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Abstract 
Access to large, annotated samples represents a considerable challenge for training accurate            
deep-learning models in medical imaging. While current leading-edge transfer learning from           
pre-trained models can help with cases lacking data, it limits design choices, and generally              
results in the use of unnecessarily large models. We propose a novel, self-supervised training              
scheme for obtaining high-quality, pre-trained networks from unlabeled, cross-modal medical          
imaging data, which will allow for creating accurate and efficient models. We demonstrate             
this by accurately predicting optical coherence tomography (OCT)-based retinal thickness          
measurements from simple infrared (IR) fundus images. Subsequently, learned         
representations outperformed advanced classifiers on a separate diabetic retinopathy         
classification task in a scenario of scarce training data. Our cross-modal, three-staged scheme             
effectively replaced 26,343 diabetic retinopathy annotations with 1,009 semantic         
segmentations on OCT and reached the same classification accuracy using only 25% of             
fundus images, without any drawbacks, since OCT is not required for predictions. We expect              
this concept will also apply to other multimodal clinical data-imaging, health records, and             
genomics data, and be applicable to corresponding sample-starved learning problems. 
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Main 

Ophthalmology is a field that is pioneering artificial intelligence applications in medicine and             
has recently experienced many promising results that can significantly change the future of             
eye care. The field has benefited from recent advances in deep learning, 1,2 particularly in the               
case of deep convolutional neural networks (CNNs) when applied to large data sets, such as               
two-dimensional (2D) fundus photography, a low-key imaging technology that captures the           
back of the eye. These images can be taken using a smartphone and are available in a                 
standardized fashion, often in very large quantities. 3 Using data from diabetes screening            
programs and biobanks, cardiovascular risk factors, presence of diabetic retinopathy, and           
even gender, can be predicted with a high degree of accuracy. 4,5,6 More recently, CNNs were               
applied to three-dimensional optical coherence tomography (OCT) of the retina to segment            
tissue layers and predict retinal referral decisions.7,8 In all these approaches, large data sets              
and ever-developing leading edge models from natural image domains have been used, often             
requiring cumbersome annotations as well as substantial computational complexity.         
Regarding the widespread clinical use of deep learning, which often needs to be embedded in               
mobile and on-device applications, 9 the issue of large-scale samples with expensive           
annotations, as well as computationally expensive models, must be addressed. 
 
While machine learning concepts, such as transfer learning and domain adaptation, have            
made significant progress in terms of enabling the use of deep-learning algorithms on smaller              
data sets,10,11 features learned from natural images, such as those in ImageNet, 12 do not              
necessarily transfer meaningfully to the medical domain, where visual features, resolution,           
and output targets may differ considerably. 9 In addition, ImageNet-based model architectures           
are specifically designed for predicting 1,000 output classes, and are often heavily            
overparameterized in the context of medical imaging problems.9 Natural image features,           
combined with non-optimal model architectures, inhibit transfer learning from ImageNet for           
medical image data sets. To address these problems, we believe effective transfer learning,             
using pre-trained medical data models, is required, along with greater model flexibility.            
However, a large, annotated medical image data set, comparable to ImageNet dimensions,            
does not currently exist. 
 
The concept of self-supervised learning (SSL) may offer a solution to this problem. The              
notion of SSL is to determine useful representations from unlabeled data by solving pretext              
tasks. A pretext task is an inference problem for which labels can automatically be generated.               
Through training according to these labels, the model learns to extract relevant (visual)             
features.13 Examples of such an approach include restoring color to grayscale images,            
predicting correct rotation, or recovering the correct semantic ordering of natural images.13,14            
Recent SSL approaches using more abstract formulations by, for example, learning           
context-consistent, patch-wise image representations, indicate that it is possible to match           
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fully supervised ImageNet pre-training performance in effective transfer learning tasks using           
natural images.15 Drawing inspiration from recent work on SSL to recover partially masked             
input signals through the use of multimodal observations,16,17 we implemented large-scale           
cross-modality SSL in the medical domain, while keeping the necessary annotations effort            
low. 
 
