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Abstract
Neural encoding, a crucial aspect to understand human brain information processing system,

aims to establish a quantitative relationship between the stimuli and the evoked brain activities.
In the field of visual neuroscience, with the ability to explain how neurons in primary visual
cortex work, population receptive field (pRF) models have enjoyed high popularity and made
reliable progress in recent years. However, existing models rely on either the inflexible prior
assumptions about pRF or the clumsy parameter estimation methods, severely limiting the
expressiveness and interpretability. In this paper, we propose a novel neural encoding framework
by learning “what” and “where” with deep neural networks. The modeling approach involves
two separate aspects: the spatial characteristic (“where”) and feature selection (“what”) of
neuron populations in visual cortex. Specifically, we use the receptive field estimation and
multiple features regression to learn these two aspects respectively, which are implemented
simultaneously in a deep neural network. The two forms of regularizations: sparsity and
smoothness, are also adopted in our modeling approach, so that the receptive field can be
estimated automatically without prior assumptions about shapes. Furthermore, an attempt is
made to extend the voxel-wise modeling approach to multi-voxel joint encoding models, and we
show that it is conducive to rescuing voxels with poor signal-to-noise characteristics. Extensive
empirical results demonstrate that the method developed herein provides an effective strategy to
establish neural encoding for human visual cortex, with the weaker prior constraints but the
higher encoding performance.

Author summary
Characterizing the quantitative relationship between the stimuli and the evoked brain

activities usually involves learning the spatial characteristic (“where”) and feature selection
(“what”) of neuron populations. As an effective strategy, we propose a novel end-to-end “what”
and “where” architecture to perform neural encoding. The proposed modeling approach consists
of receptive field estimation and multiple features regression, which learns “where” and “what”
simultaneously in a deep neural network. Different from previous methods, we use the sparsity
and smoothness regularizations in the deep neural network to guide the receptive field
estimation, so that the receptive field for each voxel can be estimated automatically. Moreover,
in consideration of computational similarities between adjacent voxels, we made an attempt to
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extend the proposed modeling approach to multi-voxel joint encoding models, improving the
encoding performance of voxels with poor signal-to-noise characteristics. Empirical evaluations
show that the proposed method outperforms other baselines to achieve the state-of-the-art
performance.

Introduction 1

A great mystery in computational neuroscience is understanding how the brain effortlessly 2

performs information perception and processing given sensory input. Uncovering this internal 3

mechanism is of great scientific importance, not only for neuroscience researches, but also for 4

artificial intelligence researches. In the field of visual neuroscience, one common method for 5

insights into visual information processing is to establish neural encoding models with 6

functional magnetic resonance imaging(fMRI) [1, 2]. This modeling approach (Fig 1) of neural 7

encoding links fMRI signals at the millimeter scale to neural response at the micron scale, 8

providing a non-invasive approach to revealing the nonlinear relationship between the external 9

stimuli and the evoked brain activities [3–5]. 10
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Fig 1. The general approach of neural encoding models. (a) Voxel activity evoked by
experimental stimuli (such as natural images) is collected. (b) Encoding models are specified by
a nonlinear mapping (curvy arrow) of the stimuli into an abstract feature space, as well as a
linear mapping (straight arrow) from feature space to voxel activity.

Numerous studies have built neural encoding models from diverse perspectives for human 11

visual cortex, including, but not limited to, Gabor wavelet pyramid model [4], luminance 12

contrast models [6–10], the motion energy model [11], semantic models [12], deepnet 13

models [13], and other machine learning methods [14, 15]. The estimated characteristics of 14

visual cortex derived from these models can be roughly summarized in two aspects: “what” and 15

“where”. “Where” characterizes the spatial characteristic of neuron populations in visual cortex, 16

i.e. the location and extent of pooling over visual features, whereas “what” characterizes the 17

feature selection property of neuron populations in visual cortex. 18

In general, “where” is based on the classical receptive fields. In the population receptive 19

field (pRF) model [6], the visual feature is a binary map of the pixels occupied by a 20

high-contrast stimulus (e.g., bar, ring, wedge). For each voxel, the model is constructed by an 21

isotropic Gaussian area, the pRF, that pooled the visual feature map within a spatially localized 22

area. This seminal approach quantitatively measured the population receptive field properties in 23

human visual areas for the first time and was extended to some similar pRF models [7–10]. 24
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“What” focuses on feature selection and feature tuning functions. In the semantic model [12], 25

several object category features (e.g. the presence of an animal, or a car.) are encoded as the 26

vector of binary variables. Then, every object category was assigned a tuning parameter for each 27

voxel to construct the model. Similarly, different visual features are further studied in 28

subsequent models [4, 11, 14–16]. 29

Recently, deep learning with neural networks [17–19] has been widely used to perform 30

feature learning from scratch with promising performance, which sparks interest in using deep 31

learning methods for understanding information processing in visual cortex [5, 20–22]. Based on 32

deep neural networks, [13] proposed a new approach to encoding visual features named 33

feature-weighted receptive field (fwRF) [13]. It starts with a natural image, obtains feature maps 34

in a pre-trained convolutional neural network, and computes a weighted sum within the spatial 35

extent of an 2D Gaussian receptive field. Finally, it regresses all the feature maps onto brain 36

activity simultaneously, which yielded the state-of-the-art prediction accuracy. However, while 37

previous work demonstrated promising results of processing in visual cortex, neural encoding 38

models still lack adequate examination and require plenty of effort to improve. 39

