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Abstract 25 

The broad-scale environment plays a substantial role in shaping modern marine ecosystems, 26 

but the degree to which palaeocommunities were influenced by their environment is unclear.  27 

To investigate how broad-scale environment influenced the community ecology of early 28 

animal ecosystems we employed spatial point process analyses to examine the community 29 

structure of seven bedding-plane assemblages of late Ediacaran age (558–550 Ma), drawn from 30 

a range of environmental settings and global localities. The studied palaeocommunities exhibit 31 

marked differences in the response of their component taxa to sub-metre-scale habitat 32 

heterogeneities on the seafloor. Shallow-marine palaeocommunities were heavily influenced 33 

by local habitat heterogeneities, in contrast to their deep-water counterparts.  Lower species 34 

richness in deep-water Ediacaran assemblages compared to shallow-water counterparts across 35 

the studied time-interval could have been driven by this environmental patchiness, because 36 

habitat heterogeneities correspond to higher diversity in modern marine environments.  The 37 

presence of grazers and detritivores within shallow-water communities may have promoted 38 

local patchiness, potentially initiating a chain of increasing heterogeneity of benthic 39 

communities from shallow to deep-marine depositional environments.  Our results provide 40 

quantitative support for the “Savannah” hypothesis for early animal diversification – whereby 41 

Ediacaran diversification was driven by patchiness in the local benthic environment.  42 

 43 

Keywords 44 

Ediacaran, palaeoecology, spatial analysis, early animal diversification.  45 

Author Contributions 46 

E. Mitchell conceived this paper and wrote the first draft. N. Bobkov, A. Kolesnikov, N. 47 

Sozonov and D. Grazhdankin collected the data for DS surface.  N. Bobkov and N. Sozonov 48 

performed the analyses on DS surface. N. Bykova, S. Xiao, and D. Grazhdankin collected the 49 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 2, 2019. ; https://doi.org/10.1101/861906doi: bioRxiv preprint 

https://doi.org/10.1101/861906


 

3 

data for WS, KH1 and KH2 surfaces and E. Mitchell performed the analyses. A. Dhungana 50 

and A. Liu collected the data for FUN4 and FUN5 surfaces and A. Dhungana performed the 51 

analyses. T. Mustill and D. Grazhdankin collected the data for KS and T. Mustill and E. 52 

Mitchell performed the analyses. I. Hogarth developed the software for preliminary KS surface 53 

analyses.  E. Mitchell, N. Bobkov, N. Bykova, A. Dhungana, A. Kolesnikov, A. Liu, S. Xiao 54 

and D. Grazhdankin discussed the results and prepared the manuscript. 55 

 56 

Background 57 

The Ediacaran–Cambrian transition (~580–520 million years ago) is one of the most 58 

remarkable intervals in the history of life on Earth, witnessing the rise of large, complex 59 

animals in the global oceans (1,2). The diversification of early animals coincides with dramatic 60 

perturbations in the global abiotic environment, including changes to carbon cycling and a 61 

progressive but dynamic oxygenation of the oceans (3,4).  The extent to which animals 62 

themselves drove these global changes is a matter of considerable debate (5–7) with several 63 

competing hypotheses suggested to explain their observed diversification. These include global 64 

abiotic changes that occured over kilometre scales (8,9) and biotic factors acting over local 65 

scales (metre to kilometre), and include organism interactions such as burrowing and/or 66 

predation (10,11).  Feedbacks between biotic and abiotic factors have also been proposed as 67 

drivers of early animal diversification, whereby Ediacaran organisms directly or indirectly 68 

created patchy food resources, stimulating the evolution of mobile bilaterians (12,13).  Due to 69 

the small (within community) spatial scales over which key evolutionary mechanisms often act 70 

(14), investigation of the community ecology of Ediacaran assemblages over broad (kilometre) 71 

spatial scales offers an opportunity to link the interactions of individual organisms to macro-72 

evolutionary and macro-ecological trends.  In this study, we investigate the relationship 73 

between late Ediacaran early animal diversification and the broad-scale environment. 74 
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 75 

Ediacaran macrofossils occur globally across a wide-range of palaeo-environments (1). 76 

Previous studies have separated late Ediacaran palaeocommunities into three taxonomically 77 

distinct assemblages – the Avalon, White Sea and Nama – which occupy partially overlapping 78 

temporal intervals and different water-depths with no significant litho-taphonomic or 79 

biogeographic influence (15–17).  This study focusses on palaeocommunities within the 80 

Avalon and White Sea fossil assemblages that are considered to reflect original in situ 81 

communities (18,19), permitting the use of statistical analyses of the distribution of fossil 82 

specimens on bedding planes (spatial point process analyses, SPPA) to reconstruct the 83 

interaction of organisms with each other and their local environment (20–25).  The Avalon 84 

assemblage is primarily represented by sites in Newfoundland, Canada and Charnwood Forest 85 

UK (26,27), and typically documents mid-shelf/deep-water settings (from depths below the 86 

edge of the continental shelf – the slope break) of 575–566 Ma (28,29).  Such sites exhibit 87 

relatively limited ecological and morphological diversity (30,31), and palaeocommunities 88 

consisting almost exclusively of sessile taxa (32) that show only weak trends with community 89 

composition along regional palaeoenvironment gradients (20).  Previous spatial analyses of 90 

Avalonian communities have found limited evidence for environmental interactions within 91 

these communities (21–23), in contrast to the strong imprint exerted by resource-limitation on 92 

modern deep-sea ecosystems (33,34).   93 

Palaeocommunities from the White Sea assemblage are most famously represented by sites in 94 

South Australia, and the East European Platform of Russia, dating to ~558–555 Ma  (35–37).  95 

These assemblages typically document shallow-water, diverse communities including taxa 96 

interpreted as bilaterians (38), herbivores (39), detritivores (40) and motile organisms (41).  97 

Within the White Sea assemblages, community composition is strongly correlated with 98 
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sedimentary environment and the presence of textured organic surfaces at bed-scale level 99 

