv4m donor and tissue:

yijk = µ+ β1Inv4mi + β2Tempj + β3Inv4m:Tempij + eijk eijk ∼ N(0, φijσ
2).
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This model adds β2, the main effect of temperature environment on expression, and β3, the interaction 217

between Inv4m and temperature. However it is less flexible than the first model because the residual 218

variance σ2 is constrained to be equal for the two temperature environments. This model was also fit to each 219

gene using lmFit, and the estimate of β3 and its standard error were extracted. We again used mashr to 220

identify the union set of genes affected by this interaction. 221

For genes residing inside the Inv4m locus, we fit the same two statistical models with the lmFit function 222

(both sets of genes were analyzed jointly to leverage the empirical bayes shrinkage of standard errors). 223

However, we did not include these genes in the multiple adaptive shrinkage analysis. 224

For genes residing outside Inv4m, but within one of the genomic blocks containing residual landrace DNA

in both donors, we fit a slightly different statistical model:

yij = µ+ βcisi + eij eij ∼ N(0, φijσ
2),

where cis is the local genotype of the gene, and β is the associated effect. For genes in residual genomic 225

blocks on chromosome 4, the cis genotypes were highly correlated with the Inv4m, so some of the cis effect 226

may have been caused by Inv4m, but these effects were difficult to separate statistically. However for genes 227

on other chromosomes, the two genotypes were largely uncorrelated. 228

Sequence divergence, and expression correlation between alleles within the 229

High Inv4m allele and the residual introgressed regions 230

We estimated the sequence divergence between the two landrace donors and B73 for each gene within the 231

chromosome 4 introgression containing Inv4m present in both populations. For each gene, we calculated the 232

genetic similarity of the PT and Mi21 alleles relative to B73 by counting the number of shared SNPs divided 233

by total number of observed SNPs within each gene window, using only the highly filtered SNP set described 234

above. We calculated the correlation in effect sizes between donors for each tissue and temperature 235

combination. T-tests were used to determine whether genetic similarity and expression correlation were 236

higher within Inv4m relative to the shared introgressed region. 237

Gene ontology enrichment 238

Genes were assigned to gene ontology (GO) categories for functional annotation using an updated ontology 239

annotation [47] which we expanded to include all ancestral terms for each gene with the buildGOmap 240
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function of the R package clusterProfiler [48]. Genes in “clean” genomic regions which responded to the High 241

Inv4m allele in the same direction in both donor populations were classified as Inv4m-regulated and tested as 242

foreground genes in a GO enrichment analysis. Genes that were expressed in each tissue and temperature 243

combination in both donor populations, but were not Inv4m-regulated were included in the set of background 244

genes. We calculated the enrichment of each GO term using the enricher function in the clusterProfiler R 245

package. We selected GO terms with a false discovery rate less than 1% after a Benjamini-Hochberg multiple 246

test correction. We then calculated the percent of genes in each GO terms that were Inv4m-regulated, and 247

using the highest enriched GO term across conditions and ranked all GO terms by their maximum enrichment. 248

We then selected the highest enriched GO term among terms that had a semantic-similarity >0.5. 249

Candidate gene pathway assessment among Inv4m-regulated genes 250

We inspected two additional candidate gene sets: genes known to regulate flowering time in maize [49], and 251

genes regulated by the microRNA miR172. miR172 is a highly conserved micro-RNA across the plant 252

kingdom that regulates development and flowering time. These lists were selected, as Inv4m has previously 253

been associated with flowering [25]. For miR172 targets, we found the mature sequence for zma-miR172c: 254

”AGAAUCUUGAUGAUGCUGCA” from miRBase http://www.mirbase.org, and used this as a query of 255

the Plant Small RNA Target Analysis Server (psRNATarget, http://plantgrn.noble.org/psRNATarget), 256

and collected all predicted target genes. We also used TAPIR’s pre-computed target genes for 257

zma-miR172a-b-c-d. These two categories of genes were inspected by hand for evidence of regulation by 258

Inv4m. 259

Candidate genes within Inv4m 260

We used the intersection of two separate methods to identify candidate adaptive genes within Inv4m. First, 261

we quantified the proportion of conditions (tissue:temperature combinations) that each Inv4m gene was 262

differentially expressed in. To be considered differentially expressed, the gene needed to be differentially 263

expressed in both Inv4m donor populations and in the same direction. Genes where at least one donor was 264

not expressed were removed from this analysis per condition. The second approach we used was to quantify 265

the proportion of “clean” Inv4m-regulated genes, that each gene within Inv4m was significantly correlated 266

with in the same direction in both Inv4m donors. For this analysis, we used the lm function in R to 267

implement a linear model with the Inv4m-regulated gene expression as the response variable, and the Inv4m 268

gene’s expression and Inv4m genotype as predictors, and included an error term. 269
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De-novo assembly of novel genes 270

We collected all un-mapped reads from the samples homozygous for the highland (PT or Mi21) alleles at 271

