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ABSTRACT 20 

1. Individual identification is a crucial step to answer many questions in evolutionary 21 

biology and is mostly performed by marking animals with tags. Such methods are 22 
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well established but often make data collection and analyses time consuming and 23 

consequently are not suited for collecting very large datasets.  24 

2. Recent technological and analytical advances, such as deep learning, can help 25 

overcome these limitations by automatizing data collection and analysis. Currently 26 

one of the bottlenecks preventing the application of deep learning for individual 27 

identification is the need of hundreds to thousands of labelled pictures required for 28 

training convolutional neural networks (CNNs).  29 

3. Here, we describe procedures that improve data collection and allow individual 30 

identification in captive and wild birds and we apply it to three small bird species, the 31 

sociable weaver Philetairus socius, the great tit Parus major and the zebra finch 32 

Taeniopygia guttata.  33 

4. First, we present an automated method that allows the collection of large samples of 34 

individually labelled images. Second, we describe how to train a CNN to identify 35 

individuals. Third, we illustrate the general applicability of CNN for individual 36 

identification in animal studies by showing that the trained CNN can predict the 37 

identity of birds from images collected in contexts that differ from the ones originally 38 

used to train the CNNs. Fourth, we present a potential solution to solve the issues of  39 

new incoming individuals. 40 

5. Overall our work demonstrates the feasibility of applying state-of-the-art deep 41 

learning tools for individual identification of birds, both in the lab and in the wild. 42 

These techniques are made possible by our approaches that allow efficient collection 43 

of training data. The ability to conduct individual identification of birds without 44 

requiring external markers that can be visually identified by human observers 45 

represents a major advance over current methods. 46 

 47 

Keywords: artificial intelligence, automated, convolutional neural networks, birds, 48 

data collection, deep learning, individual identification 49 
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INTRODUCTION 50 

In recent years, artificial intelligence techniques, such as convolutional neural network 51 

(CNN), have caught the attention of ecologists. Such tools can automatize the analysis of 52 

various types of data, ranging from species abundance to behaviours, and from different 53 

sources such as pictures or audio recordings (reviewed in Christin, Hervet & Lecomte, 54 

2019). CNNs are a class of deep neural networks that, contrary to other types of artificial 55 

intelligence methods that require hand-crafted feature extraction, automatically learn from 56 

the data the features that are optimal for solving a given classification problem (see 57 

Angermueller, Pärnamaa, Parts & Stegle, 2016; Christin et al., 2019; Jordan & Mitchell, 58 

2015; LeCun, Bengio & Hinton, 2015 for a detailed introduction on deep learning). CNNs are 59 

thus particularly useful when many features for classification are needed. 60 

In ecology, deep learning has been successfully and predominantly applied to identifying 61 

and counting animal or plant species from pictures. For example, Norouzzadeh et al. (2018) 62 

used a long term database of more than 3 million labelled pictures to train a CNN to 63 

automatically recognize 48 African animal species. This CNN can replace the need of 64 

human manual identification in future studies, thus promoting a more efficient data analysis. 65 

This and other examples (e.g. Rzanny, Seeland, Wäldchen & Mäder, 2017; Tabak et al., 66 

2019) highlight the potentialities of deep learning for reducing human effort and increasing 67 

identification performance. Beyond species recognition, another promising application of 68 

CNNs is individual identification, which is crucial to many studies in ecology, behaviour and 69 

conservation (Clutton-Brock & Sheldon, 2010). Individual identification using deep learning 70 

has been the subject of extensive research in humans (e.g. Ranjan et al., 2018), and 71 

recently a handful of studies have applied it to other animal species (e.g. primates, Deb et 72 

al., 2018; pigs, Hansen et al., 2018; elephants, Körschens, Barz & Denzler, 2018). However, 73 

the application of deep learning to smaller taxa, and specifically birds, remains unexplored. 74 
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In birds, manual examination of pictures or video recordings of visually marked populations 75 

(e.g. using colour rings), are well established methods. However, relying on humans for 76 

individual identification and data collection is time consuming (Weinstein, 2018). In many 77 

cases the use of recently developed animal-tracking devices (e.g. GPS) and sensor 78 

technologies (e.g. RFID) can be used (reviewed in Krause et al., 2013). Yet, animal-borne 79 

tracking devices are also often limited when visual information on contexts and behaviours 80 

are important. For example, studying parental care in birds requires video recordings to 81 

visually identify which birds are providing care to the chicks and how often they do it, as well 82 

as to identify several other relevant behaviours and attributes, such as the type of food that 83 

parents are bringing to the chicks or distinguishing the purpose of the visit (e.g. to feed the 84 

chicks or to engage in nest maintenance activities). Thus, a major advance over current 85 

methods would be to automatically identify individuals while keeping the versatility of 86 

pictures and video recordings for behavioural data collection (which should in turn be 87 

automatized as well).  88 

Several methods for automatic individual identification and other data extraction from 89 

pictures and videos of animals have been developed previously. For instance, Pérez-90 