(42,43). 100 

 101 

Metrics of taxonomic and ecological diversity are much higher in White Sea assemblages than 102 

in Avalonian ones, with changes in taxonomic and morphological diversity calculated to be of 103 

similar magnitude to those between the Ediacaran and Cambrian (30,31).  These Ediacaran 104 

assemblages have high beta-diversity compared to modern benthic systems (44), but the 105 

driving processes underlying this high diversity are not understood.  The regional 106 

palaeoenvironment (kilometre scale) (15,17) has a significant influence on (non-algal 107 

dominated) Ediacaran fossil assemblage composition, but metreits influence on local (metre to 108 

sub-metre scale) community ecology has not yet been investigated. In modern benthic 109 

communities, small spatial scale (< 50 cm) substrate heterogeneities (e.g. substrate variations 110 

in nutrients, oxygen patchiness, or biotic and abiotic gradients within microbial mats) exert a 111 

significant influence on community ecology (33,34,45).  For Ediacaran palaeocommunities, it 112 

is not possible from spatial analyses alone to determine the underlying causes of habitat 113 

heterogeneities, nor the extent to which they relate to food resources, such as those resulting 114 

from the decay of Ediacaran organisms (12,46).  However, it is possible to compare how the 115 

relative influence of such heterogeneities changes with broad-scale environmental setting: 116 

previous analyses have identified assemblage-level trends between community compositions 117 

and bathymetric depth (15–17). In this study, we compare the drivers of community ecology 118 

between shallow and deep-water Ediacaran palaeocommunities (above or below the slope 119 

break) over a ~7-million-year period using spatial analyses of seven palaeocommunities.   120 

 121 

Spatial analyses 122 
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Determining the nature of interactions between fossilised organisms and their environment can 123 

be undertaken if entire palaeocommunities are preserved in-situ, such that the position of the 124 

fossils on bedding planes can be interpreted to reflect aspects of the organism’s life-history 125 

(47).  For sessile organisms, such as in the Avalon communities, community-scale spatial 126 

distributions are dependent upon the interplay of a limited number of factors: physical 127 

environment (which manifests as habitat associations of a taxon or taxon-pairs (48)); organism 128 

dispersal/reproduction (49); competition for resources (50); facilitation between taxa (where 129 

one taxon increases the survival another taxa) (51); and differential mortality (52).  For fossil 130 

assemblages containing mobile taxa (e.g. the White Sea assemblages), behavioural ecology 131 

also influences spatial distributions, so interpretations of their spatial distributions are 132 

qualitative rather than quantitative. 133 

 134 

Studies of modern ecosystems have demonstrated that habitat associations resulting from 135 

interactions between organisms and their local environment can be either positive, leading to 136 

aggregations of individuals (such as around a preferential substrate for establishment), or 137 

negative segregation away from such patches (21).  SPPA are a suite of analyses compare the 138 

relative density of points (in this case fossil specimens) to different models corresponding to 139 

different ecological processes, in order to infer the most likely underlying process responsible 140 

for producing the observed spatial distribution.  For sessile organisms, habitat associations 141 

identified by SPPA are best-modelled by a heterogeneous Poisson model (HP), or when 142 

combined with dispersal limitations, an Inhomogeneous Thomas Cluster model (ITC) (53,54).  143 

Where the local environment is resource-limited to the extent that it significantly reduces 144 

organism densities, this is indicated by spatial segregation between specimens within a 145 

community (55). When sessile populations are not significantly affected by their local 146 

environment, their spatial distributions are completely spatially random (CSR), indicating no 147 
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significant influence by any biological or ecological processes at the spatial scale investigated, 148 

or alternatively reflect dispersal/reproductive processes (48,54,56–58).  CSR is modelled by 149 

homogeneous Poisson processes (47), whereas dispersal patterns are best modelled by best-fit 150 

Thomas Cluster (TC) or Double Thomas Cluster (DTC) models (54).  Facilitation (where one 151 

taxa increases the survival of another) is best-modelled by linked-cluster models (51,59) and 152 

density-dependent processes detected using random-labeling analyses (52,60).   153 

 154 

Geological setting 155 

We assessed the community palaeoecology of seven fossil-bearing assemblages across five 156 

different global Ediacaran locations, spanning the full range of known habitats inhabited by 157 

members of the Ediacaran macrobiota during the late Ediacaran interval, and incorporated data 158 

from previous studies (21,23) on Avalonian palaeocommunities for comparison.  These 159 

localities document a range of diverse local depositional environments, but in order to focus 160 

on the broadest macro-ecological and macro-evolutionary patterns we have coarsely grouped 161 

them within either shallow or deep-water settings.  162 

 163 

Shallow marine settings 164 

Five of the studied palaeocommunities are found in facies that reflect shallow marine depositional 165 

environments. Palaeocommunity WS is an Aspidella–bearing surface on the underside of a wave-166 

rippled sandstone within a thick package of mudstones and sandstones deposited in a prograding, 167 

storm-influenced depositional system (61,62).  It was collected from the Lyamtsa Formation of the 168 

Valdai Group, along the Onega Coast of the White Sea, Russian Federation, and remained in the field 169 

where it was destroyed by landslides. Aspidella specimens were collected and are stored uncatalogued 170 

at the Trofimuk Institute for Petroleum Geology and Geophysics in Novosibirsk.   The Lyamtsa 171 

Formation is older than a date of 558 ± 1 Ma (U/Pb zircon dating of volcanic tuffs near the base of the 172 
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overlying Verkhovka Formation) (16).  Surface (KS) is on the lower surface of a finely laminated 173 

sandstone, interpreted as a flood deposit within a prograding prodelta depositional system (63). This 174 

surface, within the lower member of the Erga Formation (Winter Coast of the White Sea) (16,35),  175 

contains the fossil Kimberella, and is younger than 552.85 ± 0.77 Ma (64) (date recalculated from 176 