For the successful application of SSL it is necessary that the chosen pretext task has to learn                 
embeddings which are meaningful for the respective downstream tasks. Defining an effective            
pretext task for medical imaging data is particularly challenging since relevant           
pathology-related features are often represented through subtle and small-scale phenomena.          
These render conventional SSL tasks less effective since they are tailored toward the presence              
of dominant objects in natural images. This also holds true in the field of ophthalmology,               
where subtle changes in the eye can refer to significant differences. For example, in clinical               
routine examinations, patients often undergo unnecessary treatment for neovascular         
age-related macular degeneration (nAMD), using anti-vascular endothelial growth factor         
(anti-VEGF) medication. 18 The underlying disease is actually macular telangiectasia, a rare           
retinal disease that resembles nAMD OCT in appearance, but does not respond to this              
specific treatment. 19 Other subtle and rare retinal changes include retinal angiomatous           
proliferation or polypoidal choroidal vasculopathy, 20,21 which is often mistaken for nAMD,           
thereby preventing the correct treatment. A successful SSL pretext task must ignore an             
image’s large, non-informative aspects and focus on representing disease encoding subtleties. 
 
In this paper, we propose a novel SSL pretext task for medical data in ophthalmology, by                
encoding shared information between two entirely different high-dimensional medical         
modalities, namely, OCT and infrared (IR) fundus photography. More specifically, we first            
extracted fundus retinal thickness maps from co-registered OCT (Fig. 1a) with little labeling,             
then predicted these maps from the IR fundus images directly, using a deep CNN-based              
model (DeepRT) (Fig. 1b). We showed that this SSL pretext task learned a fundus              
representation containing disease-relevant features, thereby enabling transfer learning,        
significantly improving downstream disease classification using limited samples. We         
demonstrated this novel deep-learning pipeline (Fig. 1) on a large data set, provided by the               
Munich University Eye Hospital,22 and showed that the OCT-derived retinal thickness map            
was predicted accurately directly from fundus photography. To evaluate this pretext task, we             
ensured that the DeepRT learned disease-relevant signals by numeric evaluation and tested            
our predictions against the ground truth, via a consortium of doctors, within a typical disease               
screening setting. We then employed the learned feature representations for transfer learning            
onto a public diabetic retinopathy detection data set (Fig. 1c), and showed that the              
self-supervised network outperformed both random and ImageNet initializations for diabetic          
retinopathy classification in a scarce training data scenario, while reducing model size by             
more than two orders of magnitude. 
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Figure 1: Cross-modality self-supervision workflow: absorbing physical devices and         
algorithms into a single neural network learning disease, using relevant features from            
unlabeled data. a. Deep learning powered OCT segmentation enabled ground truth retinal            
thickness maps. b. Ground truth thickness maps used for cross-modal prediction of retinal             
thickness directly from fundus images. c. Features learned in b were transferred to an              
independent, single modality downstream classification task. 

Results 
Deep learning allowed for gaining robustly segmented OCT retinal tissue. To prepare            
training data for the thickness predictor (DeepRT), we set up a U-net based23 deep-learning              
system for automatic pixel-wise tissue segmentation (Fig. 1a). The algorithm was trained and             
validated on 1,009, and tested on 277, manually annotated OCT brightness (B)-scans across             
two different devices, Spectralis 24 (device I) and Topcon 3D 25 (device II). The algorithm             
performed according to a high mean intersection over union (IoU) 26 of 0.94 on the training,               
validation, and test set alike (Fig. 2a). Examples of segmentations from devices I and II show                
how the algorithm was able to segment OCTs from different devices with high accuracy (Fig.               
2a, b). The algorithm was then applied to segment the total set of 121,985 volume scans, each                 
with a stack of 49 OCT images, from 20,995 unique patients. 
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Figure 2: Accurate device-agnostic OCT thickness segmentation. a. IOU scores on           
training, validation, and test set for device I and II. b. Randomly selected OCTs from device I                 
with high (0.98 IoU), low (0.45 IoU), and median (0.97 IoU) performance, and from device II                
with high (0.98 IoU), low (0.91 IoU), and median (0.97 IoU) performance. 
 