Escudero, Vicente-Page, Hinz, Arganda & de Polavieja (2014) proposed a multi-tracking 91 

algorithm capable of following unmarked fish in captivity from video recordings (which was 92 

later improved using deep learning; Romero-Ferrero, Bergomi, Hinz, Heras, & de Polavieja, 93 

2019), whereas other computer vision-based methods that require tags or marks to assist 94 

with computer tracking and identification have been developed and applied in behavioural 95 

captivity studies (e.g. Alarcón‐Nieto et al., 2018). However, these methods are mostly limited 96 

to animals in captivity, either because they require standardized recording conditions (e.g. 97 

consistent background light, known number of individuals present in the recording) or the 98 

marks needed to assist identification are attached through gluing or through backpacks that 99 

are not suitable to be fitted to many animals, especially in the wild. Deep learning has the 100 

potential to overcome some of the limitations of the current automated methods, as it can 101 
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identify individuals by relying only on their natural variance in appearance and be tolerant to 102 

spurious variation in the recording conditions. 103 

A major challenge for the application of individual recognition using deep learning methods is 104 

the need of collecting extensive training data. Acquiring training data typically involves 105 

labelling images with the location and/or identity (or an attribute) of each individual. The 106 

amount of data required to train a CNN is expected to be proportionally dependent on the 107 

difficulty of the classification challenge, i.e. a bear and a bird would be easier to differentiate 108 

than two bears of the same species. Usually CNNs that achieve large generalization 109 

capability are trained over thousands to millions of pictures (Marcus, 2018). Such large 110 

datasets are required as usually CNNs have to generalize from the specific data that they 111 

have been exposed to during training. For example, if a CNN was trained to distinguish two 112 

bears of the same species with only pictures of the individuals lying down, difficulties may 113 

arise to identify those same individuals from new pictures taken when the animals were 114 

standing up. Additionally, if the pictures used for training were taken during a short period of 115 

time, it might lead the CNN to rely on superficial and temporary features for identification. 116 

For example, if pictures for training were taken when one of the individuals had a large 117 

wound or was going through moulting or shedding, it might result in a CNN that relies on 118 

those salient and temporary features and perform badly when predicting the identity of the 119 

individuals a few days later. Therefore, effectively making use of deep learning for individual 120 

identification, especially in the wild, requires an adaptive framework for collecting training 121 

data. 122 

When working in captivity settings, such large labelled image datasets can be easily 123 

collected by temporarily and routinely isolating the animals in enclosures separated from the 124 

rest of the group while filming or photographing them. However for researchers working on 125 

wild populations collecting training data can become challenging and it might not be feasible 126 

to rely on traditional methods of individual identification for labelling the pictures. For 127 

example, in birds, relying on human observers and colour rings, to photograph and manually 128 
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label enough pictures to implement CNN for individual identification, can become extremely 129 

costly and time-consuming. Furthermore, in longer-term studies, animals can change their 130 

appearance over time (e.g. changing from juvenile to adult plumage in birds) or new 131 

individuals may join the population (e.g. immigrants or recruited offspring). These cases 132 

require that the process of identifying individuals and labelling photos is routinely repeated. 133 

Therefore, relying on human observers for collecting labelled data in this type of systems 134 

might hinder the implementation of deep learning techniques for individual identification, or 135 

restrict its application to short-term projects.  136 

Here, we provide guidance on how training data can be efficiently collected, both in captivity 137 

and in the wild, and on the subsequent steps required to train a CNN for individual 138 

identification. We demonstrate the feasibility of our approaches using data from two wild pit-139 

tagged populations of birds from two different species, the sociable weaver Philetairus 140 

socius and the great tit Parus major, and a population of captive zebra finches Taeniopygia 141 

guttata.   142 

We start by 1) focusing on the problem of efficiently collecting large training datasets. We 143 

provide simple and automated methods for collecting a very large number of labelled 144 

pictures by using RFID tags associated to camera traps (in the wild sociable weaver and the 145 

great tit populations) or by temporarily isolating the target individuals (in captive zebra 146 

finches). In all cases, we used low-cost RFIDs and low-cost cameras that can be programed 147 

to take labelled pictures of the birds’ back feathers. 2) We provide details of the data pre-148 

processing and the training of an adequate CNN. 3) Subsequently, we evaluate the 149 

generalization performance of our CNNs to other circumstances by evaluating the ability of 150 

our models to predict the identity of the birds in pictures collected with different cameras and 151 

in contexts that differ from the ones used for collecting the training datasets. 4) Finally, we 152 

present a very simple approach to address the problems arising from the arrival of new and 153 

unmarked individuals to the population.  154 
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METHODS: 155 

Study populations: 156 

We collected pictures from a population of sociable weavers at Benfontein Nature Reserve 157 

in Kimberley, South Africa. For the great tits, pictures were collected from a population in 158 