Martin et al. (65)).  The KS surface remained in the field and has been subsequently destroyed by land 177 

slides and weathering.  Two Funisia-bearing surfaces from the base of thin-bedded wave-rippled 178 

quartz sandstones representing deposition in prodelta marine settings between fair-weather and storm 179 

wave base originate from the Ediacara Member of South Australia  (42,66–68).   These surfaces reside 180 

in the collections of the South Australia Museum, with surface FUN4 collected from Ediacara 181 

Conservation Park (SAM P55236) and surface FUN5 collected from the Mount Scott Range (SAM 182 

P41506). Since FUN4 and FUN5 originate from different localities (> 50 km apart), is it assumed 183 

likely that they represent discrete bedding plane/palaeocommunities.  The South Australian Ediacaran 184 

successions have not been radiometrically dated, but the Ediacara Member is widely assumed to be of 185 

a similar age to the White Sea fossil-bearing sections (1,2). 186 

 187 

Surface DS is a Dickinsonia-bearing surface from the Konovalovka Member of the Cherny 188 

Kamen Formation, cropping out along the Sylvitsa River, Central Urals, Russia (63,69).  It 189 

lies within an interval of finely alternating wave-rippled sandstones, siltstones and mudstones 190 

that are sandwiched between two thick intervals of biolaminated sandstone characterised by 191 

microbial shrinkage cracks and salt crystal pseudomorphs (70). The overall succession is 192 

considered transitional from marginal marine to non-marine, with the fossil-bearing interval 193 

interpreted as having been deposited in a lagoon within a tidal flat depositional system (70).  194 

A U/Pb zircon date of 557 ± 13 Ma from volcanic tuffs near the base of the Cherny Kamen 195 

Formation (63) suggests that this unit may have been deposited broadly coevally with those 196 

on the White Sea coast.  Specimens from this surface reside in Novosibirsk State University, 197 
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Russian Federation (specimen numbers: 2057-001 to 2057-003) and will be placed at the Ural 198 

Geological Museum (Yekaterinburg).    199 

 200 

All five of these surfaces therefore represent siliciclastic depositional environments from 201 

above the slope break, and so fall broadly into the grouping of “shallow marine”.  They 202 

contain examples of taxa interpreted as animals (e.g. Dickinsonia, Kimberella) as well as 203 

non-metazoans (Orbisiana) and their age and facies place them within the White Sea 204 

assemblage (15,17).  205 

 206 

Deep-water marine setting 207 

Two bedding surfaces dominated by Aspidella specimens (KH1 and KH2) were collected 208 

from a package of finely alternating limestone and shale interbeds within the Khatyspyt 209 

Formation, Olenek River, Siberia.  Sedimentological observations (e.g., turbiditic nature of 210 

the limestones; evidence of strong unidirectional flows; intraclasts originating from outside of 211 

the Khatyspyt depositional basin) suggest the Khatyspyt Formation was deposited within a 212 

starved intracratonic rift basin developed in a marine ramp setting within a relatively deep-213 

water setting beyond the shelf slope break (71–74).  A positive δ13Ccarb excursion in the 214 

Khatyspyt Formation has been correlated with an excursion of similar magnitude in the <550 215 

Ma Gaojiashan Member of the Dengying Formation (74).  Strontium isotope ratios (87Sr/86Sr) 216 

in the Khatyspyt Formation are consistently ca. 0.7080 (74,75), a value approaching some of 217 

the ratios seen in the Gaojiashan Member (76), so this correlation seems plausible. Surface 218 

KH2 remains in the field and surface KH1 was destroyed while excavated KH.  Specimens 219 

from KH1 surface reside in Trofimuk Institute for Petroleum Geology and Geophysics, 220 

collection number 913 (specimen numbers: 0607/2009-3, 0607/2009-6, 0607/2009-7, 221 

0607/2009-17, 0607/2009-18).    222 
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 223 

 224 

 225 

Fig. 1. Assemblages of Ediacaran fossils from study localities. A) A fragment of the 226 

Kimberella surface (KS), indicating key taxa, lower Erga Formation, Winter Coast of the White 227 

Sea. B) Specimens of Dickinsonia from the Dickinsonia surface (DS), Konovalovka Member, 228 

Cherny Kamen Formation, Sylvitsa River, Central Urals. C) The Aspidella surface (KH1), 229 
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Khatyspyt Formation, Olenek Uplift, Northern Siberia. Metre rule for scale. D) Funisia from 230 

FUN4 surface (SAM P55236), Ediacara Member, Rawnsley Quartzite, South Ediacara, Flinders 231 

Range, South Australia. E) A representative fragment of the WS surface, upper Lyamtsa 232 

Formation, White Sea Region. This particular fragment was not included in the analysis.  These 233 

data were compared with 7 palaeocommunities that have been subjected to SPPA in previous 234 

studies (21,23), where details of data collection and locality information are described. 235 

  236 

Data Collection  237 

Spatial data were collected from the surfaces using different methods depending on the 238 

physical properties of the bedding plane.  The WS, KH1, KH2 surfaces were mapped in the 239 

field (WS in 2017, KH1 in 2006 and 2009, and KH2 in 2018) onto millimetre graph paper.  240 

First, the co-ordinates of the edge of the rock surface were recorded, then the co-ordinates, 241 

orientation and dimensions of each of the specimen were measured and plotted onto the paper.  242 

For DS, a bedding surface of 9 m2 was excavated over the course of two years (2017–2018). 243 

The surface was photo-mapped, with photographs taken under an artificial light source at night. 244 

The intersection between maximum length (L) and maximum width (W) of each specimen was 245 

taken to be the absolute position of the organism, with measurements obtained from digital 246 

photographs using Adobe Photoshop CC software and Apple Script Editor.   247 

 248 

Surface 
Environmental 

setting 

Species 

richness 
Dominant Taxa 

Specimen 

numbers 

Area mapped 

(m2) 