Inv4m, and used Trinity v2.4 [50] to assemble un-annotated transcripts using default settings. We then used 272

Kallisto to quantify the expression of each of these novel transcripts using the un-mapped reads from each 273

RNAseq sample. To search for candidate “novel” genes in the highland allele, we filtered for Trinity genes 274

that had zero estimated counts in any of the samples that were homozygous for the B73 allele of Inv4m, but 275

had non-zero estimated counts in at least 2 samples homozygous for the PT or Mi21 alleles in each NIL 276

population (to exclude genes that may reside in either PT or Mi21). 277

Results 278

To confirm the population genetic signature of local adaptation at Inv4m, we genotyped 4845 maize plants 279

from the SeeD-maize GWAS panel for the Inv4m inversion using published unimputed 280

genotype-by-sequencing data. Of these lines, 707 were homozygous for the minor allele, and 351 were 281

heterozygous for the locus. Of the 585 plants carrying at least one of the minor alleles and complete with 282

geographic information, all but 7 were from Mexico, with the majority collected from the central highlands 283

(Fig 1A). Therefore, to assess evidence of local adaptation, we assessed the association of Inv4m genotype 284

with elevation among the 1757 Mexican plants. In Mexico, 1186 and 381 plants were homozygous for the 285

alternate alleles, and 190 were heterozygous, a distribution that significantly differs from Hardy-Weinberg 286

expectations (D=-252.0, p = 1.91e-197). Genotypes at Inv4m were strongly associated with elevation, as 287

previously reported [25] Fig 1B. The highland allele at Inv4m had much lower genetic diversity across the 288

locus; however diversity measures rebounded immediately outside of the published boundaries of the 289

inversion. Plants carrying the highland allele did show a slightly lower proportion of segregating sites (θ) 290

across chromosome 4 (Fig 1C). Diversity estimates were relatively constant across the “High” allele at the 291

Inv4m locus, with little evidence of large-scale introgression of lowland alleles; only 5% of markers had 292

segregating variation in common (MAF > 0.05) in both haplotypes at the locus, and some of these may have 293

been caused by cryptic paralogous loci which is common in GBS [51]. The lower diversity estimates are 294

unlikely to be caused entirely by mapping biases against this divergent allele. Of the 9201 GBS markers 295

within the locus, ∼ 80% were successfully genotyped in > 5% of the highland individuals, and of these 296

markers, 14% were segregating in the highlands and 33% were segregating in the lowlands. Among these 297

markers, rates of missing genotypes were similar between the two alleles. If all of the un-scored markers were 298

actually present and variable in the highland individuals, there would still be fewer segregating positions 299
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among highland individuals than lowland individuals. 300

Fig 1
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Fig 1. Association of Inv4m genotype with environmental factors and agronomic traits A.
Geographic locations for each of the 1757 Mexican plants genotyped by GBS, colored by their imputed
genotypes at Inv4m. B. Association of Inv4m and elevation. Each point shows the mean frequency of the
“High” allele at the Inv4m locus among plants from landraces collected in each 100m bin. The ribbon shows a
loess fit (± 2SE) to the logit-transformed frequencies weighted by the number of landraces in each elevation
bin. Bins with fewer than 10 landraces were excluded (those with elevation >2700m). C and D. Diversity
estimates π and θ for 371 sampled plants homozygous for the “Low” allele and 371 plants homozygous for the
“High” allele at Inv4m, along chromosome 4. The boundaries of Inv4m from [23] are denoted by vertical lines.

301

Romero-Navarro et al [25] identified Inv4m as a large-effect QTL in a large multi-environment trial of 302

landrace hybrids grown in multiple field sites in Mexico. Gates et al [29] analyzed five additional agronomic 303

traits from some of these field trials and found evidence for effects of the Inv4m locus on several traits. 304

However, these studies did not explicitly show effect sizes for Inv4m across trials or traits, and none of the 305

individual SNP markers in these studies was perfectly associated with our Inv4m genotype. Therefore, we 306

re-analyzed the phenotype dataset focusing specifically on estimating the effect of Inv4m, and how this effect 307

changed across the elevations of the trials. 308

The highland allele of Inv4m was significantly associated with Days-to-Anthesis, the Anthesis-Silking 309

Interval (ASI), Grain Weight-per-hectare, Bare cob weight, and Field Weight, but in each case, the effect size 310
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changed across elevations in the direction consistent with local adaptation: earlier flowering, reduced ASI, 311

and increased yield components in highland trials, while the opposite in lowland trials (Fig 2). The highland 312

allele was weakly associated with greater plant height, but the relationship was not significant (p=0.11 for 313

the main effect). The relationship between Inv4m genotype and these traits was not simply an indirect effect 314

of the change in flowering time; each relationship remained qualitatively the same even after accounting for 315

the the effect of Days-to-Anthesis separately within each trial. However, even though we attempted to 316

account for population structure in our analyses, it is still possible that some of these results remain 317

confounded due to the relatedness among individuals; Inv4m is among the markers best-correlated with the 318

elevation of origin, and the first eigenvector of genetic variation across the remainder of the genome 319