Möggingen, southern Germany. For both species, birds were fitted with pit-tags as nestlings, 159 

or when trapped in mist-nets as adults and are habituated to artificial feeders that are fitted 160 

with RFID antennas, as part of two independent on-going studies in these populations. For 161 

the zebra finches, pictures were collected from a captive population housed in Möggingen, 162 

southern Germany. Birds were being kept in indoor cages in pairs and small flocks.  163 

Collecting training data: 164 

Sociable weavers: 165 

The collection of labelled pictures was automated by combining RFID technology 166 

(Priority1Design, Australia) with single-board computers (Raspberry Pi), cameras and 167 

artificial feeders. We fitted RFID antenna to small perches placed in front of plastic feeders 168 

filled with mixed seeds (Fig. 1a). Each RFID data logger was connected to a Raspberry Pi 169 

(detailed explanation of the developed setup is available at 170 

github.com/AndreCFerreira/Bird_individualID) which was connected to a Pi camera (we used 171 

Pi camera V1 5mp and V2 8mp). We programmed the Raspberry Pi to take a picture every 172 

time that a bird was detected on the RFID logger, with a 2 seconds gap between pictures. 173 

This interval was introduced in order to avoid having near-identical frames of the same bird 174 

that would increase overfitting of the CNN and jeopardize the generalization capability of the 175 

models (see “Convolutional neural networks” section). The Raspberry Pi was programmed to 176 

take pictures with different shutter speeds to account for variation in light conditions over the 177 

day. Each picture file was automatically labelled with the bird identity, known from the RFID 178 

logger and the time of shooting in the filename. Training data collection is therefore 179 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2019. ; https://doi.org/10.1101/862557doi: bioRxiv preprint 

https://doi.org/10.1101/862557
http://creativecommons.org/licenses/by-nc-nd/4.0/


automatized by automatically linking the identity of the bird perching on the antenna while 180 

feeding to its pictures, without the need of human manual identification and annotation. 181 

Three PI cameras and three feeders which were ca. two meters apart from each other were 182 

used. The cameras were positioned to take a picture from top perspective to enable to 183 

photograph both the scaled pattern of the back and wing feathers (Fig. 1b). The birds’ back 184 

was chosen as the distinctive mark since it is the body part that is most easily observed and 185 

recorded in multiple contexts (e.g. when perching at the feeders or building at the nest), 186 

making it a very versatile mark for applying an image classification algorithm in other 187 

contexts. Pictures were collected for 15 days during November and December 2018. 188 

 189 

Figure 1. a) Pi camera (circled in red) positioned to record the back of the birds and b) the 190 

respective picture taken of a sociable weaver feeding while perched on the RFID antenna. c) 191 
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Picture taken by the Pi camera of a great tit perching at the RFID antenna on a feeder and d) 192 

of a male zebra finch taken from inside the cage. 193 

Great tits: 194 

We collected pictures of the individuals using a similar setup to the one described above, by 195 

placing a RFID antenna at an artificial feeder hanging on a tree branch (Fig. 1c). We used 196 

one single Pi camera and one feeder to collect pictures during seven days over the course of 197 

the last two weeks of August 2019.  198 

Zebra finches: 199 

We temporarily divided aviaries into equally-sized partitions with a net to take pictures from 200 

individual birds without completely socially isolating them. We collected data from 10 zebra 201 

finches (five males and five females). In each partition, we placed two Raspberry Pi cameras 202 

to photograph (every two seconds) the birds sitting on the wooden perches (Fig. 1d). Each 203 

bird was recorded for four hours. Since we know which Raspberry Pi photographed which 204 

bird, we avoided the need to manually link the identity of the birds to the pictures. 205 

Data pre-processing: 206 

To efficiently train a CNN, the regions in the pictures corresponding to the birds should be 207 

extracted from the background (second step of Fig. 2). Mask R-CNN (He, Gkioxari, Dollár & 208 

Girshick, 2017) was used to automatically localize and crop the bird out. For the sociable 209 

weavers, we used a Mask R-CNN model that has been trained on Microsoft COCO (Lin et 210 

al., 2014), a generalist dataset which includes pictures of birds and therefore is able to 211 

localize the sociable weavers in the pictures (see 212 

github.com/AndreCFerreira/Bird_individualID for details). For the great tits and zebra finches 213 

this Mask R-CNN model performed poorly and thus the model was re-trained by adding a 214 

new category (zebra finch or great tit, a different model for each species) and using pictures 215 

in which the region corresponding to the bird was manually delimited using “VGG Image 216 
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Annotator” software (Dutta & Zisserman, 2019). Since manually labelling the regions of 217 

interest is time consuming, we started by training the model for 10 epochs with 200 pictures. 218 

If the model was found to perform badly, additional pictures were manually labelled and 219 

added it to the training dataset. This process was repeated until a satisfactory performance 220 

was achieved. For the great tits 500 pictures were used for training and 125 for validation 221 