WS Shallow 1 Aspidella 40 0.54 

KH1 Deep 2 Aspidella 204 2.38 

KH2 Deep 2 Aspidella 81 1.52 

DS Shallow 1 Dickinsonia 62 9.00 

KS Shallow 13 Kimberella, Orbisiana 107 2.74 

FUN4 Shallow 2 Funisia 290 0.69 

FUN5 Shallow 1 Funisia 482 0.78 

 249 
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Table 1. Summary data of the surfaces mapped. The environmental setting, species richness, 250 

specimen numbers within the mapped area, and the total mapped area are provided.  251 

 252 

The KS surface was excavated in July 2004, and is a laterally discontinuous transect consisting 253 

of four slabs of variable size, ranging from 0.6 × 0.4 m to 1.6 × 1.0 m.  The relative positions 254 

of the slabs within the transect were mapped in situ on an excavated terrace.  A separate block 255 

originating from the same horizon was found in float close to the transect.  Following 256 

reassembly, the taxonomic identity, positions, orientations and shapes of the fossils were 257 

mapped at millimetre scale. For the FUN4 and FUN5 surfaces, photogrammetric maps of the 258 

bedding surfaces were made, with lens edge effects corrected using RawTherapee (v. 2.4.1).  259 

For all mapped palaeocommunities, fossil identification, position, and dimensions (disc width, 260 

disc length, stem length, stem width, frond length, and frond width) were digitized in Inkscape 261 

0.92.3 on a 2D projection of the dataset, resulting in a 2D vector map for each 262 

palaeocommunity. Only taxa that had sufficient abundance (> 5 specimens) for spatial analyses 263 

were formally identified, and these were grouped within one of six taxonomic groups: 264 

Aspidella, Dickinsonia, Funisia, Kimberella, Orbisiana, and the trace fossil Kimberichnus. A 265 

group consisting of all the sessile taxa on the KS surface was also assessed, because abundance 266 

was not sufficient to include all taxa individually.  Analyses were not conducted for individual 267 

low abundance taxa whose specimen numbers fell below the threshold for which results would 268 

be statistically meaningful.   269 

 270 

 271 
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 272 

Fig 2. Spatial maps of the seven studied palaeocommunities. Scale bar is 10 cm.  Different 273 

colours indicate different taxa as follows: Red, Aspidella; Orange, Dickinsonia; Yellow circles, 274 

Funisia; Light green scratch marks, Kimberichnus; Light green crosses, Kimberella; Blue 275 

crosses, Charniodiscus; Green triangles, Parvancorina;  Dark blue patches, Orbisiana; Black 276 

stipples, horizontal traces; White globular strings, Palaeopasichnus; Purple diamonds, Andiva; 277 

Purple squares, Yorgia. Size of the circles corresponds to specimen length or diameter (as 278 

appropriate).  On the DS surface, dark orange circles are the large size-class of Dickinsonia, 279 

and the light orange represents the small size-class.  280 

 281 

 282 

 283 
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Methods 284 

Bias analyses 285 

For each surface, we first tested for erosional biases and tectonic deformation, since both have 286 

the potential to distort spatial analyses (18,73).  If these factors were found to have significantly 287 

affected specimen density distributions, the erosion and/or deformation were taken into account 288 

when performing later analyses (cf. (23)), with heavily eroded sections of the bedding planes 289 

excluded from analyses. The influence of tectonic deformation was only observed on the DS 290 

surface, so retrodeformation techniques (18,25) were not applied to the spatial maps of WS, 291 

KH1, KH2, KS, FUN4 and FUN5 surfaces.  Where possible (WS, KH1 and KH2 surfaces), the 292 

area near the outcrops was investigated, and no independent evidence for tectonic deformation 293 

was found.  The holdfast discs on surfaces KS, FUN4 and FUN5 did not show any evidence 294 

tectonic deformation. The DS surface showed signs of deformation in the form of consistent 295 

variation in specimen length to width ratios along a presumed axis of deformation. The 296 

fitModel function from the mosaic package in R (73) was used to find the best-fit values 297 

for the direction and strength of deformation using the assumption that Dickinsonia had a 298 

consistent length to width ratio during the ontogeny (43,77,78) though note (79)), and the 299 

spatial map was retrodeformed cf. (18,23,25). 300 

 301 

Spatial Analyses 302 

Initial data exploration, inhomogeneous Poisson modelling, and segregation tests were  303 

performed in R (75) using the package spatstat (80,81).  Programita was used to obtain 304 

distance measurements and to perform aggregation model fitting (described in detail in 305 

references (48,52,80,82–86).   306 

 307 
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Univariate and bivariate pair correlation functions (PCFs) were calculated from assemblage 308 

population densities using a grid of 1 cm × 1 cm cells on all surfaces except DS, where a 10 309 

cm  ×  10 cm cell size was used to correspond to the larger overall mapped area.  To minimise 310 

noise, a 3 cell smoothing was calculated dependent on specimen abundance, which was 311 

applied to the PCF (59).  To test whether the PCF exhibited complete spatial randomness 312 

(CSR), 999 simulations were run for each univariate and bivariate distribution, with the 49 313 

highest and 49th  lowest values removed (59).  CSR was modelled by a Poisson model on a 314 

homogeneous background where the PCF = 1 and the fit of the fossil data to CSR was 315 

assessed using Diggle’s goodness-of-fit test (56,87). Note that due to non-independence of 316 

spatial data, Monte-Carlo generated simulation envelopes cannot be interpreted as confidence 317 

intervals.  If the observed data fell below the Monte-Carlo simulations, the bivariate 318 

distribution was interpreted to be segregated; above the Monte-Carlo simulations, the 319 

bivariate distribution was interpreted to be aggregated (47,59).  320 

 321 

If a taxon was not randomly distributed on a homogeneous background, and was aggregated, 322 

the random model on a heterogeneous background was tested by creating a heterogeneous 323 

background from the density map of the taxon under consideration. This density map was 324 

defined by a circle of radius R over which the density was averaged throughout the sample 325 

area.  Density maps were formed using estimators within the range of 0.1 m < R < 1 m, with 326 