(excluding chromosome 4) is also strongly correlated with elevation. Therefore, these results are also 320

consistent with a polygenic basis for the divergence of each of these traits along elevational gradients. 321

Functionally validating the association of traits with Inv4m therefore requires experimentally breaking the 322

association between Inv4m and the rest of the genome through experimental crosses. 323

Fig 2
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Fig 2. Association of Inv4m genotype with agronomic traits across depended on trial
elevation We modeled each trait as a function of Inv4m genotype, trial elevation, and tester line, with
controls for main effects and responses to elevation of the genomic background. Black lines and ribbons show
estimates of the effect of the highland allele of Inv4m as a function of trial elevation ± 2SE, based on
conditional F-tests at the REML solutions of the random effect variance components. Green lines show
estimates of the Inv4m effect in a model that additionally included effects of Days-to-Anthesis on the focal
trait within each trial.

324

To directly measure phenotypic effects of the Inv4m locus, we created two Near Isogenic Line (NIL) 325
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populations by introgressing Inv4m alleles from two highland Inv4m donors (PT and Mi21) into B73, a 326

genetic reference maize line. We grew a total of 456 plants from the BC5S1 generations in a replicated growth 327

chamber experiment under two temperature treatments (warm: 32C/22C and cold: 22C/11C), and harvested 328

nine tissues for gene expression analysis of the global and local effects of the alternative Inv4m alleles. 329

Genotyping of NILs sampled from the growth chamber experiment was successful for 364 plants, while 92 330

were not resolved either due to failed DNA extraction or during the CAPs genotyping methods. The Low, 331

Heterozygote, and High Inv4m alleles were segregating in the PT NILs at a 42:78:45 ratio, within 332

Hardy-Weinberg equilibrium (HWE; D= -2.24, p-value=0.53). The inversion was segregating in the Mi21 333

NILs at a 59:97:43 ratio, also within HWE (D= -0.928392, p-value=0.7768964). We next checked if the High 334

Inv4m allele had an effect on time to seedling emergence using a linear mixed effect model, with Inv4m 335

genotype as the fixed effect, and experimental replicate as the random effect. We ran separate models by 336

donor and temperature, and found that in the cold chamber the average time to emergence was 337

approximately 9 days, and the High Inv4m allele had a -0.75 and -0.35 effect size on emergence time in PT 338

and Mi21 introgression lines respectively (Table S1). In the warm chamber, the average emergence time was 339

approximately 4 days, and the High Inv4m allele had no effect (Table S1). 340

Based on genotype calls from the RNA-seq reads, both populations had extensive landrace introgressions 341

flanking the Inv4m locus despite the five generations of backcrossing to B73, extending 57Mb on either side 342

in the PT-NIL population and 18Mb in the Mi21-NIL population (Fig 3A). Additionally, the PT-NIL 343

population segregates for a large paracentric introgression on chromosome 5 and a small introgression on the 344

right end of chromosome 2, and the Mi21-NIL population segregates for a large paracentric residual 345

introgression on chromosome 3 (Figure S2). Beyond these large contiguous blocks, we identified another 821 346

and 52 genes in the PT-NIL and Mi21-NIL populations, respectively, that harbored high-confidence SNPs in 347

the RNAseq data, yet were not contiguous with any of the large residual introgression regions. It is unlikely 348

that there was sufficient recombination in the BC5 populations to generate these independent blocks; rather 349

these genes likely have moved genomic coordinates in the landraces relative to B73, and actually reside inside 350

one of the large introgression regions [52,53]. However, none of these genes had genotypes that were perfectly 351

correlated with genotypes at the Inv4m locus, so we excluded them all from further analysis. 352

Only 355 of the 7,236 or 4,095 genes with PT or Mi21 alleles actually reside inside Inv4m. Of genes with 353

genotypes strongly correlated with genotypes at the Inv4m locus (ρ > 0.5), only 14% and 29% in the PT-NIL 354

and Mi21-NIL populations, respectively resided inside Inv4m. Therefore, many associations of traits with 355

genotypes at the Inv4m locus that we observe in one population may be caused by functional variants in 356

regions flaking the inversion, rather than functional variants inside the inversion itself. However, only variants 357
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actually inside the inversion (or in the breakpoint regions) are likely to be causal for the locus’s effect. On 358

the other hand, 23% of genes with landrace alleles in both populations are inside the inversion, and for those 359

that carry alleles from both donors, the two donor alleles are more similar (relative to B73) inside Inv4m than 360

outside, as expected based on the population-level variation statistics from the SeeD-maize GWAS panel. 361

The proportion of shared SNPs between PT and Mi21 alleles within Inv4m was significantly higher than in 362

the flanking introgressed regions (Fig 3B, t = -10.773, df = 357.8, p-value < 2.2e-16). The same pattern 363

occurs for gene expression variation attributed to landrace genotypes for each gene: the landrace genotype’s 364

effect on genes inside Inv4m are more correlated than landrace genotype effects in flanking regions (Fig 3C, t 365