There are two main challenges getting in the way of development of effective models. On 40

one hand, conventional approaches [6, 7] are endowed with inflexible prior assumptions on the 41

spatial characteristics of receptive fields, which limit the effectiveness of models to a large 42

extent. For example, in the population receptive model [6], it assumed that the pRF has an 43

isotropic Gaussian topography while the potentially suppressive surround is neglected. There 44

have been subsequent models [7,9,10,13] which have adopted the same principles with different 45

pRF topographies. In general, one assumption about receptive field structure puts one prior 46

constraint on the ability to extract the receptive field topography of the model. Specifically, 47

inaccurate assumptions about receptive field topography may lead to erroneous estimation of the 48

receptive field. Hence, it is meaningful to propose a new method that can extract receptive field 49

topography without inflexible prior assumptions. On the other hand, previous 50

approaches [6, 7, 9, 10, 13, 15] to obtaining receptive fields are based on grid search, which set 51

search parameters according to experience. Accordingly, they are prone to pRF center 52

mislocalization and size miscalculation. In the population receptive models [6, 7, 13], the pRF 53

topography parameters were set to certain parameters, which can be obtained by minimizing the 54

residual between the observed fMRI signal and the predicted signal. In this case, according to 55

different shape parameters (i.e. center and radius), these models will inevitably generate large 56

quantities of candidate pRF. That is, the grid fitting requires searching over quite large 57

model-parameter spaces. Consequently, their encoding performances depend on the amount and 58

parameter interval of candidate receptive fileds, which are set artificially. Obviously, more often 59

than not, it is not optimal and requires lots of manual effort. It would therefore be significant to 60

obtain the receptive fileds automatically in a more reasonable way. 61

Existing methods are prone to suffer from one or both of these issues and yield 62

dissatisfaction. Attaching great importance to these bottlenecks, we proposed a novel “what” 63

and “where” neural encoding architecture via deep neural networks. The proposed method first 64

extract hierarchical features from the DNN driven for image recognition. Then, the original 65

features are refined via channel attention and spatial receptive field, and finally are regressed 66

simultaneously onto voxel activity. Different from previous methods, we use the sparsity and 67

smoothness regularizations in the deep neural network to guide the receptive field estimation. 68

This modelling approach can estimate the receptive field for each voxel automatically and 69

maintain powerful expressiveness. In consideration of computational similarities, we extend the 70

voxel-wise modeling approach to multi-voxel joint encoding models, which is beneficial to 71

rescuing voxels with poor signal-to-noise characteristics. Our main contributions can be 72

summarized as follows. 73

• We provide a new perspective on the deep-learning-based neural encoding models, 74

performing receptive field estimation and features regression simultaneously in a deep 75

neural network. This modeling approach can yield explicit receptive fields (“where”) and 76
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feature turning functions (“what”) automatically, which is rich in interpretability. 77

• The estimation of receptive fields is endowed with weaker constraints. Instead of strong 78

prior assumptions on the shape of receptive fields, L1 regularization and Laplacian 79

smoothing are adopted in our modeling approach, which can be regarded as weak prior 80

assumptions about receptive fields. 81

• We made an attempt in the extension of the modeling approach. In consideration of the 82

computational similarities between voxels, the voxel-wise modeling approach is extended 83

to multi-voxel joint encoding models, suggesting a new approach to rescuing voxels with 84

poor signal-to-noise characteristics more effectively. 85

• Extensive empirical evaluations on the publicly available fMRI dataset demonstrate that 86

our modeling approach achieves superior performance compared with other neural 87

encoding models. 88

Methods 89

In the neural encoding dataset, we assume X = [x1, ...,xN ]T ∈ RN×M and 90

Y = [y1, ...,yN ]T ∈ RN×D denote the matrices of visual images and the evoked fMRI 91

activities, respectively. Here, N denotes the size of the training set. M and D denote the 92

dimensions of visual image and fMRI activity pattern, respectively. Given an image xi, its 93

hierarchical visual features can be obstained from a pretrained deep neural network (e.g., 94

AlexNet [18]). Here, H = [h1, ...,hN ]T ∈ RN×K donotes the intermediate DNN features, 95

where K denotes the number of feature maps. For modeling the statistical relationship between 96

the visual images and the evoked voxel activities, we put forward a novel neural encoding 97

framework by learning “what” and “where” based on deep neural networks. The simplified 98

illustration of the proposed modeling approach is shown in Fig 2. Formally, it consists of three 99

cascaded stages : 1) nonlinear feature extraction: extracting hierarchical visual features through 100

a pretrained DNN model. 2) nonlinear feature refinement: converting original features into 101

refined features with channel attention module and spatial receptive field (RF) module. 3) 102

voxel-wise linear mapping: regressing refined features simultaneously onto voxel activities. In 103

the following, we present the proposed approach in detail.
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Fig 2. An overview of the proposed neural encoding framework. It consists of three cascaded
stages : 1) nonlinear feature extraction: extracting hierarchical visual features through a
pretrained DNN model. 2) nonlinear feature refinement: converting original features into refined
features with channel attention module and spatial receptive field (RF) module. 3) voxel-wise
linear mapping: regressing refined features simultaneously onto voxel activities.

104
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Nonlinear feature extraction 105

The neural encoding models take visual stimuli as the input, and output the evoked brain 106

activities. Normally, it includs two sequential stpdf. The first step is a nonlinear feature 107

mapping, converting the visual input to its feature representations; the second step is a 108

voxel-wise linear mapping, projecting the feature representations onto activities at each 109

voxel [4, 23–27]. In the present study, The nonlinear feature mapping consists of two parts: 110

nonlinear feature extraction and nonlinear feature refinement. The nonlinear feature extraction is 111

introduced in this sub-section, while nonlinear feature refinement and voxel-wise linear mapping 112

are described in the next several sub-sections. 113

Recent studies [13, 28] has demonstrated that Alexnet [18], a specific version of DNNs, is 114

capable of predicting voxel activities with statistical significance and high accuracies throughout 115

the visual cortex. In line with previous work [13], a deep neural network (a specific 116

implementation referred as the AlexNet) is adopted to extract nonlinear features in the present 117

study. Briefly, AlexNet has been pre-trained to achieve the best preformance in Large Scale 118

Visual Recognition Challenge 2012 [18]. It consists of eight layers of computational units: the 119

first five layers were convolutional layers, while the rest layers were fully connected. The image 120

input was fed into the first layer; the output from one layer served as the input to its next layer. 121

Each convolutional layer involves plenty of units and a set of filters that extracts filtered outputs 122

from different locations of the input. The resolution (square root of the number of pixels in each 123

feature map) and depth (number of feature maps) for each convolutional layer was (55, 96), (27, 124

256), (13, 384), (13, 384), (13, 256) respectively. The fully-connected layers contained 4096, 125

4096 and 1000 units respectively. All feature maps from all convolutional layers, as well as up to 126