R corresponding to the best-fit model used.  If excursions outside the simulation envelopes 327 

for both homogeneous and heterogeneous Poisson models remained, then Thomas cluster 328 

models were fitted to the data as follows: 329 

 330 
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1. The PCF and L-function (88) of the observed data were found.  Both measures were 331 

calculated to ensure that the best-fit model is not optimized towards only one distance 332 

measure, and thus encapsulates all spatial characteristics.   333 

2. Best-fit Thomas cluster processes (89) were fitted to the two functions where PCF >  1. 334 

The best-fit lines were not fitted to fluctuations around the random line of PCF =  1 in order 335 

to aid good fit about the actual aggregations, and to limit fitting of the model about random 336 

fluctuations. Programita used the minimal contrast method (56,87) to find the best-fit model.  337 

3. If the model did not describe the observed data well, the lines were re-fitted using just the 338 

PCF. If that fit was also poor, then only the L-function was used.   339 

4. 99 simulations of this model were generated to create simulation envelopes, and the fit 340 

checked using the O-ring statistic (82). 341 

5. In order to assess how well the model fit the observed data, the goodness-of-fit (pd ) was 342 

calculated over the model range (86).   A pd  = 0 indicates no model fit, and pd  = 1 indicates a 343 

perfect model fit. Very small-scale segregations (of the order of specimen diameter) were not 344 

included in the model fitting, since they likely represent the finite size of the specimens, and 345 

a lack of specimen overlap.  346 

6. If there were no excursions outside the simulation envelope and the pd -value was high, 347 

then a univariate homogeneous Thomas cluster model was interpreted as the best model.  348 

 349 

For any univariate distributions exhibiting CSR, the size-classes of each taxon were 350 

calculated, the univariate PCFs of the smallest size-classes and largest size-classes were 351 

plotted, with 999 Monte Carlo simulations of a complete spatially random distribution and 352 

segregation tests performed. The most objective way to resolve the number and range of size 353 

classes in a population is by fitting height-frequency distribution data to various models, 354 

followed by comparison of (logarithmically scaled) Bayesian information criterion (BIC) 355 
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values (86), which we performed in R using the package MCLUST (90). The number of 356 

populations identified was then used to define the most appropriate size classes.   A BIC 357 

value difference of >10 corresponds to a “decisive” rejection of the hypothesis that two 358 

models are the same, whereas values <6 indicate only weakly rejected similarity of the 359 

models (90–94). Once defined, the PCFs for each size class were calculated.  360 

 361 

Bivariate analyses were performed on the KS surface (the only surface with multiple abundant 362 

taxa/taxon groups) between Kimberella – Orbisiana, Kimberella – Kimberichnus and 363 

Orbisiana – Kimberichnus.  For each taxon pair, the bivariate PCF was calculated, and then 364 

compared to CSR using Monte Carlo simulations and Diggle’s goodness-of-fit test.   365 

Results  366 

Across the seven palaeocommunities, Dickinsonia on the DS surface was the only taxon that 367 

exhibited CSR.  There were five univariate distributions (Sessile Taxa on KS, Funisia on FUN4 368 

and FUN5, Aspidella on KH1 and KH2) exhibiting aggregated spatial distributions, two 369 

univariate (Aspidella on WS and large Dickinsonia on DS) and one bivariate (Kimberella and 370 

Kimberichnus on KS) segregated spatial distributions (Fig. 3, Table 2).  The Aspidella 371 

aggregations from  KH1 and KH2 were best modelled by the same double Thomas cluster 372 

process (pd 
kh1 = 0.883, pd 

k21 = 0.932, Fig. 3G, H; Table 2), which consisted of large clusters 373 

of 20.96 cm  diameter containing smaller clusters with a mean of six specimens within a cluster 374 

of 7.34 cm in diameter (Fig. 3G and H, (95)).  These results indicate that the non-random spatial 375 

distributions were most likely due to two generations of reproduction cf. (47), and do not 376 

represent a significant interaction or association with local habitat variations.  This result is 377 

consistent with previous work on older (~565 Ma) deep-water communities that also show a 378 

strong non-environmentally influenced signal (23).  In contrast, the Aspidella from the WS 379 

surface show significant segregation and are best-modelled by a heterogeneous Poisson process 380 
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(pd 
ws = 0.796, Fig 3F, Table 2). This is consistent with small-scale intra-specific competition 381 

in a resource-limited environment (55).  Funisia from FUN4 and FUN5 had aggregations that 382 

are best-modelled by heterogeneous Poisson processes (pd 
Fun4 =0.9570, pd 

Fun5 = 0.9080, Fig. 383 

3 D, E; Table 2), which are interpreted to indicate significant habitat associations with the local 384 

environment.   385 

 386 

 387 

Fig. 3. Pair correlation functions describing the spatial distributions of the seven studied 388 

palaeocommunities.  The coloured lines are the observed data and black lines represent best-389 

fit models (either CSR or heterogeneous Poisson).  The grey area is the simulation envelope 390 

for 999 Monte Carlo simulations.  The x-axis is the inter-point distance between organisms in 391 

centimetres. On the y-axis, PCF = 1 indicates complete spatial randomness (CSR), < 1 indicates 392 

segregation, and > 1 indicates aggregation. A) The KS surfaces showing sessile specimens with 393 

the black-line showing the best-fit heterogeneous Poisson model. B) KS univariate Kimberella. 394 

C) KS bivariate Kimberella – Kimberichnus with the CSR model shown. D) FUN4, and E) 395 

FUN5 surfaces showing the Funisia distributions with the best-fit heterogeneous Poisson 396 
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model. Aspidella from F) WS, G) KH1 and H) KH2 surfaces with their best-fit heterogeneous 397 

Poisson models.  I) Dickinsonia from DS with the solid line showing the whole population, 398 

dotted line the juveniles and dashed line the adults with the CSR model shown.  399 