= -2.8869, df = 27.768, p-value=0.007) across the 18 tissue:temperature combinations in our experiment. 366

Therefore, phenotype effects associated with Inv4m that replicate across the two donor populations are likely 367

caused by functional variation inside Inv4m rather than in residual landrace DNA present in each population 368

(Fig 3). We also quantified the correlation between genetic and expression divergence between Inv4m sources, 369

and found that they were positively correlated (r=0.79, p=2.2e-16, df=76, r2=0.6357). 370

Of the 432 tissue samples collected (nine tissues × two temperature treatments × two NIL populations × 371

two Inv4m arrangements × three biological replicates × two experimental replicates), we excluded 53 372

samples with fewer than 100,000 reads, leaving a total of 379 samples. We detected a total of 23,428 unique 373

genes with an average of at least 10 transcript counts per sample in at least one of the tissue:treatment 374

combinations (with an average of 17,016 genes per tissue) for a total of more than 306,000 gene expression 375

traits. We visualized the overall transcriptome variation among samples using multi-dimensional scaling 376

(Figure S3). Samples clustered predominantly by tissue, with and additional slight separation by 377

temperature treatment, but no visible separation by NIL population or genotype at the Inv4m locus. This 378

was expected because only ∼ 7% of the genomes differed among samples. Among tissues, all leaf samples 379

except the S2 leaf base formed one major cluster and the two root samples formed a second cluster, and the 380

stem and SAM and S2 leaf base tissues formed separate individual clusters. 381

To assess the effects of highland alleles at Inv4m on global gene expression and plant development and 382

physiology, we focused on genes with expression associated with Inv4m genotype that resided in “clean” 383

genomic regions, so that the local genotype of each gene could not affect the association results. Overall, we 384

identified 11,842 unique genes associated with genotype at Inv4m in the PT-NIL population and 12,482 385

genes in the Mi21-NIL population, both using a 5% local false sign rate (lfsr) threshold for significance 386

(Table 1). The number of associated genes varied by tissue and temperature treatment with a range of 387

1,932-5,753 and 1,018-6,000 genes identified per tissue in the PT-NIL and Mi21-NIL populations respectively. 388

Of these genes, 285-1646 per tissue replicated across both NIL populations, where replication required lfsr 389
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Fig 3. Barplots comparing the similarity of expression and genetic divergence between
landraces relative to B73. A) The expression effects correlation between donors for each tissue and
temperature combination and B) the average proportion of shared SNPs per gene. C) diagram of PT and
Mi21 introgressions containing Inv4m on chromosome 4.

< 5% and the effect in the same direction in both populations in each tissue:temperature where the effect 390

was significant. This reduced list of genes constitutes Inv4m-regulated candidate genes, and constituted 391

8− 41% of the differentially expressed genes in the PT-NIL population, and 11− 38% of the differentially 392

expressed genes in the Mi21-NIL population. Candidate Inv4m-regulated genes were distributed across the 393

genome, with no visible clustering by chromosome (data not shown). 394

In contrast, we detected only 38-413 genes per tissue in the PT-NIL population and 435-2398 genes per 395

tissue in the Mi21-NIL population with significant genotype-treatment interactions at a 5% lfsr threshold. 396

Of these, 4-23 genes per tissue were shared across the two populations (Table 2). 397

We extracted the Gene Ontology (GO) terms associated with Inv4m-regulated genes and tested for 398

enriched terms. For each tissue:treatment experiment, we separately tested for enrichments among the genes 399
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Table 2. Number of differentially expressed genes in each population and their overlap using a local false
sign rate threshold of 5% across tissues and temperature treatments.

Cold Warm G × E
Tissue PT Mi21 Shared PT Mi21 Shared PT Mi21 Shared

V1 Leaf tissue 2415 1534 285 2107 2330 453 105 575 6
V1 Primary root 1932 3516 495 3106 2759 649 84 1377 8
V3 leaf base 2550 3785 789 2809 3761 932 73 843 6
V3 leaf sheath 4047 5126 1646 3321 4049 1062 469 742 26
V3 Primary root 5753 3143 1206 2144 2039 413 42 455 NA
V3 S2 leaf base 3527 1018 268 NA 5665 NA NA 2573 NA
V3 S2 leaf tip 2806 3054 721 4170 3190 1249 136 1527 19
V3 Stem and SAM 3118 6000 1269 2569 2961 752 190 1509 24
V3 Leaf tip 2207 NA NA 4225 2453 997 362 NA NA
Totals 12574 12485 2649 11468 12233(20.7%) 2542 1306 5006 85

up-regulated, down-regulated, or both by Inv4m. We identified 596 enriched categories overall, with 0-152 400

categories enriched per tissue and temperature treatment at a 5% FDR. These GO terms provide candidate 401