 
DeepRT accurately predicted high-resolution thickness maps directly from fundus         
images. Once all OCT scans had been segmented, we set up an SSL pretext task using                
DeepRT to predict thickness directly from the fundus photographs. To evaluate the DeepRT,             
we calculated the mean absolute error (MAE) and average deviance percentage on an             
independent test subset of 17,969 scans. The deviance percentage was calculated as the             
relative difference, with respect to the ground truth value, for each pixel. The MAE and               
deviance percentage were presented for all test records, test records with an observed ground              
truth thickness above 400 µm in the central subfield (CSF) region, or overall thickness map,               
and for test records, including the known presence of edema or atrophy (Fig. 3a). DeepRT’s               
predicted retinal thickness on average with a 33 µm deviation from the ground truth (Fig. 3a),                
which is on average less than 10% deviance with respect to each individual pixel. Thickness               
maps observing measurements of 400 µm or thicker in the overall or CSF region had MAEs                
of 50 ± 27 µm and 61 ± 32 µm, respectively. This corresponded to a 13% and 15% deviance.                   
In addition to pixel-wise validation, we compared the average values over the clinically             
relevant score that is common in ophthalmology, namely, the nine macular sectors, based on              
areas defined in the Early Treatment Diabetic Retinopathy Study (ETDRS) 27 (Fig. 3b).            
Finally, we captured thickness information with low percentage deviance, between 5%–10%,           
and high spatial awareness in cases of normal, as well as pathological, fundus images of               
diabetic macular edema (DME), vein occlusion and atrophy (Fig. 3c, d). 
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Figure 3: DeepRT consistently predicted retinal thickness across devices based on           
fundus images. a. Relative error and MAE plots for all, CSF thick, overall thick, edema, and                
atrophy test records. b. Spatially resolved errors across the ETDRS grid. c. Examples from              
the test set showing accurate thickness predictions in relation to OCT segmented thickness             
maps d. Examples of particular disease profiles found in real world clinical data. 
 
Clinical decision supported by predicted thickness. For additional evaluation of whether           
DeepRT learned disease-relevant representations, in addition to the standalone utility of the            
predicted thickness maps, we presented 261 randomly selected examples, actual and           
predicted, and employing various thickness profiles, to three retinal specialists (J.S., T.H.,            
and T.M.), who were tasked with classifying the presence of macular thickening (Fig. 4a).              
These specialists were randomly shown real and predicted thickness maps, individually for            
each patient, and the information that two maps belonged to the same patient was not               
disclosed. On 79% ± 6 % of the maps, the specialists all came to the same conclusion for both                  
true and predicted maps, with regard to detecting thickening, and on 69% ± 2% for               
non-thickened retinas (Fig. 4b). For examples of true and predicted thickness maps causing             
different outcomes see supplementary information. Inter-doctor alignment rate was 89% ±           
6% in the case of macular thickening; that is, on average, in 10% of cases, the predicted                 
thickness maps caused the specialists to reach different conclusions than from the OCT-based             
ground truth. Finally, we asked the specialists to evaluate 261 patient records for detectable              
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edema and atrophy using only the fundus, or the fundus and predicted thickness map              
available. The association was then modeled using a linear mixed effect model, accounting             
for each specialist as a covariate (see methods section). The ground truth diagnosis, the              
so-called gold standard , was determined using full OCT scans alongside fundus images, as             
well as patient history available at the eye clinic, and noted in electronic medical records.               
Macular thickening was defined if the central retinal thickness (CRT) in OCT was more than               
400 μm, and atrophy if the CRT was lower than 250 μm. The resulting per class receiver                 
operating characteristic (ROC) curve showed a higher area under the curve (AUC), detecting             
atrophy when the specialists had access to the predicted thickness map, which was not the               
case for detecting edema, where the AUCs were roughly the same (Fig. 4c). 

 
Figure 4: Inferring the gold standard from answers with or without access to a              
predicted thickness map, demonstrating that the proposed method increased the          
diagnostic capability of physicians. a. Example of true and predicted thickness maps given             
to specialists for determining the presence of macular thickening, edema, or atrophy. b.             
Alignment rates between true and predicted thickness maps when detecting macular           
thickening. c. ROC-curve for the mixed model, inferring the gold standard from answers,             
with or without access to a predicted thickness map. 
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Self-supervised learning improved training and test performance in the context of           
classifying diabetic retinopathy. To address our original hypothesis, i.e., that SSL may            
lower the need for annotated samples in ophthalmology, we studied the effect of transferring              
weights learned in the DeepRT encoder to classify diabetic retinopathy on fundus images in              
an independent cohort of patients. The DeepRT thickness prediction allows flexible network            
design choices and is herein constructed as a ~ 125,000 parameter model, which is extremely               
lightweight compared to the full ResNet50 of ~23 million parameters. As the heavily             
parametrized ImageNet models, optimized for the natural images domain, render transfer           
learning onto medical data sets inherently inhibitive, this flexibility is an important feature of              
the DeepRT SSL pretext task and enables optimal medical task model design. To evaluate the               
DeepRT initialization, we repeated training five times with random and DeepRT           
initializations of the small CNN architecture against a state of the art Imagenet pretrained              
Resnet50 (CNN), using a Kaggle diabetic retinopathy data set provided by EyePACS, 28 a free              
platform for retinopathy screening. We used the initial 35,124 training images and an             
independent public test data set of 10,906 images. Furthermore, to evaluate the more realistic              
and lighter sample setting, the above procedure was repeated on five data partitions, each              
excluding parts of the data, thus reducing the data set size to 25%, 10%, 5%, and 3% of the                   
original set, stratified by class. For evaluation, we used weighted accuracy as a primary              
metric. Furthermore, weighted binary precision and recall, cohens quadratic kappa as well as             
cross entropy was observed (see supplementary information). Following extensive hyper          
parameter comparison, we found that the DeepRT-initialized model outperformed other          
initializations, particularly on the smaller partitions, against both the random lightweight and            
the ResNet50 ImageNet initialized models (Fig. 5a). Additionally, given its ideal lightweight            
architecture, the DeepRT initialization only needed 8,781 labeled examples (25%) to reach            
the same weighted accuracy, compared to when the equivalent model was randomly            
initialized, effectively replacing 26,343 annotated color fundus photographs. Across all          
partitions, the DeepRT initialization required substantially fewer annotated examples than the           
standard random initialization (Fig. 5b). 