 400 

SURFACE TAXON N 

PD VALUES PCF 

CSR HP TC DTC ITC 

WS Aspidella 40 0.019 0.796 0.504 0.2759 0.425 

KH1 Aspidella 204 0.001 0.001 0.648 0.883 0.313 

KH2 Aspidella 81 0.001 0.001 0.576 0.932 0.001 

FUN4 Funisia 290 0.001 0.9570 0.6340 NA 0.245 

FUN5 Funisia 482 0.001 0.9080 0.1320 NA 0.218 

DS Dickinsonia 62 0.857 0.022 0.025 NA 0.019 

 Dickinsonia Small 48 0.128 0.978 0.143 NA 0.158 

 Dickinsonia Large 14 0.388 0.446 0.409 NA 0.434 

KS All 107 0.858 0.381 0.328 NA 0.380 

 All sessile 44 0.033 0.956 0.770 NA 0.761 

 Kimberella 18 0.001 0.837 0.491 NA 0.103 

 Orbisiana 16 0.325 0.332 0.326 NA 0.288 

 Kimberichnus 6 0.566 NA NA NA NA 

 Bivariate Kimberella – Kimberichnus 24 0.028 NA NA NA NA 

 401 

Table 2. Goodness-of-fit tests for spatial analyses. For the inhomogeneous point processes 402 

(HP and ITC), the moving window radius is 0.5 m, using the same taxon density as the taxon 403 

being modelled.  pd = 1 corresponds to a perfect fit of the model to the data, while pd = 0 404 

corresponds to no fit. Where observed data did not fall outside CSR Monte-Carlo simulation 405 

envelopes, no further analyses were performed, which is indicated by NA. CSR: Complete 406 

spatial randomness indicates, HP: Heterogeneous Poisson model, TC: Thomas cluster model, 407 

DTC: double Thomas Cluster, and ITC: inhomogeneous Thomas cluster model. N is the 408 

number of specimens mapped. Note that for the mobile taxa Dickinsonia and Kimberella, and 409 

presumed trace fossils formed by mobile taxa (Kimberichnus), the observed spatial pattern will 410 

also be defined by their behaviour, and so the inference of process from pattern is not as 411 

straightforward (see discussion in the main text).  The pd-value of the best-fit model is given 412 

in bold.  413 

 414 
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The KS community is notably different in species composition from deep-water communities 415 

because it contains mobile organisms such as Kimberella and Yorgia (96–99) as well as 416 

putative trace fossils such as Radulichus (thought to be produced by the grazing activity of 417 

Kimberella specimens) (100). We found that the KS community exhibits CSR, which suggests 418 

that any taxon-specific univariate distributions are likely to be biological/ecological in origin, 419 

rather than resulting from a taphonomic bias (pd 
KS 

All 
 =0.858, Table 2, (23)).  In contrast, when 420 

all the sessile taxa were grouped together they exhibited a significant aggregation (Table 2), 421 

which was best-modelled by a heterogeneous Poisson process (pd 
KS 

Sessile 
 =0.956, Table 2).  422 

Kimberella exhibits a significant aggregation under spatial scales of 20 cm (pd 
KS 

Kimberella 
 423 

=0.001 for CSR model, Fig. 3A), with Thomas cluster and heterogeneous Poisson models 424 

fitting the data well, suggesting that behaviour factors may also influence Kimberella spatial 425 

patterns.  The Kimberichnus PCF spatial distribution has a CSR distribution (Fig. 3B, pd 
KS 

Rad 
 426 

=0.566, Table 2).  Furthermore, the bivariate analyses between Kimberella and Kimberichnus 427 

show a significant segregation (pd 
KS 

KimRad 
 =0.028, Fig 3C), which could reflect the Kimberella 428 

organisms avoiding patches of the surface that had already been grazed.  429 

 430 

The Dickinsonia population from DS exhibited a CSR PCF distribution (Fig 3I, pd = 0.857). 431 

Analysis of the population of Dickinsonia from DS showed two cohorts in the size-distribution 432 

(95).  The two cohorts exhibited different PCF spatial behavior, with the small specimens 433 

aggregating with a best-fit heterogeneous Poisson model (Fig 3I, pd
small = 0.978) and the large 434 

specimens exhibiting segregation (Fig. 3I).   435 

 436 

Interpreting the spatial distributions of mobile organisms 437 

For mobile organisms, inferring the underlying process behind the observed spatial 438 

distributions is imprecise, since their spatial patterns also incorporate contributions from their 439 
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behavior.  Modern animals move primarily to find resources, mates, microhabitats and/or 440 

escape predators or detrimental environmental conditions.   There is no evidence for predators 441 

until the terminal Ediacaran (101), and although we cannot definitely rule out reproductive 442 

aggregations, they are also considered unlikely because the largest size-class in the studied 443 

Dickinsonia population exhibits univariate segregation, so at time-of-burial, the organisms 444 

were not aggregating as might be expected in a mating event. Furthermore, the majority of 445 

extant marine benthic organisms use broadcast spawning to reproduce sexually (102), so do 446 

not require the two mating organisms to be within the spatial scale (< 40 cm) found on the DS 447 

surface.  We cannot determine whether the large Dickinsonia are reacting to the mortality event 448 

which killed and preserved them, however, this would not explain the complex interplay 449 

between aggregation and segregated behaviors.  Therefore, for this Dickinsonia population, the 450 

search for resources and/or microhabitats is considered most plausible explanation, particularly 451 

since this hypothesis is further supported by their spatial patterns. Aggregated – segregated 452 

PCF patterns such as those seen in our Dickinsonia population are common in extant sessile 453 

organisms where juveniles are initially aggregated on preferred habitats but then begin to 454 

compete with each other as they require greater resources, leading to thinning or segregation 455 

amongst adult populations (55).   While it is not possible to confirm the underlying mechanism 456 

for the distribution of the studied Dickinsonia population, we consider it most likely to be 457 

motivated by associations with preferential habitat for food and/or resources.  Further analyses 458 

of other Dickinsonia surfaces would enable more robust conclusions to be reached.   459 

 460 

Time averaging 461 

The preservation of time-averaged communities has the potential to bias our analyses (see 462 