descriptors of the global effects of Inv4m. To reduce the number of categories found across the 402

tissue:temperature treatments, we collapsed terms into clusters by semantic similarity and selected the 403

most-enriched term across all tissue:temperature treatments in each cluster. After filtering for redundancy, 404

we report twenty-two GO terms across the three main GO ontologies: two cellular component terms, two 405

molecular function terms, and eighteen biological processes terms (Table 3). 406

Table 3. Gene ontology (GO) terms remaining after final filtering. A universal enrichment analysis was
conducted on each tissue and temperature and directional (up-regulated, down-regulated, or both)
combination for Inv4m-regulated genes. Terms were then ranked by enrichment score and grouped by a
semantic similarity score of higher than 0.5. The top term in each semantic similarity group was then
selected.

ID Ontology Term minq maxRatio

GO:0051169 BP nuclear transport 1.47e-06 9.09e-02
GO:0006364 BP rRNA processing 1.04e-04 9.02e-02
GO:2000241 BP regulation of reproductive process 1.77e-03 8.80e-02
GO:0017038 BP protein import 1.29e-05 8.61e-02
GO:0006195 BP purine nucleotide catabolic process 4.14e-03 8.33e-02
GO:0048831 BP regulation of shoot system development 1.77e-03 7.87e-02
GO:0009886 BP post-embryonic animal morphogenesis 5.48e-03 7.41e-02
GO:1903047 BP mitotic cell cycle process 6.25e-03 7.41e-02
GO:0016458 BP gene silencing 6.92e-03 7.41e-02
GO:0016571 BP histone methylation 1.92e-03 6.94e-02
GO:0030258 BP lipid modification 5.44e-03 6.85e-02
GO:0072524 BP pyridine-containing compound metabolic process 1.77e-03 6.49e-02
GO:0006310 BP DNA recombination 9.73e-03 6.22e-02
GO:0009629 BP response to gravity 5.10e-03 6.09e-02
GO:0009561 BP megagametogenesis 4.85e-04 5.74e-02
GO:0019682 BP glyceraldehyde-3-phosphate metabolic process 1.60e-03 5.59e-02
GO:0048498 BP establishment of petal orientation 4.42e-04 5.56e-02
GO:0007034 BP vacuolar transport 1.13e-04 5.11e-02
GO:0019899 MF enzyme binding 7.80e-03 7.87e-02
GO:0004386 MF helicase activity 1.77e-03 6.48e-02
GO:0044451 CC nucleoplasm part 9.96e-03 7.66e-02
GO:0030684 CC preribosome 1.29e-06 5.74e-02

To identify candidate gene sets within the Inv4m, we measured the Inv4m genotype effect (i.e. cis effect) 407

on each of the annotated genes located inside the Inv4m locus, and the correlation between the expression of 408
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these Inv4m-genes and all Inv4m-regulated genes (a total of 4642 unique genes, with a range of 89-713 genes 409

per tissue; Figure4). We repeated this analysis in each of the 18 tissue:temperature treatments. For 410

cis-genotype effects to be counted, we required the effects to be significant (lfsr < 5%) and in the same 411

direction between the two donor populations. 412

Overall, of 355 annotated genes within the boundaries of Inv4m, 224 were expressed in both donors. Of 413

those, 155 were differentially expressed in the same direction in both donors in at least one treatment, and 89 414

of those were significantly correlated with at least one Inv4m-regulated genes located on other chromosomes 415

used to measure the global Inv4m effect, even after accounting for the effect of Inv4m itself (Figure 4). Of 416

these, 6 genes in particular stood out as being correlated with a large number (> 3%) of the reporter genes: 417

Zm00001d051908, Zm00001d051998, Zm00001d052075, Zm00001d052079, Zm00001d052153, 418

Zm00001d052259, and 9 were differentially expressed between Inv4m alleles in 90% or more of the 419

tissue:temperature combinations. These were: Zm00001d051872, Zm00001d051882, Zm00001d051987, 420

Zm00001d052051, Zm00001d052136, Zm00001d052210, Zm00001d052242, Zm00001d052245, 421

Zm00001d052269. Finally, three of the 89 candidate Inv4m genes were transcription factors: 422

Zm00001d051879, Zm00001d052180, Zm00001d052229. These genes are reported in Table S1, with associated 423

description, GO term(s), and previous GWAS trait associations. 424

Since the phenotypic effect of Inv4m on flowering time is so large, we tested specifically for effects of the 425

locus on the expression of genes with known roles in regulating flowering. Of the list of 48 flowering genes in 426

Dong et. al. 2012 [49], 5 were consistently regulated by Inv4m in both populations in the same direction 427