1024 units from the fully-connected layers , are used to result in hierarchical nonlinear features 127

in the present study. Once trained, the CNN is able to undergo feature extraction by a simple 128

feedforward pass of an input image. Herein, we refer to hi as the intermediate DNN features 129

given image xi. In consideration of feature maps from multiple layers may be adopted in the 130

model, we index each layer by l, and let hl
i denotes the features from the l-th layer. 131

A question arises whether multiple feature maps included in the model are meaningful. In 132

reality, we do not konw what features can better explain activity in the visual cortex under many 133

circumstances. In this way, the total feature maps hi are able to contain adequate features to 134

capture the reasonable hypotheses about what is encoded in the visual cortex. Based on these 135

original feature maps, the proposed method can infer which features and locations are important 136

for explaining the activity in the voxel. In the nonlinear feature refinement, the feature map 137

pixels are focused on within the spatial RF, as concentrating on important locations and 138

suppressing unnecessary ones are conducive to improving the encoding performance. In this 139

way, spatial RF is the “where” parameters of the neural encoding model. In the voxel-wise linear 140

mapping, each feature map will be assigned an associated feature weight, which indicates the 141

importance of the feature map for predicting the activity of each voxel. In this sense, all the 142

feature map weights are “what” parameters of the neural encoding model. Noting that while 143

original features maps are same for each voxel, but the feature refinement and feature weights 144

vary across voxels. 145

Nonlinear feature refinement 146

The crucial part of the proposed method is the nonlinear feature refinement, which 147

contributes to encoding performance promotion and interpretability enhancement. In this 148

subsection, we sequentially employ the channel attention module and spatial RF module 149

whereby the proposed method can learn “where” to attend in visual information processing. The 150

illustration of this feature refinement is shown in Fig 3. 151
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Fig 3. The feature refinement in the specific layer (the l-th layer). In the channel attention
module, the original feature maps hl

i are initially used to obtain the channel attention weights
ml

i. In the next phase, the original feature maps are element-wise multiplied by the channel
attention weights to obtain the channel-wise weighted feature maps sli. In the spatial RF module,
the receptive field p is reshaped to the corresponding receptive field pl according to the size of
channel-wise weighted feature maps sli. The Hadamard product of pl and sli finally produce the
refined features rli.

Channel attention module 152

It is acknowledged that attention plays an crucial role in human perception [29–31]. One 153

important property of the human visual system is that one does not attempt to process a whole 154

scene at once. Instead, humans exploit a sequence of partial glimpses and selectively focus on 155

salient features in order to capture visual structure better [32–34]. In the present work, we pay 156

more attention to the meaningful feature maps rather than considering each feature map equally. 157

Since a channel-wise feature map is a detector response map of the corresponding filter in 158

essence, channel attention can be regarded as the process of selecting inter-layer feature 159

attributes and reducing redundant information (strengthening important ones and weakening 160

unimportant ones). 161

Here, the channel attention module is built up based on the hierarchical features hi. Without 162

loss of generality, we discard the image subscript i and layer-wise superscrip l. In each specific 163

convolutional layer, the original feature maps h (hl
i) are reshaped to 164

h = [h1,h2, ...,hC ] ∈ RS×C , where hk donotes the k-th channel of the feature maps. C and S 165

are the channel dimension and spatial dimension in this layer, respectively. Given the input h, 166

global average pooling is applied to each channel to obtain the mean vector 167

h̄ = [h̄1, h̄2, ..., h̄C ] ∈ R1×C , where h̄k is the channel mean of hk. On the basis of the mean 168

vector h̄, the channel attention module Φ(·) can be further formulated as follows: 169

m = σ(h̄Wa + ba)

s = m⊗ h
(1)

where Wa ∈ RC×C and ba ∈ R1×C are the transformation matrix and bias term respectively; 170

σ denotes the sigmoid function and ⊗ denotes element-wise product; m ∈ R1×C denotes the 171

attention weight while s ∈ RS×C stands for attentioned feature maps. During element-wise 172

multiplication, the channel attention weight is broadcasted (copied) along the spatial dimension. 173

In this way, the original feature maps h are converted into attentioned feature maps s. 174

Spatial RF module 175

In visual areas, population activity at each voxel in the cortical sheet encodes visual features 176

within a spatially localized region of visual field [6–9]. In view of this, the attentioned feature 177

maps are pooled within a limited and contiguous area in this module, which is the spatial 178

receptive field (RF). In order to overcome the drawbacks brought by the inflexible prior 179

assumptions or the clumsy parameter estimation methods, the sparsity regularization and 180

smoothness regularization are adopted in this module. Under the guidance of both 181
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regularizations, the proposed method yields explicit receptive field automatically and encodes 182

features within a contiguous region of the visual field. 183

Mathematically, the receptive field is denoted as p given each specific voxel, and randomly 184

initialized with the same spatial size of natural images (227× 227). In consideration of different 185

sizes of feature maps, the receptive field is adapted to different convolutional layers by the 186

means of reshaping. Taking the first convolutional layer as an example, the corresponding 187

receptive field size is 55× 55. In this way, there are five sizes of receptive fields converted from 188

the original receptive field, with one-to-one correspondence to the five convolutional layers. As 189

a direct way to combine attentioned feature maps with receptive fields, element-wise product is 190

more natural and general than specially designed operations. Herein, the receptive field is 191

broadcasted (copied) along the channel dimension in the beginning, matching with the 192

dimensions of attentioned feature maps. Given the feature maps s = [s1, s2, ..., sC ] ∈ RS×C , 193

the spatial RF module Ψ(·) can be formulated as follows: 194

rk = (sk � p) k = 1, 2, ..., C

r = [r1, r2, ..., rC ]
(2)

where sk ∈ RS×1 is the c-th channel of attentioned feature maps and p ∈ RS×1 is the 195

voxel-wise receptive field. � is the Hadamard product of matrices. Hence, spatial RF module 196

Ψ(·) outputs the refined feature vector r ∈ R1×C . 197

As a matter of fact, if there is no any other operation applied to the receptive field, it is just 198

an ordinary mask. Inspired by the physiological structural characteristics of receptive field, our 199

model adopted two forms of regularization: sparsity and smoothness. Specifically, for each 200

specific voxel, since we expect its receptive field to be highly sparse, the receptive field was 201

regularized by L1 penalty with strength λs: 202

Lsparsity = ||p||1 (3)