(21,25). In Avalonian communities, taphomorphs interpreted to record the decaying remains 463 

of organisms are identified by their poor preservational fidelity, irregular morphologies, and 464 
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often high topographic relief (103). This interpretation is consistent with data suggesting that 465 

the spatial interactions of some taphomorph populations mirror those of other taxa they are 466 

considered to be derived from (21).  Taphomorphs are considered unlikely to have imparted a 467 

significant signal on these studied surfaces, since we did not observe ivesheadiomorph-type 468 

forms, and there is a consistent level of preservational detail amongst fossil communities 469 

 470 

Funisia communities tend to have very similar diameters for the holdfasts, which suggests 471 

single colonization events (104).  Different reproductive events can be distinguished by 472 

population analyses of size-distributions (105), with each reproductive event identified through 473 

statistically significant cohorts within the size-distribution (90).  Surfaces FUN4 and FUN5 474 

both exhibit populations with two cohorts (SI Figure 1), most likely indicating two 475 

reproductive/colonization events.  The best-fit models for each of these surfaces are 476 

heterogeneous Poisson models (Fig. 3, Table 2), with very high goodness-of-fit values (pd  > 477 

0.90) reflecting a single model for each surface.  Therefore, cohorts of Funisia specimens on 478 

each of the studied surfaces were affected by the same underlying environmental heterogeneity, 479 

so most likely were contemporaneous.  480 

 481 

Discussion 482 

The univariate and bivariate analyses of five out of seven of the studied palaeocommunities 483 

provide compelling evidence that their local environment had a significant influence on their 484 

communities (Fig. 3, Table 2).  In modern settings, habitat associations form when a patchy 485 

resource provides heterogeneously distributed preferential conditions for the establishment and 486 

growth of sessile taxa, and/or feeding ‘hotspots’ for the mobile taxa (47,54,83). The presence 487 

of inferred habitat interactions within our palaeocommunities showed a significant correlation 488 

with the environmental setting (Kruskal-Wallis Test, p = 0.049), with all five 489 
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palaeocommunities with strong habitat interactions derived from shallow-water settings. The 490 

two communities that were seemingly not strongly influenced by their local habitat are from 491 

deep-water facies (Table 2).   These results are consistent with previous work, which found 492 

that for seven independent deep-marine (slope and basin) Ediacaran palaeocommunities from 493 

Newfoundland and Charnwood Forest, only one was dominated by associations of taxa with 494 

local habitat heterogeneities (21–23) (Kruskal-Wallis Test of all data, p = 0.021; Fig. 4). 495 

 496 

  497 

Fig. 4 Proportion of best-fit univariate models by surface, adapted from (23).  The 498 

percentage of specimens within the community with univariate spatial distributions that are 499 

best described by CSR, HP, TC (or DTC) and ITC models. CSR and TC are considered random 500 

or dispersal (neutral) models and are shown in blue. HP and ITC are local environmentally 501 

driven (niche) models, shown in red. Mobile taxa are shown in orange, and inferred to be 502 

environmentally-driven.  Data and plot for surfaces Bed B to Spaniard’s Bay from ref. (23). 503 
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   504 

Untangling environmental from evolutionary trends in the Ediacaran has been hampered by a 505 

limited overlap between temporal periods and environmental settings (1,17).  The 506 

palaeocommunities in this study derive from successions within a variety of lithologies (tuff, 507 

coarse sandstone, mixed siltstone, limestone) as well as palaeogeographic positions 508 

(17,62,63,69,104,106,107). We find no significant direct correlations between these factors and 509 

the relative importance of habitat heterogeneities on the studied surfaces (p >> 0.1; Fig. 3, 510 

Table 2).  The palaeocommunities that are not influenced by local habitat heterogeneities (KH1 511 

and KH2) are hosted within carbonate successions (107), making them distinct from the 512 

siliciclastically-hosted palaeocommunities on the KS, WS, FUN4, FUN5 and DS surfaces, or 513 

in previous (21–23) work. However, the Khatyspyt surfaces behave ecologically in the same 514 

way to Avalonian palaeocommunities derived from similar depths, but different lithological 515 

successions (21-23), suggesting that lithology alone is not causing the KH1 and KH2 surfaces 516 

differing results.  Therefore, two possible factors remain that may explain the differences in 517 

community dynamics found here.  The differences could reflect evolutionary trends, and it is 518 

true that the oldest studied palaeocommunities show limited habitat influence (21–23), when 519 

compared to the younger palaeocommunities documented in this study (Fig. 4). Unfortunately, 520 

the lack of fine-scale dating across these communities and older Avalonian ones precludes 521 

detailed fine-scale regression to assess whether either the Khatyspyt palaeocommunities are an 522 

outlier to this apparent trend, or this trend merely reflects the biases of the available data. 523 

Alternatively, the differences could be due to the environmental setting.  We have shown that 524 

Ediacaran environmental setting has a significant influence on community dynamics (p = 525 

0.021), with shallow water palaeocommunities significantly influenced by habitat 526 

heterogeneities, in contrast to the deep water palaeocommunities (Fig 3, Table 2; (21–23)).   527 

 528 
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While SPPA have only been applied to a small proportion of the known in-situ Ediacaran 529 

palaeocommunities (17 studied surfaces (21–23,23,60,108)), there is a notable correspondence 530 

between the importance of habitat heterogeneities to community ecology and assemblage 531 

diversity.  In this study, the palaeocommunities exhibiting significant influence from local 532 

habitat heterogeneities are those that belong to the diverse White Sea assemblage,  which is in 533 

contrast to the previous work on Avalonian palaeocommunities (21–23), which are not 534 

significantly influenced by such heterogeneities. The relationship between environmental 535 

spatial heterogeneities and species richness is well established, with habitat variations enabling 536 

species co-existence through the creation of different niches (109).  This relationship extends 537 

to modern deep-sea benthic communities,  where these heterogeneities have been shown to 538 

provide a mechanism for diversification on large scales, such as between canyons, trenches, 539 

seamounts (110,111), on the centimetre to metre scale (112), and through microhabitats (45).    540 