(see “Convolutional neural networks” section below for explanation on training and validation 222 

datasets), for the zebra finch we used 400 pictures for training and 100 for validation. 223 

From a total of 35 weavers detected at the RFIDs antennas we had 30 individuals with more 224 

than 350 pictures each that were used to train the classifier. In the great tit population, 77 225 

birds were photographed including 10 with more than 350 pictures. These individuals were 226 

used to train a CNN. The remaining five weavers and 67 great tits (with less than 350 227 

pictures) were used to address the issue of working in open areas where new individuals 228 

can constantly be recruited to the study population (see section “New birds” below). For the 229 

zebra finches we used all 10 individuals as our setup resulted in more than 2000 pictures for 230 

each bird.  231 

 232 

Figure 2. Sequential steps required for collecting data and training a convolutional neural 233 

network for individual identification. 234 

Convolutional neural networks: 235 
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Sociable weavers: 236 

For 21 of the 30 selected sociable weavers, more than 1000 pictures were available and 237 

therefore we aimed at using 900 pictures for the training dataset and 100 pictures for 238 

validation dataset. For the 9 sociable weavers, for which we did not have 1000 pictures, we 239 

further avoided an imbalance in the dataset by first selecting 100 pictures for the validation 240 

dataset and then duplicating (through oversampling) the remaining pictures until 900 pictures 241 

were available for the training dataset (Buda, Maki & Mazurowski, 2018). We used 27038 242 

unique pictures, 901.27±172.96 (mean±SD) per bird. The training dataset is the set of 243 

samples that the neural network repeatedly uses to learn how to classify the input images 244 

into different classes (in our case, different individuals). The validation dataset is used to 245 

compute the accuracy and loss (estimation of the error during training) of the model. This 246 

validation dataset is used to assess the learning progress of the neural network. As the 247 

network never trains or sees the validation data, this validation dataset can indicate if the 248 

model is overfitting the training data, i.e. if the model is “memorizing” the pictures instead of 249 

learning features that are key for recognizing the individuals. 250 

To limit overfitting caused by having very similar pictures in the training and validation 251 

datasets, we used images for training and validation that were taken on different days. All 252 

pictures were normalized by dividing the arrays by 255 (0 to 1 normalization).  253 

We used the VGG19 convolutional neural network architecture (Simonyan & Zisserman, 254 

2014) and the weights of a network pre-trained on the ImageNet dataset (a dataset with 255 

more than 14 million pictures and 20000 classes, Deng et al., 2009). The main idea behind 256 

using networks pre-trained on other datasets is that features (such as colour or texture) that 257 

are important to distinguish multiple objects could also be useful to distinguish between 258 

individuals. The fully connected part of the VGG19 CNN network (i.e. the classifier part) 259 

were replaced by layers with random weights that fits our particular task of interest and the 260 

corresponding number of classes (30 individuals). 261 
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To further increase our training sample, we used data augmentation, which consists of 262 

artificially increasing the sample size by applying transformations to our existing sample. 263 

Using the data generator available in Keras, images were randomly rotated (from 0 to 40º) 264 

and zoomed (zoom range of 0.2). One 0.5 dropout layer was added just before the first 265 

dense layer to limit overfitting (see github.com/AndreCFerreira/Bird_individualID for details 266 

on the network architecture). We used a softmax activation function for the classifier. ADAM 267 

optimizer (Kingma & Ba 2014) was used with a learning rate of 1e-5. A batch size of eight 268 

was used since it has been shown that small batch sizes improve models’ generalization 269 

capability (Masters & Luschi, 2018). If there was no decrease in loss for more than 10 270 

consecutive epochs we stopped training, and then retrained the model that achieved the 271 

lowest loss with a SGD optimizer and a learning rate 10 times smaller until there was no 272 

further decrease in the loss for more than 10 consecutive epochs. All analyses were 273 

conducted with python 3.7 using keras tensorflow 1.9, and on nvdia rtx 2070 gpu. 274 

In an exploratory approach, and even though our model achieved ca. 90% accuracy with the 275 

validation dataset, the accuracy was significantly lower when generalizing to other contexts 276 

(see results). We suspected that such differences could be due to the lower quality of 277 

pictures collected in those other contexts (with different cameras, capture distances and 278 

conditions; see “Testing models” section). To account for this possibility we trained a model 279 

using the same setting parameters that yielded the best results, but applying Gaussian blur, 280 

motion blur, Gaussian noise and resizing transformations and a random combination of two 281 

of these four transformations (see github.com/AndreCFerreira/Bird_individualID for details 282 

on the transformations applied to the images) to each of the pictures of the dataset used to 283 

train the models in order to simulate the lower quality of the pictures taken in other contexts 284 