(Table S3). The 5 different flowering genes were Inv4m-regulated in the V1 and V3 primary root, S2 leaf tip, 428

and stem and SAM tissues. 429

Another a priori candidate gene for the effect of the inversion is the microRNA MIR172c, which is 430

located inside Inv4m at coordinates: 4:174154928-174155050. MIR172 has known roles in regulating 431

developmental transitions as well the development of pigmentation and macrohairs in maize [54]. The 432

expression of the pre-miRNA 172c was too low to assess differential expression in all but the leaf sheath 433

tissue, and was not associated with Inv4m genotype in that tissue. However, of 31 genes that are predicted 434

targets of miR172, 9 were consistently regulated by Inv4m in both populations in one-or-more tissues. Of 435

these, six were down-regulated by the High allele of Inv4m. These genes and their associated descriptions are 436

found in Table S3. 437

Finally, we used the RNAseq reads that did not map to the B73 genome to search for genes that may be 438

present in the High allele of Inv4m but not in the Low allele, and thus may have been missed by our analysis. 439

We assembled all un-mapped reads from samples carrying the PT or Mi21 alleles at Inv4m using Trinity, and 440
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Fig 4. Scatter plot of candidate gene scans within Inv4m . Each point represents one of the 89
expressed genes inside the Inv4m locus which were also correlated with at least one Inv4m-regulated gene.
The x-axis represents the proportion of the set of genes regulated by Inv4m in trans correlated with the
Inv4m-gene (p-value< 0.05). The y-axis is the proportion of tissues in which the Inv4m-gene is differentially
expressed (lfsr< 0.05 in both populations, and regulated in the same direction in both populations.)

searched for de-novo transcripts with evidence for expression only in the samples carrying the High allele. 441

We found 772 candidate transcripts. However, all were very lowly expressed. Only five had estimated 442

transcript counts of at least 10 summed across all PT or Mi21 samples, and none had estimated transcript 443

counts of at least 10 in two or more samples per NIL population. Therefore, we found no evidence that the 444
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High allele of Inv4m carries high-expressed genes that are not present in the Low allele. 445

Discussion 446

We combined three methodological approaches to study the function of the chromosomal inversion, Inv4m, 447

found in highland populations of domesticated maize (Zea mays ssp. mays). First, we used a large maize 448

diversity panel designed for Genome-wide association studies (GWAS) to identify agronomic traits associated 449

with Inv4m. Second, we created a two-population Nested Association Mapping (NAM) panel consisting of 450

two sets of Near Isogenic Lines (NILs) segregating for both arrangements of the ∼ 13Mb inversion and grew 451

them reciprocally in two temperature treatments to measure gene expression effects of Inv4m across nine 452

tissues from early developmental plants. In total, we inspected Inv4m effects on more than 300,000 traits and 453

employed statistical methods that leveraged the replication of the effects across conditions [46] to broadly 454

characterize the effects of this locus. Finally, we inspected cis-regulatory variation on genes within the 455

inversion to identify candidate genes responsible for the Inv4m effects. 456

0.1 Association analysis of inversion loci 457

GWASs in diversity panels and QTL mapping in biparental populations or NILs are complimentary methods 458

for locating genetic loci associated with phenotypic variation. GWASs can pinpoint the location of functional 459

variants more precisely than bi-parental mapping populations because they use diverse association panels 460

that encompass a large number of ancestral recombination events [55]. However, GWAS approaches suffer 461

from confounds due to population structure and non-equal relatedness leading to high frequencies of false 462

positives [56]. QTL mapping populations, on the other hand, are limited in resolution due to the requirement 463

for new recombination events between candidate loci. 464

Multi-parent populations like NAM [57] or MAGIC [58,59] capture advantages of both methods, 465

approaching the resolution of GWAS without the confounds of population structure. Our two NIL 466

populations shared a common parent (B73), and thus compose a two-population NAM panel. NAM-QTL 467

mapping can have high precision when the donor parents share the same alleles at a causal locus and do not 468

share alleles at other loci. In our case, the two donor parents PT and Mi21 likely share many alleles other 469

than Inv4m due to shared highland ancestry throughout the genome, so NILs from both parents will overlap 470

at other causal alleles linked to Inv4m. However, our results show that the genetic similarity between PT and 471

Mi21 is much higher inside Inv4m than in the remaining ∼50Mb of shared introgression between the two 472

populations. Therefore, while we cannot unambiguously attribute shared phenotypic effects across the two 473

December 2, 2019 21/30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/861583doi: bioRxiv preprint 

https://doi.org/10.1101/861583
http://creativecommons.org/licenses/by-nc-nd/4.0/


populations to Inv4m, the majority of effects of Inv4m that we identified are likely caused by functional 474

variation within this locus itself, rather than due to other shared alleles between the two donors. 475

Our GWAS study of diverse maize landraces confirmed earlier results [25,29] that highland alleles of 476

Inv4m are strongly associated with agronomically important phenotypes including flowering time, the 477