To ensure the receptive field focuses on an localized area as effectively as possible, we use an L2 203

penalty on the Laplacian of the receptive field with the strength λl: 204

Llaplace = ||p ~ L||F , L =

 0 −1 0
−1 4 −1
0 −1 0

 (4)

Here, || · ||F and || · ||1 denote Frobenius norm and L1 norm (“entriwise” norm) of a matrix 205

respectively, and ~ is the convolutional operation. In this way, sparsity and smoothness 206

regularizations make the ordinary mask transform into the meaningful receptive field. In 207

contrast to Gaussian assumption, these two forms of regularization can be viewed as weak prior 208

assumptions about receptive field , which is more conducive to the expressiveness and flexibility 209

of neural encoding models. 210

Voxel-wise linear mapping 211

The original intention of neural encoding models is to account for the responses of different 212

visual processing stages and reveal the information processing mechanism of neurons in visual 213

cortex. Voxel-wise linear mapping sets up such a computational path to relate visual features to 214

the evoked response at each voxel, bridging the gap between feature selection property of neuron 215

populations in visual cortex and hierarchical feature maps in deep neural networks. 216

In some previous studies [21, 28, 35], the voxel-wise encoding models regress feature maps 217

in each layer onto brain activity independently, which is proved highly effective. However, it 218

reduces the model scale at the expense of model expressiveness. In reality, increasingly abstract 219

and complex visual features are encoded in the deep neural networks (AlexNet). The 220

convolutional layer encoded location and orientation-selective features, whereas the 221
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Fig 4. The deatails of the proposed modeling approach. (a) The image data are converted into
the feature maps (or attentioned feature maps), and the receptived field is randomly initialized
and reshaped to same size as feature maps. In the next phase, the Hadamard product (�) of the
feature maps and the receptive field produce the refined features. Finally, the refined features
simultaneously regressed onto voxel-wise activity by a transformation matrix. (b) The receptive
field is regularized by the two forms of regularizations: sparsity and smoothness. These two
regularizations are able to guide the evolution of receptive field.

fully-connected layer encoded semantic features. In the light of feature diversity, we use feature 222

maps from all layers to predict each voxel’s response rather than assume an one-to-one 223

correspondence between a voxel and a DNN layer. It is a reasonable way that each feature map 224

is assigned an appropriate weight, which can be learned from training data directly by the 225

appropriate optimization algorithm. 226

For each specific image xi, its original multi-layer feature maps hi turn into the refined 227

multi-layer feature vector ri through the nonlinear feature refinement module. The predicted 228

response at the specific voxel is modeled as a linear combination of multi-layer features. Let us 229

denote the weight of multi-layer features as w. In order to predict the response of the specific 230

voxel to the natural image, the weight w is element-wise multiplied by the refined feature vector 231

ri. Formally: 232

ŷi = ri �w (5)

where ri ∈ R1×K and w ∈ R1×K , K donotes the number of total feature maps. There is tend 233

to be a voxel-wise bias b in practice, and we omit it for notational simplicity, as it does not play a 234

part in the validation accuracy. Finally, the mean-squared error can be formulated as below: 235

Lmse =
1

B

∑
i

(yi − ŷi)2 (6)

where yi is the measured voxel-wise activity in response to image i, ŷi is the predicted activity 236

of the model, B indicates the minibatch size. 237

The objective function of the model 238

The deatails of the whole modeling approach are shown in Fig 4. The final objective 239

function for each specific voxel is defined as follows: 240

T = Lmse + λsLsparsity + λlLlaplace (7)
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where λl and λs are hyper-parameters. The first term Lmse is the MSE loss. Intuitively, 241

minimizing this loss, which is equivalent to making predicted values approximate true values, 242

can result in more accurate predictions. It is obvious that the L1 regularization term Lsparsity 243

plays an sparse role. The RF is supposed to be such a highly sparse area that optimizing the 244

second term contributes to revealing the localized structure of RF, which is beneficial to the 245

interpretability of our model. The third term Llaplace is the L2 penalty on the Laplacian of the 246

RF, which is used to make the RF smooth. More Specifically, minimizing this term, the pixels in 247

the particular area of RF tend to be numerically consistent. Therefore, this constraint ensures 248

that RF encodes features within a contiguous region. 249

When optimizing the objective function, the final goal is to infer RF area and weights of 250

feature maps that lead to more accurate predictions of the voxel’s response. Herein, the objective 251

function can be minimized by Adam Optimizer [36] based on gradient descent method. 252

Materials 253

Data description 254

The data uesd in the present study are the public fMRI dataset vim-1 (Data are available at 255

https://crcns.org/data-sets/vc/vim-1.), which are described in detail in [4]. In summary, 256

functional BOLD activity was measured in the occipital lobe with 4T INOVA MR scanner 257

(Varian, Inc.) at a spatial resolution of 2mm×2mm×2.5mm and a temporal resolution of 1 Hz. 258

During the acquisition, subjects viewed sequences of 20o × 20o greyscale natural photographs 259

while fixating on a central white square. Photographs were presented for 1s with a delay of 3s 260

between successive photographs. 261

The data are partitioned into distinct training and testing sets. The training set consists of 262

estimated voxel activity in response to 1750 photographs while the testing set consists of 263

estimated voxel activity in response to 120 photographs. In present study, the fMRI data from 264

visual area V1, V2, V3, V4, LO, V3a, V3b are used for the analysis, and the original training set 265

is further partitioned into training set and validation set. It divides the original data into 5-Fold, 266

and validates each subset (consists of 20% of the original training set) separately, whereas the 267

remaining 4 subsets are used as training set. 268

Ethics statement 269

Two healthy subjects with normal or corrected-to-normal vision participated in the 270

experiments: Subject 1 (male, age 33) and Subject 2 (male, age 25). All subjects provided 271

written informed consent for participation in the experiments, in accordance with the 272

Declaration of Helsinki, and the sharing of vim-1 dataset has been approved by the UC Berkeley 273