 
Figure 5: Self-supervised learning reduced annotated sample need four-fold. 
a. Average weighted accuracy and error bars displaying inter-model standard deviation           
across five models, trained on each partition, displayed on x axis in logarithmic scale, for               
random, ImageNet, and DeepRT initialization. b. Required number of annotated examples for            
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achieved weighted accuracies of a random classifier as read from panel a, and             
corresponding number of samples needed for the DeepRT initialization to achieve the same             
result. 
 

Discussion 
We showed how the presence of multimodal information, namely OCT and fundus IR             
images, can be exploited to reduce labeling efforts greatly, in a bid to achieve high accuracy                
on the downstream task of diabetic retinopathy classification. In our cross-modal approach,            
we used the fact that different medical signals can be learned from different modalities with               
varying difficulty. In the case of OCT, retinal thickness was directly extractable by training              
an efficient, leading-edge, U-net-based architecture to segment the retinal layer. The 1,009            
annotations necessary for model training were generated in less than one week of annotation              
effort for a single clinician, after which the model reached a high mIoU of 0.94, allowing for                 
the complete automated set-up of the efficient DeepRT SSL pretext task. 
 
Since the SSL’s effectiveness depends on DeepRT’s capability to learn disease-relevant           
features, multiple evaluations of the predicted thickness maps were made. While small            
numerical differences (Fig. 3a) serve as a good indication of successful learning, they do not               
directly indicate to what degree DeepRT predictions can substitute for OCT-calculated           
thickness maps, arguably the most important goal, or test whether DeepRT has learned the              
variations in the fundus that encode the pathology-relevant thickness information from the            
OCT. To do this, we proceeded to evaluate our predictions in a typical screening setting to                
determine whether trained clinicians observed the same pathologies in predicted and ground            
truth thickness maps (Fig. 4). Our specialists achieved a high (79% ± 6 %) alignment rate               
between predictions and ground truth maps when detecting macular thickening, particularly           
considering the inter-doctor variance of 89% ± 6 %. Together with numerical evaluation (Fig.             
3), the DeepRT proved its ability to capture disease-relevant features in most cases (Fig. 4b).               
Furthermore, when analyzing the standalone utility of our thickness maps, providing our            
panelists with the fundus only or fundus and predicted thickness map, we observed a              
considerable improvement in detecting atrophy in the retina (Fig. 4c). Depending on the             
cause, atrophy of the fundus is often non-trivial to observe. This is particularly true in               
generally reduced nerve fiber layer atrophy, as observed in neural degeneration or glaucoma.             
DeepRT thickness maps can help identify patients with these diseases since they can             
represent both pathologically thick and thin examples from fundus images. Surprisingly,           
specialists were able to detect edema, or lack thereof, from fundus photographs only; adding              
a thickness map did not make a difference in this regard. Thickness maps would be less                
important in long-standing edema, which create characteristic changes in the retina and            
therefore could be visible in the fundus. However, subtle edemas are difficult to identify in               
fundus imaging only. Our results indicates that a large part of retinal thickness information is               
encoded in both modalities (OCT and IR fundus) (Fig. 4c) 
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In the final stage of this work (Fig. 1c), we showed that learning this shared, cross-modal                
information in a self-supervised manner is an effective approach for initializing a diabetic             
retinopathy classification model using color fundus images. Remarkably, our self-supervised          
network steadily outperformed random and ImageNet initializations by a significant margin,           
despite the fact that the model was derived from training on small-field-of-view infrared             
images (Fig. 5a). With only 25% of the training data, the DeepRT-initialized algorithm nearly              
recovered the full weighted accuracy reached, compared to training conducted on the            
complete data set, reducing labeling efforts by a factor of four. Specifically, we showed that               
the proposed three-stage process can replace 26,343 expert diabetic retinopathy annotations           
(Fig. 5b) over an equivalent, randomly initialized model, with 1,009 relatively simplistic            
semantic OCT annotations, which medical staff trained at a lower level can achieve             
accurately. In addition, the process also reached an even higher classification accuracy than             
leading-edge transfer learning from ImageNet, while allowing a 200-fold decrease in model            
size, which is critical for the mobile and on-device applications that are often necessary for               
deploying deep-learning models in real scenarios. These results are supported by work in the              
research community, which indicates that, in medical imaging, features of interest are often             
subtle, represented within small areas, and therefore difficult to discover. Furthermore, model            
architectures suitable for medical imaging problems appeared to be considerably different           
from those used on ImageNet, making general features and models learned from natural             
images less useful for increasing medical data efficiency.9 
 