Anthesis-Silking interval, and several measures of yield. In each case, the allelic effect of the highland allele 478

was more beneficial when grown in highland environments than in lowland environments, consistent with this 479

single locus causing antagonistic pleiotropy [60] across elevation environments. This may explain the strong 480

evidence for selection at this locus: its divergence in allele frequencies across elevations and the evidence that 481

this locus introgressed into highland maize from the wild relative mexicana [22]. That the locus appears to 482

independently control both flowering and yield traits is consistent with the idea that Inv4m contains multiple 483

important variants that each contribute to phenotypic differences between lowland and highland 484

maize [25,29]. Because they are inherited as a single unit, inversions are thought to contribute to the 485

prevalence of local adaptation despite high gene flow [61–63] by linking these multiple variants into a single 486

supergene [64]. 487

However, while compelling, due to the strong population structure in the diversity panel used above, we 488

caution that the associations of Inv4m with the agronomic traits is still preliminary. Inv4m genotypes are 489

highly correlated to overall genetic ancestry (as measured by PC1 calculated using all other chromosomes 490

except chromosome 4) within Mexico. We corrected for ancesetry using genome-wide kinship (again 491

excluding chromosome 4), but if this correction was incomplete, it may have lead to false-positive 492

associations of phenotypic traits with Inv4m. An alternative explanation for the phenotypic associations 493

above is that each has a polygenic basis, with small-effect loci distributed throughout the genome, each of 494

which has subtle allele-frequency differences across elevations. Unfortunately, our NILs grow poorly in 495

high-elevation fields, so it has not yet been possible to test the effect of Inv4m more directly. 496

0.2 Progress towards inversion fine-mapping 497

Whether or not Inv4m directly controls flowering time and yield, neither GWAS not NAM-QTL mapping 498

themselves can provide direct insight into which functional variant(s) inside the locus are responsible for 499

these phenotypic effects. And unlike a typical GWAS peak that may cover dozens of possible variants in high 500

LD with a tested marker, there may be hundreds of thousands of variants between the two alleles of Inv4m 501

within this ∼ 13Mb region, any of which could be responsible for some of the phenotypic effect of the locus. 502

Neither GWAS nor QTL mapping itself can prioritize any of these variants, because they remain in 503

December 2, 2019 22/30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/861583doi: bioRxiv preprint 

https://doi.org/10.1101/861583
http://creativecommons.org/licenses/by-nc-nd/4.0/


near-perfect LD in either type of panel. 504

Ultimately, identifying specific functional loci within Inv4m will require experimental mutagensis or other 505

genetic perturbations within the locus. However, we aimed to begin to characterize the diversity of functional 506

variants in this locus using gene expression analysis. We used gene expression in three distinct ways to 507

dissect the functional variation captured by Inv4m: 1) by analyzing genome-wide gene expression responses 508

to Inv4m to mine for phenotypic effects across >300,000 traits; 2) by analyzing local cis-regulatory effects of 509

the locus on the 355 genes within Inv4m; and 3) by analyzing the co-expression between Inv4m genes and 510

the rest of the genome. The first analysis provided an exceptionally detailed phenotypic dissection of the 511

total effects of the Inv4m, and showed that there are likely many distinct components to the cellular and 512

physiological effects of Inv4m. The second analysis provided an estimate of the density of functional variants 513

within the Inv4m locus: we detected likely cis-regulatory variation affecting 155 genes. The third analysis 514

showed that many of these cis-regulatory variants may have functional consequences beyond the immediate 515

genes they regulate. 516

By studying gene expression effects of Inv4m in two relevant environmental contexts (hot and cool 517

temperatures) and across nine distinct tissues, we aimed to maximize our ability to discover developmental 518

and phenotypic effects of the locus. It is certainly possible that we missed important phenotypic effects of 519

Inv4m by sampling only tissues on young plants - effects on pathways specific to reproductive tissues were 520

likely missed. However, we selected the nine tissues based on the published maize gene expression atlas [31] 521

so as to capture as much variation as possible in expression profiles, given the experimental constraints on 522

how large we could let the plants grow in our growth chambers. 523

Overall, our expression results show that Inv4m affects many disparate biological processes in young 524

maize tissues. The strongest Gene Ontology enrichment signals among Inv4m-regulated genes were in terms 525

related to mRNA and protein processing around the nucleus (nuclear transport and import, and the 526

pre-ribosome). We also found evidence of effects on epigenetic regulation, cell-cycle processes, metabolism, 527

and development. None of these results provide clear explanations for the effects of Inv4m on flowering time 528

and yield. However both flowering and yield are highly complex traits that are affected by many aspects of 529

development, physiology, and stress responses, and so the mechanistic links among these traits may not be 530

obvious [57]. We looked more specifically at a priori candidate genes for flowering and yield traits both 531

inside and outside Inv4m and found possible effects on several of these genes, but no strong enrichment of 532