Office for Protection of Human Subjects. 274

Compared methods 275

The following models are considered as compared methods: 276

a) Compressive spatial summation model (CSS): The CSS model takes a contrast image 277

(i.e. an image representing the location of contrast in the visual field) as the input, 278

computes a weighted sum of the contrast image using an isotropic 2D Gaussian, and 279

applies a static power-law nonlinearity [9]. It is an effective way to encode contrast 280

images, while the input pattern limits the flexibility and generalization of the SOC model. 281

b) Second-order contrast model (SOC): The SOC model starts with a grayscale image 282

(luminance values), applies Gabor filters as a way of computing local contrast, computes 283

second-order contrast within the spatial extent of an isotropic 2D Gaussian, and applies a 284
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static power-law nonlinearity [15]. Whereas the CSS model explains only how the 285

location and size of the stimulus relate to the response, the SOC model is more general, 286

explaining the relation of an arbitrary grayscale image to the response. However, its 287

relatively shallow feature representations limits encoding performance, and the progress 288

hits a bottleneck at the natural images. 289

c) Feature weighted receptive field (fwRF): A latest neural encoding method based on 290

convolutional neural network and multivariate linear regression [13]. It starts with a 291

natural image, obtains feature maps in a pre-trained convolutional neural network, and 292

computes a weighted sum within the spatial extent of an 2D Gaussian receptive field. 293

Finally, it regresses all the feature maps onto brain activity simultaneously and outputs 294

accurate predictions, which outperforms other comparable encoding models to achieve the 295

state-of-the-art performance. However, fwRF only considers the fusion of diverse features 296

from DNNs and still neglects the drawbacks resulted from strong prior assumptions 297

(Gaussian assumption), like previous methods. 298

Voxel selection 299

Voxel selection is a crucial component to fMRI brain encoding, as plenty of voxels may not 300

respond to the visual stimuli in reality. A common approach is to choose those voxels to which 301

the model provided better predictability (encoding performance) during the training process. 302

The goodness of fit between model predictions and measured voxel activities is quantified by the 303

Pearson’s correlation coefficient (PCC). For each voxel, the PCC is computed on the validation 304

set, and is finally an average of 5 runs with different data splits in our experiments. We select 305

voxels with positive PCC for further analyses, and the details of the selected data are 306

summarized in Table 1 (The details of the selected data from subject 2 are shown in S1 Table). 307

Figures in this study refer to data from subject 1 (except Fig 6).

Table 1. The details of the selected data from subject 1 in our experiments.
ROIs #Instances #Pixels #Voxels #Training #Validation #Testing

V1 1870 227×227 992 1400 350 120
V2 1870 227×227 1529 1400 350 120
V3 1870 227×227 1202 1400 350 120
V4 1870 227×227 1015 1400 350 120
LO 1870 227×227 621 1400 350 120
V3a 1870 227×227 311 1400 350 120
V3b 1870 227×227 210 1400 350 120

308

Model fitting 309

The AlexNet [18] architecture pre-trained on ImageNet dataset is exploited to initial both the 310

convolutional and fully-connected layers, and other parameters of the model are randomly 311

initialized. The hyper-parameters of the proposed model are set to (λs, λl) = (1, 1), while 312

five-fold cross-validation is carried out to choose better regularization parameters from [0.01, 313

0.1, 0.5, 1, 5, 10]. In our experiments, the minibatch size B is set to 20. The Adam 314

Optimizer [36] with an initial learning rate of 0.00005 and early stopping is adopted. 315

Specifically, we monitor the validation loss every iteration of totally 200 iterations and early stop 316

when the validation loss have not decreased for 5 consecutive times. 317

Model Evaluation 318

To evaluate the encoding performance quantitatively, we use several standard similarity 319

metrics, including mean squared error (MSE), Pearson’s correlation coefficient (PCC), and 320

coefficient of determination (COD, i.e. R2). These metrics focus on different properties for 321
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the encoding performance. MSE is a common way to evaluate prediction performance in 322

machine learning, which focuses on the point-to-point prediction accuracy. Note that MSE is not 323

highly indicative of predictions, whereas PCC and FEV can take variable texture and goodness 324

of fit into account, which are more significant in neuroscience. We also performed the statistical 325

significance test (SST) of model prediction accuracy. For each voxel and each model type, the 326

Pearson’s correlation coefficient between the model prediction and measured response above 327

0.27 is significant p < 0.001 relative to its null hypothesis distribution [4, 13]. In the present 328

study, we use PCC to denotes the prediction accuracy, if there is no special instruction. 329

Feature map contribution to the prediction 330

According to voxel-wise mapping module, all the feature maps contribute linearly to the 331

model prediction. It is a natural way to determine the relative importance of each feature map in 332

terms of the regression weights. In practice, it is difficult to make comparisons across 333

multi-layer feature maps, as the regression weights are dependent on the typical values of each 334

feature map. Hence, in consideration of the linearity of the proposed model, we calculate the 335

Pearson correlation coefficient ρl = cov(ŷ, y)/sqrt(var(ŷ)var(y)) over a subset of feature 336

maps hl ∈ h instead of focusing on regression weights. All the disjoint subsets Σlh
l cover all 337

K feature maps, and they follows Σlρl = ρ where ρ is the cumulative PCC between predicted 338

voxel-wise activity and true voxel-wise activity. Here, each ρl thereby denotes the contributions 339

of the subset of feature maps to the model prediction. 340

Results 341

Relationship between CNN layers and brain ROIs 342
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Fig 5. Contributions of the DNN layers to predictions of ROIs. (a) Each column shows the
distribution of the single DNN layer contributions to the prediction accuracy of each ROI. The
prediction accuracy are averaged over all voxels in each ROI. (b) Each column shows the
distribution of each DNN layer contributions to the prediction accuracy for a single ROI.
Colored bars within each column indicate the contribution to the prediction accuracy averaged
over all voxels in that ROI.