Our model training strategy includes two other benefits over most multimodal approaches,29,30            
which are typically structured around absorbing multiple modalities in a single model, in             
order to improve classification accuracy. First, although our training strategy relied heavily            
on multimodal data sources, it used only OCT information for pre-training purposes. The             
final model operated completely independently of OCT data at inference time; that is, we did               
not require an OCT measurement as input for the final diabetic retinopathy prediction model,              
which operates on a single color fundus image. This presents the benefit that our training               
strategy does not present additional complexities for clinical application (e.g., data fusion,            
missing data, and increased runtime), which are associated with multimodal modeling           
approaches. Second, we were able to learn from disjointed data sources, in the sense that we                
were able to effectively use patient OCT information to improve color fundus models on a               
completely different data set, with no patient overlap. We expect that this indirect use of               
multimodal patient information in the form of self-supervision will be particularly useful for             
deep learning in the medical domain, where multiple measurement modalities, coupled with            
disjointed patient groups, render simultaneous inclusion in shared models impossible and, as            
a result, exclude important studies and data sets. 
 
Study limitations and future outlook 
Cross-modal, self-supervised pre-training incorporates medical knowledge and intuition in         
the form of the regression of retinal thickness, which is known to reflect a large portion of the                  
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relevant pathology for diabetic retinopathy. While incorporating this medical prior is one of             
the method’s core strengths, it also limits the methods general transferability to similar             
medical challenges with limited existing knowledge since the procedure requires extensive           
collaboration between medical staff and software engineers to conceptualize, implement, and           
evaluate a suitable pretext task. Furthermore, we only evaluated a single pretext task in this               
work. Cross-modal self-supervision between the fundus and OCT modality offers several           
possible extensions. For example, to additionally predict other OCT quantifiable clinical           
features such as epiretinal membrane detachments, directly from fundus photographs, could           
improve the effectiveness of capturing disease-relevant features. Further, new methods such           
as Cycle-Consistent Adversarial Networks, 31 have shown great success in image-to-image           
translation and could be applied to OCT and fundus pairs, potentially enabling even more              
effective self-supervised learning. Finally, recent progress on guided model architecture          
design has enabled more efficient models to be trained on natural images.32 These models              
were not evaluated in this work nor in previous studies on transfer learning onto medical               
images.9 Guided model design could offer additional efficiency gains from both Imagenet and             
medical SSL pre-training, enabling smaller and more accurate models on medical data. 

Online methods 
In the next section, we explain the primary method-related information for this project. First, 
a brief explanation of the OCT and fundus image modality in ophthalmic practice is 
presented. Then, we explain the data sets, followed by the implemented algorithms. 
 
OCT and fundus images 
Optical coherence tomography is a three-dimensional (3D) volumetric imaging technique that           
measures the reflection of infrared light in human tissue at a spatial resolution of less than 5                 
µm. 33 A typical OCT examination yields an infrared image of the patient's fundus and an               
accompanying co-registered stack of OCT images, providing a 3D view of the patient’s             
retinal morphology. This tomographic information is used to compute retinal thickness maps,            
which provide retinal experts and ophthalmologists with important information about          
pathologies and abnormalities in the eyes of their patients. Variations in this imaging             
modality are key to distinguishing and classifying various forms of macular diseases.34–37 Due             
to the high-resolution tomographic view provided by OCT, the fundus and OCT pair are              
routinely obtained at specialized eye clinics today; therefore, this information exists in large             
volumes. 
 