Inv4m effects on either class. 533

Among the genes within Inv4m, nearly 70% of those expressed high enough to measure showed evidence 534

of cis-regulatory variation among alleles. While some of these genes may share regulatory elements, its likely 535
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that the majority of these genes are affected by independent genetic variants. This suggests that the two 536

alleles of Inv4m harbor a large number of functionally relevant genetic differences. However, does Inv4m 537

harbor more functional variants than any other similarly sized introgression among maize landraces? To test 538

this, we compared the number of genes (genome-wide) correlated with Inv4m in each NIL population to the 539

number of genes that show similar expression in both NIL populations. The latter genes are those we believe 540

are truly affected by Inv4m, while the remainder are likely regulated by PT or Mi21 alleles that reside in 541

introgressed genomic outside of Inv4m in each population. In both populations, the proportion of Inv4m 542

candidates among all Inv4m-correlated genes is roughly similar to the relative sizes of Inv4m to the whole 543

chromosome 4 introgression in each population. This suggests that introgressing any region from PT or Mi21 544

into B73 will cause diverse effects on gene expression, and that Inv4m is not exceptional in the magnitude of 545

these perturbations. 546

Together, these results imply that the Inv4m locus has many effects on corn development and physiology, 547

and therefore it’s contribution to local adaptation is complex and not simply a change to major flowering or 548

yield-related genes. The incorporation of ∼ 13Mb of the genome of mexicana likely brought with it a large 549

number of functional variants that have both positive and negative effects on many molecular traits, most of 550

which are not directly visible, but may impact performance in different conditions. 551

Conclusions 552

This study represents a broad characterization of an adaptive chromosomal inversion. Our results give insight 553

into the role of this inversion in adapting to high altitude environments. GWAS results show that Inv4m is 554

associated with faster flowering and higher yield in highland common gardens. The molecular roles of genes 555

within the inversion are summarised by the phenotypic effects of Inv4m-regulated genes (Table 2) and 556

enriched GO terms (Table 3), and the candidate gene set within Inv4m (Table S2). Fine-mapping in this 557

region is required to further dissect the functional role of loci within Inv4m, but will have additional 558

challenges due to suppressed recombination between heterokaryotypes. Novel genomic technologies, such as a 559

CRISPR/CAS system [65] that can reverse the orientation of the High Inv4m allele could be used to induce 560

recombination across the newly collinear genomic region, allowing the localization of specific effects of the 561

different variants linked in this locus. 562
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24. Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J. The genomic

signature of crop-wild introgression in maize. PLoS Genetics. 2013;9(5):e1003477.

25. Navarro JAR, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, et al. A study of allelic

diversity underlying flowering-time adaptation in maize landraces. Nature genetics. 2017;49(3):476.

26. Lauter N, Gustus C, Westerbergh A, Doebley J. The inheritance and evolution of leaf pigmentation

and pubescence in teosinte. Genetics. 2004;167(4):1949–1959.

27. Hearne CBEMS Sarah; Chen. Unimputed GbS derived SNPs for maize landrace accessions represented

in the SeeD-maize GWAS panel. CIMMYT Research Data and Software Repository Network, V5.

2014;.

28. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high

capacity genotyping by sequencing analysis pipeline. PloS one. 2014;9(2):e90346.

29. Gates DJ, Runcie D, Janzen GM, Navarro AR, Willcox M, Sonder K, et al. Single-gene resolution of

locally adaptive genetic variation in Mexican maize. bioRxiv. 2019; p. 706739.

30. Runcie DE, Crawford L. Fast and flexible linear mixed models for genome-wide genetics. PLOS

Genetics. 2019;15(2):1–24. doi:10.1371/journal.pgen.1007978.

31. Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, et al. Genome-wide atlas of

transcription during maize development. The Plant Journal. 2011;66(4):553–563.

32. Townsley BT, Covington MF, Ichihashi Y, Zumstein K, Sinha NR. BrAD-seq: Breath Adapter

Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand

specific mRNA library construction. Frontiers in plant science. 2015;6.

33. Andrews S. FastQC v0.11.5. A quality control tool for high throughput sequence data. Retrieved from:

http://wwwbioinformatic sbabrahamacuk/projects/fastqc/. 2015;.

December 2, 2019 27/30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/861583doi: bioRxiv preprint 

https://doi.org/10.1101/861583
http://creativecommons.org/licenses/by-nc-nd/4.0/


34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.

Bioinformatics. 2014;30(15):2114–2120.

35. Bates D, Maechler M, Bolker B, Walker S. lme4: Linear mixed-effects models using Eigen and S4. R

package version. 2014;1(7):1–23.

36. Halekoh U, Højsgaard S, et al. A kenward-roger approximation and parametric bootstrap methods for

tests in linear mixed models–the R package pbkrtest. Journal of Statistical Software. 2014;59(9):1–30.

37. Portwood JL, Woodhouse MR, Cannon EK, Gardiner JM, Harper LC, Schaeffer ML, et al. MaizeGDB

2018: the maize multi-genome genetics and genomics database. Nucleic acids research.

2018;47(D1):D1146–D1154.

38. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements.

Nature methods. 2015;12(4):357.

39. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome

Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.

Genome research. 2010;20(9):1297–1303.

40. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for

variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics.

2011;43(5):491.
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