Previous neuroscience studies [21, 24] have shown that the ventral and dorsal visual streams 343

are hierarchically organized, with early visual areas processing low-level visual features (such as 344

edges) and downstream visual areas processing increasingly complex visual features (such as 345

shapes). Does the hierarchical features of CNN have anything to do with the hierarchical visual 346

areas of brain? To answer this question, we analyzed the contributions of different CNN layers 347

to activity prediction in different brain regions-of-interest (ROI). As shown in Fig 5 (a) , the 348
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Fig 6. Encoding accuracies of individual feature maps or units (AlexNet) from two subjects of
the Vim-1 dataset. Each dot denotes the encoding accuracy of each feature map or unit estimated
from Subject1 and Subject2. The color of each dot indicates the density of the plotted dots.

contribution of the early visual areas in ventral (V1, V2) and dorsal (V3, V3a, V3b) streams 349

exhibit a clear counter-gradient organization. Contributions of downstream visual areas (V4, 350

LO) are also graded, but are much more uniformly distributed across the CNN layers. Whlie in 351

Fig 5 (b), the contribution of the lowest (conv1) and highest (fc8) layers exhibit a clear 352

counter-gradient organization. Contributions of intermediate DNN layers are also graded, but 353

are much more uniformly distributed across ROIs. 354

More specifically, the most contributable CNN features for the prediction of the early visual 355

areas come from shallow CNN features, whereas most contributable voxels for the prediction of 356

the downstream visual areas come from the deep CNN features. These results demonstrate a 357

homology between computer and human vision, providing a new opportunity to make use of the 358

hierarchical information from CNN features. 359

Individual differences between subjects 360

To assess the degree of consistency of encodability across subjects, we evaluated the feature 361

map-by-map or unit-by-unit similarity of the prediction accuracy between two subjects of Vim-1 362

dataset. Fig 6 shows the scatter plots of feature encoding accuracies between Subject1 and 363

Subject2. The prediction accuracies of individual maps or units from the two subjects densely 364

distribute along the diagonal axis for most layers, showing positive correlations between the two 365

subjects. The positive PCCs for all layers of the DNN architectures suggest that the DNN-based 366

neural encoding was highly consistent across subjects even at the feature map or unit level. 367

The visualization and convergence of receptive fields 368

To verify the capacity to estimate receptive fileds of our modeling approach, we intuitively 369

visualized the receptive field with increasing iterations across different ROIs. The results are 370

illustrated in Fig 7, which are the representative voxels from V1, V2, V3, V4, LO. On one hand, 371

it is easy to find that the receptive fields are smooth and localized for the particular voxels. The 372

receptive field shapes may not be regular for all voxels, whereas the main shapes can be clearly 373

distinguished. On the other hand, the preliminary outlines can be formed within 30 iterations 374
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Fig 7. The estimated receptive fileds of the representative voxels with different iterations in
ROIs. For example, (a) V1#257:10 shows the results of the 257th voxel in V1 after the 10
iterations. For the particular voxels, the receptive fields are smooth and localized. The
preliminary outlines can be formed within 30 iterations while optimization procedure converges
within roughly 50 iterations.

while optimization procedure converges within roughly 50 iterations. In practice, for arbitrary 375

voxel, the receptive field can be optimized automatically in this way. The results on the rest of 376

voxels are similar, and we omit them due to space limitations. It can be inferred that, owing to 377

the regularizations, the receptive field in our proposed method is able to capture the reasonable 378

location and extent of pooling over visual features. 379

Quantitative analysis of encoding performance 380

The encoding performce distribution [37] of the proposed method is shown in Fig 8. Voxels 381

located in early visual cortex (V1, V2) are more accurately predicted than those located in higher 382

visual cortex (V4, LO), whileas the difference of encoding performance between most of the 383
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Fig 8. Encoding accuracy for each ROI. (a) Distributions of the encoding accuracy of individual
voxels in terms of PCC. Green bars denote median prediction accuracies while red triangles
denote mean prediction accuracies averaged across all voxels. (b) Distributions of the encoding
accuracy of individual voxels in terms of MSE. Blue bars denote mean prediction accuracies
averaged across all voxels. (c) Prediction accuracy of voxels plotted on a digitally flattened map
of visual cortex.

visual areas is not very obvious, especially for the MSE metric. It verifies the feasibility of our 384

method in the visual areas. We further compare the proposed method with other baseline 385

methods in terms of three metrics, and the quantitative performance comparisons are shown in 386

Fig 9 and Fig 10 (the details are shown in Table 2). From them, we can find that our method 387

outperforms the baselines in most brain ROIs. Compared with CSS and SOC, the consistently 388

encouraging result shows that the proposed method with a DNN model for visual images is more 389

able to extract nonlinear features from visual images, which may contribute to encoding 390

performance in the primary visual cortex. Furthermore, our method shows obvious better 391

performance than fwRF. In spite of the same feature representation network, it is maybe caused 392

by the fact that fwRF is endowed with the two-dimensional Gaussian assumption and manual 393

parameter space, which may not obtain the global optimal solution of model parameters. In 394

summary, for the current dataset, the substantial superior performance (Consistent results are 395

obtained for subject 2, as shown in S2 Table) of the proposed model verifies that estimating 396

receptive field automatically with weak prior assumptions about the spatial characteristics is 397

beneficial to enhancing the encoding performance. 398

November 27, 2019 14/22

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/861989doi: bioRxiv preprint 

https://doi.org/10.1101/861989
http://creativecommons.org/licenses/by/4.0/


0.0 0.2 0.4 0.6 0.8 1.0
V1

0.0

0.2

0.4

0.6

0.8

1.0

PCCour < 0.27 and PCCfwRF < 0.27

0.0 0.2 0.4 0.6 0.8 1.0
V2

0.0

0.2

0.4

0.6

0.8

1.0

PCCour > 0.27 and PCCour > PCCfwRF

0.0 0.2 0.4 0.6 0.8 1.0
V3

0.0

0.2

0.4

0.6

0.8

1.0

PCCfwRF > 0.27 and PCCfwRF > PCCour

0.0 0.2 0.4 0.6 0.8 1.0
V4

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
LO

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
V3a and V3b

0.0

0.2

0.4

0.6

0.8

1.0

Prediction accuracy from fwRF (PCC)

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 fr

om
 o

ur
 m

od
el

 (P
C

C
)

Fig 9. Comparison of prediction accuracy between the proposed method and the fwRF. Each of
the six axes displays a comparison between the prediction accuracy of the two models in specific
visual ROI (V3a and V3b are plotted in the same axe). In all six scatter plots, the ordinate and
abscissa represent the prediction accuracy values of the proposed method and the fwRF. The
blue dots indicate the voxels cannot be significantly encoded (under 0.27) by either of the two
models. The red dots indicate the voxels that can be better predicted by the proposed method
than the fwRF and vice versa for the cyan dots.
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Fig 10. Preformance within different ROIs in terms of MSE and COD. The proposed method
outperforms other baseline methods in most brain ROIs
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Table 2. Performance of several neural encoding models for Subject 1 of the Vim-1 dataset. The
best performance (averaged over voxels) within each ROI was highlighted.