(Fig. 3). The idea is that even if the overall quality of the pictures in the dataset used for 285 

training slightly differs from pictures which are of interest for a research question, this 286 

training dataset can be transformed in order to be more similar to the pictures collected in 287 

distinct contexts for which the classifier could be applied on. 288 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 3, 2019. ; https://doi.org/10.1101/862557doi: bioRxiv preprint 

https://doi.org/10.1101/862557
http://creativecommons.org/licenses/by-nc-nd/4.0/


 289 

Figure 3. Comparison of the pictures’ quality in the testing dataset (on the left, see “Testing 290 

models” section below) with the training dataset (middle). On the right the same training 291 

pictures after applying a transformation to simulate the low-quality of the testing dataset. 292 

 293 

Great tits: 294 

For the great tits we trained the CNN with 1000 pictures per bird, 900 pictures for training 295 

and 100 for validation. For birds with less than 1000 pictures (six birds) we did oversampling 296 

by creating copies of the pictures available following the same procedures as for the 297 

sociable weaver. We used 7605 unique pictures, 760.50±222.56 (mean±SD) per bird. 298 

Pictures in the validation dataset were also taken in different days from the pictures used for 299 

training. 300 

The same architecture and hyperparameters as for sociable weavers were used, except that 301 

the dropout value was reduced to 0.2 as the model did not improve the accuracy from a 302 

random guess for 10 epochs when the dropout was at an initial value of 0.5. In addition to 303 

the zooming and rotation data transformations, horizontal and vertical flips were also used 304 

as the great tits, contrary to the sociable weavers, could be photographed from any 305 

orientation (as they perched all around the RFID antenna). Blur and noise transformations 306 
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were not used as there were no differences in the overall quality of the pictures used for 307 

training and for testing the model generalization capability (see “Testing models” section). 308 

Zebra finches: 309 

There were more pictures available per bird for the zebra finch than for the other species. 310 

However, the problem of collecting pictures in animals that are in confined enclosures is that 311 

a significant number of pictures could potentially be near-identical if the individuals stay 312 

motionless for long periods of time. In our case, all birds were generally active and visited all 313 

the places in their cage (i.e. all wooden perches, floor, water and food plates). Nevertheless, 314 

to avoid potential overestimation of the model’s accuracy, we used the pictures collected 315 

when the birds were in the left side of the cage for training and the pictures taken when the 316 

birds were on the right side of the cage for validation. Additionally, to create a diverse set of 317 

validation pictures, structural-similarity index measure (SSIM) (Wang, Bovik, Sheikh & 318 

Simoncelli, 2004) was used to make pairwise similarity comparisons between pictures. We 319 

started by randomly selecting a picture to include in the validation dataset. Additional 320 

pictures were then randomly sampled and used to compute the SSIM between the new 321 

picture and the ones already in the validation dataset and if the value was smaller than a 322 

threshold, these new pictures were included in the validation dataset. This process was 323 

repeated by sequentially comparing a new picture to all the ones already in the validation 324 

dataset until we reached 160 pictures per bird. The threshold value used (0.55) was 325 

empirically determined by trying different values and looking at the resulting datasets. For 326 

the training dataset, 1600 pictures of each bird were randomly selected without filtering for 327 

near-identical pictures. All birds had at least 1600, except for one that had 1197 for which 328 

oversampling was used by creating duplicates of randomly sampled 403 pictures.  329 

Finally, the CNN was trained using the same procedures as for the great tits except that the 330 

dropout layer was set to 0.5 rather than 0.2. 331 

Testing models: 332 
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Sociable weavers: 333 

To test the efficiency of our models, we collected images of the sociable weavers in different 334 

viewing perspectives, using different cameras and different contexts than the original feeding 335 

station setup. The aim was to evaluate the ability of our trained CNN to identify individuals in 336 

different experiments and contexts. 337 

We used four different setups for testing. We filmed birds feeding in the same plastic RFID 338 

feeders but recorded using a Sony handycam (rather than Raspberry Pi camera), from two 339 

different perspectives: 1) close (95 pictures from 26 birds 3.65 ± 0.68 (mean ± SD; Fig. 4a) 340 

and 2) and far (71 pictures from 21 birds 3.43 ± 0.58; Fig. 4b). In addition, a plastic round 341 

feeder with seeds was positioned on the floor to record both from 3) a ground perspective 342 

(90 pictures from 28 birds 3.21 ± 1.21; Fig. 4c) and 4) a top perspective (83 pictures from 25 343 

birds 3.32 ± 1.01; Fig. 4d).  344 

The birds were manually cropped out from pictures using imageJ (Schneider, Rasband & 345 

Eliceiri, 2012) and individually identified using their colour rings. The colour rings were then 346 

erased directly from the image to guarantee that the model did not use them for 347 

identification. Videos were recorded within the same time window as the training pictures 348 

collection and we aimed at extracting five non-identical frames per bird in which the back 349 

was fully visible, however this was not always possible for all birds as not all of them were 350 

recorded in these testing videos, or were not recorded long enough. 351 
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 352 