Tissue segmentation data set 
The tissue segmentation data set comprised 1,286 OCT B-scans; 1,066 of the scans were              
obtained from the LMU eye clinic’s standard Spectralis OCT device, where each scan was              
selected from a different patient and annotated by a team of four doctors using an open source                 
software called LabelMe (v3.16.1). 38 Additionally, 110 publicly available OCT images were           
obtained from the Duke Enterprise Data Unified Content Explorer, 39 and from Golabbakhsh             
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et al. (2013), 40 respectively, all with provided annotations. The Duke repository OCTs were             
also obtained using standard Spectralis OCT, while for Golabbakhsh et al the Topcon 3D              
OCT-1000 device was used. The images were randomly split into 744 training, 265             
validation, and 277 test images, with no patient overlap. 
 
Thickness prediction data set 
The LMU eye clinic data set consisted of fundus and OCT pairs of 121,985 eyes, from                
20,995 unique patients, generated from patient visits between 2012–09–24 and 2018–12–04.           
After filtering out faulty and too-low-quality records (see supplementary data), the data set             
consisted of 96,824 OCT volumes from 19,812 unique patients. These were segmented,            
superimposed, and linearly interpolated for thickness map calculation (see supplementary          
data). The DeepRT was then trained and evaluated using the 96,824 filtered fundus and              
thickness map pairs. 
 
Screening evaluation data set 
The screening evaluation data set comprised OCT scans of 261 different patients, which were              
randomly selected according to the following criteria: only one eye from each patient could              
be included. Additionally, OCT scans of all diagnoses were included. Half of all scans              
showed no pathological changes, whereas the other half showed pathologies. Scans with            
thickening were overrepresented since this feature is more common. The data set was then              
analyzed by one clinician (K.U.K.) for correct alignment, and the correct category was             
decided on (normal, thickened, or atrophic). 
 
Kaggle diabetic retinopathy data set  
The public diabetic retinopathy data set used for transfer learning (Fig. 1c) was taken from a                
previous Kaggle competition. 28 The data set consisted of 35,126 color fundus images for             
training, and 10,906 images from the public test set for evaluation. The images were              
classified into five different stages of diabetic retinopathy: 0: none; 1: mild; 2: moderate; 3:               
severe; 4: proliferative diabetic retinopathy.41 
 
Tissue segmentation algorithm 
Where tissue segmentation was concerned, a U-net architecture neural network was used, as             
in Ronneberger et al. (2015), 23 with batch normalization and rectified linear unit activations             
after each convolutional layer, and added drop-out after each max pooling layer. As thickness              
information is easily extractable from the OCT modality, standard training configurations and            
preprocessing were used (see supplementary technical notes). 
 
DeepRT algorithm 
The DeepRT network was modeled as a deep pixel-wise regression network. It consisted of              
an encoder and a decoder (Fig. 1b), the former a lightweight ~ 125,000 parameter model               
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consisting of six units, each with two residual blocks containing skip connections, created             
with transfer learning for medical image tasks in mind. The decoder was a regular decoder,               
similar to a structure using coupled de-convolutional processes and sets of convolutional            
operations to process and increase data to input size (see supplementary technical notes). 
 
Linear mixed effect model 
The responses from specialists detecting edema, atrophy, and/or normal patient records (Fig.            
4c) were modeled using a linear mixed effect model. This is a logistic regression model in                
which the specialist is modeled as a covariate. Thus, each answer and specialist were              
considered covariates, and the outcome was gold standard values. This was subsequently            
modeled for all records where the gold standard was determined as edema, atrophy, or              
normal, as well as for fundus and fundus with predicted thickness map, individually. 
 
Kaggle diabetic retinopathy detection (DRD) transfer learning 
When transferring the DeepRT weights, and benchmarking against random and ImageNet           
initializations, DeepRT and randomly initialized models were lightweight (~125,000         
parameter) compared to ImageNet ResNet50 (~23 million parameter) models. During          
training, images were preprocessed using Gaussian blurring (sigma parameter 10), circle           
cropping, channel wise mean subtraction, and intensity standard deviance scaling, calculated           
from the training data. Images were augmented by random flipping and rotation,            
hyperparameter optimization of learning rates, learning rate decay schedules, and individual           
momentum for each configuration. Training was stopped manually inspecting loss          
convergence. 
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