Evaluation Algorithms V1 V2 V3 V4 LO V3a V3b

MSE

CSS 0.3183 0.3026 0.2577 0.2565 0.2630 0.2445 0.2507
SOC 0.3126 0.3039 0.2636 0.2578 0.2687 0.2425 0.2487
fwRF 0.2666 0.2717 0.2730 0.2562 0.2747 0.2548 0.2625
Ours 0.2555 0.2630 0.2444 0.2447 0.2589 0.2428 0.2446

PCC

CSS 0.0448 0.0463 0.0330 0.0321 0.0221 0.0261 0.0222
SOC 0.0911 0.0611 0.0483 0.0496 0.0535 0.0171 0.03041
fwRF 0.2886 0.2400 0.1600 0.1517 0.1257 0.1097 0.1251
Ours 0.2943 0.2468 0.1730 0.1565 0.1453 0.1077 0.1363

COD

CSS 0.0187 0.0237 0.0188 0.0133 0.0114 0.0099 0.0102
SOC 0.0088 0.0076 0.0067 0.0078 0.0071 0.0055 0.0062
fwRF 0.2548 0.2113 0.1346 0.1073 0.0959 0.0513 0.0847
Ours 0.2619 0.2281 0.1408 0.1141 0.1028 0.0561 0.0776

Sensitivity analysis 399

The sensitivity analysis is crucial to DNN-based models. Since weak prior assumptions 400

(sparsity and smoothness regularizations) are adopted in our model, we also performed the 401

sensitivity analysis. It involves two hyper-parameters Θ = (λs, λl), which need setting properly. 402

For the sake of studying the sensitivity of the model with respect to different values of these 403

parameters, we plot effective encoding results (average over voxels with the prediction accuracy 404

higher than 0.5) with different values of regularization parameters, and displayed the results in 405

terms of PCC and MSE in Fig 11. The figures for variation of MSE and PCC show the same 406

pattern, and model performs stably with the variation of different λs and λl. The results also 407

suggests that the best regularization parameters λl and λs can be chosen from [0.5, 1, 5] and 408

[1,5], where the proposed model achieves good results. 409
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Fig 11. Encoding perfomance with the variation of λl and λs in terms of MSE and PCC. The
best regularization parameter λl and λs can be chosen from [0.5, 1, 5] and [1,5], where the
proposed model achieves good results.

Extension for multi-voxel joint encoding 410

In the visual cortex, the responses to stimulation in the classical receptive fields can be 411

modulated by stimulation in the extra-classical receptive field [7]. These modulations can be 412

excitatory or inhibitory and have been characterized in detail by electrophysiological and 413

November 27, 2019 16/22

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/861989doi: bioRxiv preprint 

https://doi.org/10.1101/861989
http://creativecommons.org/licenses/by/4.0/


psychophysical studies [38–40]. It inspired us to relate receptive fields of multiple voxels to 414

mimic this modulations and construct multi-voxel joint encoding models. Here, we use the 415

similarity loss to relate the adjecent voxels, as voxels in the same area tend to perform similar 416

computations. Taking two-voxel cooperative encoding as an example, for voxel j and voxel k, to 417

ensure their receptive fields as similar as possible, we use an L2 penalty on the difference 418

between receptive fields with the strength λm: 419

Lsimilarity = ||pj − pk||F (8)

The joint objective function of the multi-voxel joint encoding model is formulated as follow: 420

Tjoint = Tj + Tk + λmLsimilarity (9)

Here, Tj and Tk are the objective function of voxel j and voxel k, respectively, and Lsimilarity 421

is the bond between two voxels. This bond can be extended to three or more voxels according to 422

appropriate definitions of voxel neighborhood. In the present study, we did a preliminary 423

verification of the multi-voxel joint encoding. 424

In consideration of computational similarities in the same visual area, we define a voxel 425

neighborhood that consists of three voxels according to their location index in the Vim-1 dataset. 426

Those voxels (up to three voxels) whose location index are adjacent are chosen to be jointly 427

optimized. The hyper-parameter λsimilarity is set to 1, while five-fold cross-validation is carried 428

out to choose the better regularization parameter from [0.1, 0.5, 1, 5]. We compare the 429

multi-voxel joint encoding with the single-voxel encoding, and the results are shown in Fig 12. 430

It can be found that, both in early visual areas (V1, V2, V3) and higher visual areas (V4, V3a, 431

V3b and LO), after the multi-voxel joint encoding, a slight shift of the voxels toward the right 432

indicates an advantage for the multi-voxel joint encoding. The results suggest that, owing to 433

voxel neighborhood information, the multi-voxel joint encoding is conducive to rescuing voxels 434

with poor signal-to-noise characteristics. 435
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Fig 12. Comparisons between the single-voxel encoding and the multi-voxel joint encoding. (a)
Histogram of voxels within early visual areas (V1,V2,V3). There are 1286 significant voxels in
the multi-voxel joint encoding model, in contrast to 1000 significant voxels in the single-voxel
encoding model. (b) Histogram of voxels within higher visual areas (V4,V3a,V3b,LO). The
number of significant voxels in the multi-voxel joint encoding is 331 while that in the
single-voxel encoding model is 178. Results in both early visual areas and higher visual areas
demonstrate that the multi-voxel joint encoding is conducive to rescuing voxels with poor
signal-to-noise characteristics

November 27, 2019 17/22

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/861989doi: bioRxiv preprint 

https://doi.org/10.1101/861989
http://creativecommons.org/licenses/by/4.0/


Discussion 436

The proposed model is a new approach to building voxel-wise neural encoding models. 437