Figure 4. Example of pictures from the four different conditions used for the testing that were 353 

recorded at the feeders from the RIFD feeder setup from: a) close or b) far perspective, or 354 

directed at a feeding plate on the floor recorded from c) a ground perspective and d) a top 355 

perspective. 356 

Great tits: 357 

We recorded birds feeding in a table from a top perspective with a Raspberry Pi camera 358 

(Fig. 5). Since these birds had no colour ring or any mark for visual identification, we 359 

identified them using their pit-tags by placing seeds on top of a RFID antenna in order to 360 

induce the birds to activate the RIFD antenna and obtain the identity of the birds feeding 361 

(similar to the pictures collected for training described above). Birds were recorded feeding 362 

on the table for 3 days but 4 out of the 10 birds in the training dataset did not use this new 363 

feeding spot. Additionally the number of pictures collected at this setup varied greatly 364 

between birds (from 2 to 38 pictures, mean: 15.7±11.3SD). We did not attempt to make a 365 
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balanced dataset and, therefore, used all the 94 pictures collected at this new feeding set-366 

up. 367 

 368 

Figure 5. Great tit recorded from a top perspective feeding at a table on top of a RFID 369 

antenna. 370 

Zebra finches: 371 

For the zebra finches we did not have a second setup that differed from the one used to 372 

collect the pictures to train a CNN and that could be used for testing the CNN generalization. 373 

Therefore, we ran an additional trial which consisted of recording the birds together to see 374 

how well the model would predict the identity of the birds when they are in small groups, 375 

interacting with each other (Fig. 6). Since these birds did not have any visual tags and it was 376 

not possible to distinguish them when in group, we used one flock of three birds and another 377 

flock of two birds for each sex to estimate the model’s accuracy by calculating the number of 378 

times that the CNN wrongly attributed the identity of a bird as being an individual that is not 379 

effectively present in that flock. In order to avoid near-identical pictures, the same procedure 380 

as for the validation dataset to select 160 pictures from each trial was used. 381 
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 382 

Figure 6. Example of a picture used for the zebra finches’ testing dataset. 383 

New birds: 384 

In wild populations, new individuals can join the population during the course of a study. 385 

These new individuals may challenge the performance of a CNN because the model outputs 386 

a vector from a softmax layer that indicates probabilities of presence for every individual 387 

present during training and the sum of these probabilities is one (see “classification” stage in 388 

Fig. 2). In order to study this potential issue we used the already trained CNNs to predict the 389 

identity of birds that were not in the training dataset. For the sociable weavers, a scenario in 390 

which a CNN was trained to identify a relatively large number of individuals (30) was used to 391 

expose the obtained CNN to a small number of new individuals (5). For the great tits the 392 

opposite scenario was tested by using a CNN that was trained for a small group of 393 

individuals (10) and is exposed to a large number of new individuals (67). For the sociable 394 

weavers, we selected 50 pictures of each of the five birds (a total of 250) that were not in the 395 

training dataset and 250 random pictures from the pool of birds used during training. For the 396 

great tits 250 random pictures were selected from the pool of 67 individuals that were not in 397 

the training dataset. We limited the number of pictures from the same individual to a 398 

maximum of eight (3.91± 1.67 mean±SD) in order to keep a large number of different 399 

individuals in this dataset (64 out of the 67 were used) and randomly selected 250 pictures 400 

from the 10 individuals for which the CNN was trained. Shannon’s entropy of each of the 401 
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distributions was calculated from the classification (softmax) output to empirically determine 402 

a confidence threshold to consider a bird as part of the training dataset. 403 

RESULTS: 404 

CNN: 405 

Sociable weavers: 406 

The model was able to achieve an accuracy of 92.4% (Table 1) after training for 21 epochs. 407 

When the model was used to predict the identity in four other contexts, it appears that the 408 

accuracy of top perspective’s context was lower (67.5%). After adding blur and noise to the 409 

training images, the model achieved a validation accuracy of 90.3%, while successfully 410 

increasing the accuracy from the top perspective to 91.6% (Table 1). 411 

Table 1. Rate of positive identification when testing in all contexts for the sociable weavers. 412 

Right column gives the identification success rate when noise and blurs were artificially 413 

added to training images to match the quality of testing images.  414 

Perspective Positive identification 

Positive identification 

after adding blur and 

noise 

Validation 0.924 0.903 

Close 0.926 0.926 

Far 0.958 0.972 

Ground 0.867 0.944 

Top 0.675 0.916 

 415 

Great tits: 416 

The model reached 90.0% accuracy after training for 32 epochs. When using the pictures 417 

from the top perspective recording the birds on the table the model correctly predicted the 418 

identity of the birds in 85.1% of the pictures. 419 
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Zebra finches: 420 