 541 

Tentatively, we propose that the ecological differentiation observed between Ediacaran 542 

shallow and deep-water communities may evidence the late Ediacaran development of a chain 543 

of evolutionary diversification.  This chain started in shallow water communities, with the 544 

creation of habitat patchiness by mobile Ediacaran organisms, which then led to a feedback of 545 

increasing diversification that ultimately expanded into the deep-sea.  This hypothesized 546 

feedback could have promoted diversification throughout the Ediacaran by increasing 547 

heterogeneity as follows:  548 

 549 

First, metazoan mat grazing creates spatial heterogeneity in microbial substrates through the 550 

formation of depleted and non-depleted patches (113).  Our data suggest that once created, 551 

organisms such as Kimberella may have avoided pre-grazed patches, with this selective grazing 552 

accelerating further creation of mat heterogeneity (Fig 3C).  Secondly, the grazing-induced 553 
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creation of different-sized detrital particles in the form of differential-sized fecal pellets and 554 

fragments of non-consumed food within the water-column (114), would have created new food 555 

sources and therefore potential new niches. Thirdly, this shallow-water differentiated 556 

particulate organic carbon (POC) and matter (POM) could have eventually filtered through to 557 

deep-sea communities, promoting deep-sea heterogeneity.  In the modern ocean, the main 558 

source of deep-sea habitat heterogeneity is small-scale variation due to differentiated particle 559 

influx (114), with the majority of the particulate organic carbon (POC) coming from 560 

phytodetritus, which is transported from shallow waters to deep waters by ocean currents, tides 561 

and upwelling (114,116).  In the modern ocean, the diurnal vertical migration of 562 

mesozooplankton and macrofauna contributes up to 50% of POC to the deep-sea via fecal 563 

pellets (116–118).   A planktonic/larval stage for Ediacaran organisms has been predicted on 564 

the basis of their likely waterborne dispersal mechanisms (25,105), but there is presently no 565 

direct evidence of non-larval, planktotrophic zooplankton until the onset of the Cambrian 566 

(119).   In the absence of planktotrophic zooplankton and macrofauna, the Ediacaran POC flux 567 

may have been either larger, due to lack of consumption of phytoplankton in the shallow water, 568 

or smaller, due to a lack of mixing by diurnal vertical migration of the plankton (6), and this 569 

cannot yet be determined. However, the other ~50% of POC flux in the modern oceans is 570 

transported from shallow to deep-water via oceanic currents and upwelling (114,116), which 571 

should still have operated in the Ediacaran. However, prior to grazers and detritivores, this 572 

POC/POM flux would have been relatively homogenous phytodetritus. The evolution of 573 

grazers would have led to a shift towards size differentiated POC/POM, potentially increasing 574 

the heterogeneity of the deep-sea landscape (114), and providing a mechanism for deep-marine 575 

diversification. 576 

 577 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 2, 2019. ; https://doi.org/10.1101/861906doi: bioRxiv preprint 

https://doi.org/10.1101/861906


 

27 

Budd and Jensen (12) introduced the Savannah hypothesis to explain early animal 578 

diversification, whereby Ediacaran diversification was driven by small-scale variations in local 579 

habitat. They argued that it was the drive to find these heterogeneous distributed resources that 580 

led to novel evolutionary innovations such as mobility.  Our results demonstrate that at least 581 

some of these early animal communities that contain mobile organisms were influenced by 582 

such habitat variations, and we describe a mechanism that links early animal diversification 583 

and benthic habitat patchiness prior to the evolution of predators and wide-spread pelagic 584 

organisms.   We show that taxa such as Kimberella had a segregated distribution with trace 585 

fossils considered to be their grazing traces (98), suggesting that they may have been capable 586 

of avoiding non-preferred areas, possibly already consumed patches, revealing adaptation of 587 

behavior when interacting with these patches.  This adaptation theoretically has the capacity to 588 

drive further diversification, initially dependent on the environmental-setting, starting in the 589 

shallow water, and then, over time, moving into deeper water, but currently available global 590 

fossil assemblages limit the testing of this prediction.  If this hypothesis is correct, we would 591 

expect deep-water assemblages to diversify during the terminal Ediacaran and into the 592 

Cambrian.  Our results therefore provide tentative support for the Savannah hypothesis, 593 

suggesting that this late Ediacaran taxonomic diversification was a benthic event, which 594 

facilitated a chain of diversification by promoting marine habitat heterogeneities. 595 

 596 
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 597 

Fig. 5. Schematic diagram showing variation of heterogeneities within different 598 

environmental settings.  Shallow water communities are significantly influenced by habitat 599 

heterogeneities.  Grazing within these shallow waters further increases substrate heterogeneity, 600 

potentially increasing diversification.  Furthermore, this grazing increases deep-water 601 

heterogeneity through the creation of different sized particulate organic matter due to the influx 602 

of particulate matter from the shallows.  603 

 604 

Conclusions 605 

We present evidence to suggest that the influence of local habitat on Ediacaran organisms is 606 

significantly correlated with broad-scale environmental setting.  The relationship of Ediacaran 607 

communities to habitat-dependent interactions is correlated with Ediacaran assemblage 608 

diversity, with communities from the more diverse White Sea assemblage showing significant 609 
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habitat associations and interactions in contrast to relatively habitat insensitive deep-sea 610 

Avalonian assemblages.  We suggest that the presence of shallow-water grazers could have 611 

created further habitat heterogeneity in shallow-water and ultimately deep-water, via the 612 

heterogenization of the shallow-water substrate and via the introduction of variable size 613 

particulate matter to the deep-sea. These results demonstrate the utility of these approaches for 614 

investigating the early diversification of metazoans.  We have shown the importance of local 615 

environmental patchiness to the diversification of early animals, and our results are consistent 616 

with the hypothesis that the early diversification of metazoans was a benthic event, driven by 617 

responses to habitat patchiness. 618 
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