Attributing to the nonlinear feature refinement and separability of “what” and “where” 438

parameters, the proposed model is endowed with explicit receptive fields and feature maps for 439

each voxel, which facilitates the interpretability of neural encoding models. Compared with 440

either traditional or deep learning methods, the proposed model achieved the superior 441

performance in visual brain areas. 442

Relationship to previous work 443

Preceding the proposed modeling approach, a number of important voxel-wise modeling 444

approaches have made significant progress in neural encoding for human visual cortex. One 445

important class of models are those designed specifically for retinotopic modeling. This class 446

involves the inverse retinotopy method [41] and the population receptive field methods [6–8]. 447

These methods implement estimation and analysis of the locations and sizes of voxel-wise 448

receptive fields, with the dedicated retinotopic mapping experiments that utilize the artificially 449

designed stimuli. However, they do not provide explicit feature maps and turning functions 450

directly and require fussy in-silico experiments. Another effective class of models are those 451

designed based on DNNs [13]. These methods are special cases of the general linearized 452

regression approach, they construct a set of nonlinear features from deep neural networks and 453

present explicit feature map. Nevertheless, they still limit the receptive field with Gaussian 454

assumptions in advance. The strong prior assumptions about receptive field have the advantage 455

of reducing the number of parameters of the model, whereas they reduces their expressiveness as 456

well. 457

The proposed modeling approach with weak prior assumptions about receptive fields is a 458

more special case of the general linearized regression approach, and it also depends on the 459

construction of a set of nonlinear features that result from deep neural networks. This modeling 460

approach overcomes two limitations of previous general regression approaches. First, in general 461

regression approaches, the shape of receptive field is pre-defined, which makes the model prone 462

to erroneous eatimation of receptive field characteristics. Second, under the general approach 463

deriving an explicit receptive field and feature tuning function often requires grid searching from 464

plenty of candidate receptive fields. However, it is an kind of effective but not sensible way to 465

set search parameters (such as total number and the search interval of candidate receptive fields) 466

according to experience, as it demands too much manual effort. 467

Advantages of the proposed model 468

There are at least three possible reasons for why the proposed model outperforms the other 469

compared methods. One primary possible reason is the flexible receptive field of the proposed 470

modeling approach. Structure analysis of receptive fields and preformance comparisons with 471

fwRF suggest that the model takes advantage of this flexibility by the weak assumptions about 472

spatial characteristic of rereceptive fields. Without defining the shape of receptive field in 473

advance, the model can make full use of the distribution of training data and estimate the optimal 474

receptive field automatically, revealing the efficient location and extend of visual features. 475

Another possible reason is the usage of channel attention module. On account of it, our model is 476

able to select inter-layer feature attributes and reducing redundant information. Furthermore, 477

strengthening important ones and weakening unimportant ones are conducive to subsequent 478

cross-layer regression. The third possibility is the space-feature separability derived from the 479

proposed model. Explicit receptive fields in the nonlinear feature refinement module are able to 480

capture spatial information, whereas explicit weights of feature maps allow the proposed model 481

to select cross-layer combinations of visual features that closely resemble the feature selectivity 482
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of each voxel. We infer that the increased expressiveness is made possible by this space-feature 483

separability. 484

Limitations of the proposed model 485

While the proposed modeling approach exhibits good encoding performance, there is still an 486

imperfection worthy of consideration: the measurement of receptive field size. The proposed 487

modeling approach yields an explicit receptive fields with weak prior assumptions, which 488

provides pros and cons. It facilitates the expressiveness of model, whereas brings the difficulties 489

to the measurement of receptive field size. The receptive field size is different from classical 490

population receptive field (pRF) [6]. The differences underline the fact that the eatimation of 491

receptive field in our method depends entirely upon the feature maps. As the proposed modeling 492

approach does not impose an strong assumptions (regular shapes) on receptive fileds, it limits 493

the measurement of receptive field size to a certain esxtent. However, for irregular receptive 494

field, we can supply an alterbnative measurement method, which is the blob detection. In light 495

of different pixels of the receptive field, blob detection can detect an approximate regular shape, 496

such as the Gaussian shape (areas circled by red line in Fig 7 (e)). 497

The receptive field structure 498

The receptive field presented here is a mask with sparsity and smoothness regularizations, 499

and the salient characteristic is that its shapes can be irregular. While keeping the shape regular 500

has the advantage of reducing model parameters of the model, it also reduces the expressiveness. 501

In particular, the other appropriate operators instead of Laplacian operator can be adopted in our 502

method, exploring more appropriate receptive field structures. For example, the Laplacian of 503

Gaussian operator may allow the model to explicitly capture receptive fields with a “Mexican 504

hat” profile that enforce a suppressive band around an excitatory center. Furthermore, the 505

receptive field with any appropriate weak prior assumptions could be trained using the proposed 506

modeling approach presented here. There may be a more optimal assumption about receptive 507

field structure, which needs future studies to confirm. 508

Encoding in higher visual areas (V4 and LO) 509

It is worth noting that all the presented methods obtain good performance in early visual 510

areas (V1,V2 and V3) while little effect on higher visual areas (V4 and LO). Nevertheless, the 511

proposed modeling approach is still superior to other methods, which makes progress in higher 512

visual areas. However, it is meaningful to build an effective encoding model in higher visual 513

areas, as it may reveal the high-level visual information processing in the visual cortex. Deep 514

neural network has mapped the function of the human visual cortex [35] and revealed a gradient 515

in the complexity of neural representations across the ventral stream [21]. The convolutional 516

layer encoded location and orientation-selective features while the fully-connected layer 517

encoded semantic features. In order to make progress in higher visual areas, perhaps more 518

attention to the fully connected layer will make sense. The receptive fields easimated in our 519

model focus on the convolutional layer, whereas the fully-connected layer are neglected. It is 520

worth our while further improving the encoding performance of our proposed modeling 521

approach with appropriate operations on the fully-connected layer. 522

Supporting information 523

S1 Table. The details of the selected data from subject 2. 524

S2 Table. The quantitative results of encoding performance for Subject 2. 525
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