The model reached 87.0% accuracy after training for 11 epochs with similar accuracies for 421 

males and females (85% for males, 88.9% for females). When using the trained model to 422 

predict the identity of the birds when they were in small groups the model correctly predicted 423 

the identity of a bird present in that group in 93.6% of the time. 424 

New birds: 425 

The entropy of the softmax outputs (i.e. probabilities) was smaller when predicting the 426 

identity of birds present in the training dataset, compared to when predicting the identity of 427 

new birds (Fig. 7). This is due to the fact that when predicting the identity of a bird from the 428 

training dataset, there is usually one that stands out with very high probability (indicating the 429 

bird’s identity) and the remaining probabilities are very low (other birds’ identities). In 430 

contrast, when predicting the identity of a new bird, the probabilities were usually more 431 

equally distributed across all classes, all with low values.  432 

For the sociable weavers 90% of entropies are below 0.75 when predicting the identity of 433 

birds from the training dataset and only 17% of them are under this value when predicting 434 

the identity of new birds. This means that with this 0.75 threshold there is a 17% chance that 435 

a new bird will be erroneously classified as one of the birds of the training dataset. A value of 436 

17% should be acceptable if new individuals are not common.  437 

For the great tits scenario, in which the appearance of new birds is frequent, defining a 438 

simple threshold would not be enough as there is a too much overlap between the birds in 439 

the training and the new birds’ entropy. 440 
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 441 

Figure 7. Distribution of the entropies of softmax probabilities when predicting the identity of 442 

birds from the training dataset or of new birds for a) sociable weavers and b) great tits. 443 

DISCUSSION: 444 

Deep learning has the potential to revolutionize the way in which researchers identify 445 

individuals. Here, we propose a practical way of collecting large labelled datasets, which is 446 

currently identified as the main bottleneck preventing the application of deep learning for 447 

individual identification in animals (Schneider, Taylor, Linquist & Kremer, 2018). We also 448 

demonstrate the steps required to train a classifier for individual identification. To our 449 

knowledge, this is the first successful attempt of performing such an individual recognition in 450 

small birds. Using data collected with automatized procedures, CNNs proved to be effective 451 

for identifying individuals in three different bird species, including two species that are among 452 

the most commonly used models in the field of behavioural ecology, and therefore such 453 

results highlight the potential of applying CNN to a vast range of research projects. 454 

Furthermore, we found high generalization capacities of the trained CNNs, meaning that the 455 

rate of successful identification remained high in various contexts. This is particularly 456 

relevant as researchers often need to collect data in contexts that may be challenging, from 457 

parental behaviour at the nest to dominance interactions at artificial feeders. However, we 458 

also show that the models’ performance can become lower when new individuals join the 459 

population, especially when new individuals are common. . 460 
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The first critical step when attempting to implement deep learning is to guarantee that 461 

enough training data can be collected to train a model. In this study, for the two wild 462 

populations, we showed that we can rely on RFID technology to gather large amounts of 463 

automatically labelled data. Since this technology has been increasingly used on birds, we 464 

believe that the proposed method for automatizing data collection for deep learning 465 

applications could be easily and rapidly implemented in a large number of research 466 

programs. Furthermore, the method could be easily extended to other animals and other 467 

identification techniques. The main idea is to develop a framework in which the same 468 

individuals can be repeatedly photographed, while those pictures are automatically labelled. 469 

For example, GPS (e.g., Weerd et al., 2015) or proximity tags technology (e.g., Levin, 470 

Zonana, Burt & Safran, 2015) could also be used in combination with camera traps to collect 471 

training data. Even with non-electronic tags, it should be possible to design setups to 472 

photograph animals automatically, such as by isolating the animals as we showed here with 473 

the zebra finches. With the popularization of imaging and sensor technologies, we believe 474 

that efficiently collecting a large amount of data should no longer represent a bottleneck 475 

preventing the application of deep learning methods such as CNN. 476 

Variation in the recording conditions, for example due to light intensity, shadow or 477 

characteristics inherent to the recording quality, should also be taken under consideration as 478 

it could limit the model generalization and application ability. Photographing the animals 479 

across different times of the day and in different days provides the CNN with a very diverse 480 

training dataset making the CNN invariant to such variations. Furthermore, we show here 481 

that if the conditions for training are slightly different from the recording conditions in which 482 

the CNN is going to be applied, it is possible to artificially modify the pictures used for 483 

training in order to simulate the conditions under which the pictures of the context of interest 484 

will be taken. Specifically, we used blur and noise transformations in the sociable weaver 485 

dataset to improve the generalization capability of our model as the testing images had a 486 

lower quality. This confirms that using artificially degraded training pictures can be used to 487 
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improve CNN generalization capability (e.g. Vasiljevic, Chakrabarti & Shakhnarovich, 2016). 488 

Other transformations could potentially be applied on the training dataset. Such 489 

transformations should consider the type of images on which the model will be used. For 490 

example, if illumination conditions of the training pictures are different from the context of 491 

interest, brightness and contrasts transformations could be applied to the training data in 492 

order to make the CNN light invariant. This generalization capability is an important novelty 493 

of this study compared to previous work on small-animal tracking using computer vision, 494 

which have been restricted to standardized conditions and to a fixed number of individuals 495 

determined beforehand (e.g. Pérez-Escudero et al., 2014), which are not feasible when 496 

working with wild animal populations.  497 

For research questions that do not need long time windows of data collection or that are 498 

conducted on species that maintain their appearance with great consistency, collecting 499 

training data within a short-period of time might be enough for developing an algorithm for 500 

individual identification. However, for longer-term studies and when working with species 501 

that have the potential to change their appearance (e.g. moulting in birds), this constitutes a 502 

potentially serious limitation. The problem of long-term application of neural network 503 

algorithms has been studied in the context of place recognition (e.g. streets recognitions; 504 

Gomez-Ojeda et al., 2015); however, to our knowledge, there is still no study addressing the 505 

impact of changes in appearance in animals in deep learning-based identification. Currently, 506 

we do not know if using training data collected during long periods of time or targeting 507 

specific parts (e.g. excluding the wing feathers and considering only the top part of the back, 508 

or other body parts such as the flank or the bib) of the birds would make the CNN 509 

appearance-invariant by learning more conservative features of the birds that are kept 510 

across moulting events. In order to fully address the problem and the potential solutions, 511 

pictures of birds collected over longer periods of time and from multiple body parts are 512 

needed. However, while these datasets are not available, the automatization of training data 513 
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collection is an immediate and effective solution, i.e. it is possible to continuously collect 514 

training pictures and routinely re-train the CNNs using the new updated dataset. 515 

The arrival of new individuals to the study population is another challenge that needs to be 516 

carefully addressed. If these new birds are marked with a pit-tag, the CNN could be updated 517 

similarly to the problem of changes in appearance discussed above. If the new individuals 518 

are not marked and cannot be captured the problem fits in the anomaly (Chandola, Banerjee 519 

& Kumar, 2009) and novelty (Pimentel, Clifton, Clifton & Tarassenko, 2014) detection 520 

domain. Here we used a simple approach based on the entropy of classification 521 

probabilities, which appeared useful if the CNN was trained on a relatively large number of 522 

individuals and if immigrants are uncommon in the population, like in the sociable weaver 523 

example. Moreover, the error rate might be reduced if the identification is based on a 524 

collection of frames (e.g. pictures extracted from a short video recording of the animal) 525 

instead of single picture. However, for some studies, such conditions might not be met and, 526 

as we showed for the great tit scenario, where we had a low number of individuals in the 527 

training dataset and observed a large number of new birds, other approaches have to be 528 

explored when sufficient individual data is available (for example by using Siamese neural 529 

networks; Varior, Haloi & Wang, 2016). The field of deep learning progresses due to the 530 

existence of large and freely availed databases which are used to try different approaches 531 

for a wide range of classification problems. For example, the ImageNet database (Deng et 532 

al., 2009) has been used numerous times to create algorithms for object recognition. The 533 

LFW dataset (Huang, Mattar, Berg & Learned-Miller, 2008) contains thousands of pictures of 534 

human faces to development algorithms for human face recognition and identification. The 535 

nordland dataset (Sünderhauf, Neubert & Protzel, 2013) contains footage of more than 536 

700km of northern Norway railroad recorded in different seasons (summer, winter, spring 537 

and fall) and has been used to address the problem of place recognition under severe 538 

environmental changes. Similarly, biologists aiming at taking advantage of the potential of 539 

deep learning need large datasets with labelled pictures of several individuals, taken across 540 
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different contexts and across different life stages, in order to develop reliable algorithms that 541 

are able to cope with the challenges presented here, among others. 542 

Having large datasets will also allow optimizing the CNN performances. Other network 543 

architectures (e.g. ResNet; He, Zhang, Ren & Sun, 2016) and different hyper-parameters 544 

settings (e.g. learning rate) than the ones used here can yield different, and potentially 545 

improved, results. There are also other pre-processing steps that can greatly improve the 546 

model training and reduce the number of images needed such as, image alignment (e.g. 547 

Deb et al., 2018; Lopes, de Aguiar, De Souza, & Oliveira-Santos, 2017), which could be 548 

used to decrease variation in the birds’ pose. Training a CNN encompasses a great deal of 549 

trial and error and different systems will present different challenges. Nonetheless, we hope 550 

that our work will motivate other researchers to start exploring the possibility of using deep 551 

learning for individual identification in their model species, and conduct further work on 552 

addressing the constraints of working with birds both in the wild and in captivity (namely 553 

moulting and introduction of new individuals). The ability to move beyond visual marks and 554 

manual video coding will revolutionise many of the questions we can address by making 555 

data collection more efficient, cheaper and faster. 556 
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