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Figure 5: Live-cell imaging after repression of individual ASD genes confirms defects in 
cellular proliferation and neurite extension. A) Schematic overview of arrayed guide 
RNA (gRNA) screening. Cells infected with a single gRNA are assayed by time-course 
imaging for confluence and neurite extension. B) Representative images of neural 
progenitor cell proliferation assay at the start and end-points (day 0 and day 3). Neural 
progenitor cell proliferation is measured by creating a cell mask (orange) and computing 
the area of confluence at each time point. C) Representative image of neurite extension 
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assay at 5 days post-differentiation. Neurite extension is measured with the NeuroTrack 
assay in the IncuCyte software. Neurite masks are shown (purple). Neurite extension 
lengths are normalized by cell cluster area to account for any differences in cell number. 
Scale bars = 200 µm. d) Time-lapse imaging of cellular proliferation (left), assessed by 
the percentage of confluence, reveals significant decreases or increases (right, * p < 
0.01, t-test, dotted horizontal line indicates average in control cells). E) Time-lapse 
imaging of neurite extension (left) and quantification (right, * p < 0.01, t-test, dotted 
horizontal line indicates average in control cells). All values in (d) and (e) represent 
mean ± SEM. Cells with each individual gRNA were plated in duplicate or triplicate wells 
for each experiment. Images were captured from 9 fields per well at each timepoint. 
Experiments were repeated 2-3 times for all gRNAs.   

Remarkably, in these live-cell imaging experiments, we observed decreased proliferation 

after repression of each of the 5 proposed ‘Delayed Differentiation’ genes (Fig 5d). In 

contrast, PTEN repression caused a major increase in proliferation, consistent with our 

prediction and with its known function as an inhibitor of neural stem cell proliferation46. 

For the neurite extension assay, most of our predictions were also confirmed (Fig 5e), as 

repression of 4 of the 5 ‘Delayed Differentiation’ genes, ASH1L, ADNP, ARID1B, and 

DYRK1A, caused modest to severe reductions in neurite outgrowth. In agreement with 

our transcriptome-based prediction, PTEN repression increased neurite extension in this 

assay, a result consistent with the earlier observation that PTEN enhances the length of 

regenerating axons in vivo 47. Together, proliferation and neurite extension assays 

confirmed the consequences of ASD-gene repression predicted by scRNA-seq analyses, 

demonstrating the utility of our approach for high-throughput functional elucidation of 

neurodevelopmental disease-associated genes. Live-cell imaging further supports the 
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functional convergence of some ASD genes acting at an early stage to delay neuron 

differentiation and decrease proliferation.  

 
CRISPR repression in iPSC neural progenitor cells confirms functional gene modules 
and transcriptional convergence at cell-cycle dysregulation  
 
To validate the early transcriptional convergence and effects on cellular proliferation of 

the ASD gene modules in an orthogonal cellular model system, we performed CRISPR 

repression of individual genes in human iPSC-derived neural progenitor cells. First, we 

confirmed that dCas9-KRAB repression was efficient in these cells for a subset of genes 

using qPCR (Figure 6a). Next, we performed RNA-seq after knockdown of seven 

individual ASD genes and a non-targeting control (Methods). RNA-seq confirmed 

efficient knockdown for 5/7 target genes (Supplementary Figure 7A). Clustering 

transcriptomes using principal component analysis closely reproduced the gene 

modules discovered in LUHMES, namely the clustering of four members of the ‘Delayed 

Differentiation’ gene set (ADNP, ARID1B, ASH1L, and DYRK1A) and the clustering of 

‘Accelerated Differentiation’ genes CHD8 and PTEN (Fig 6b). The same clusters were also 

observed by unsupervised hierarchical clustering of transcriptomes using highly variable 

genes (Supplementary Figure 7B). As in LUHMES, the ‘Delayed Differentiation’ genes 

strongly converged at the level of transcriptional regulation (Fig 6c), affecting genes 

enriched for roles in chromatin remodeling, Wnt signaling and cell-cycle regulation (Fig 

6d). In these cells, the two ‘Accelerated Differentiation’ genes had strongly overlapping 
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transcriptional consequences on both down- and up-regulated genes (Sup Fig 7C) 

leading to misregulation of cell-cycle genes and increased cell division pathways (Sup Fig 

7D). This transcriptional convergence could be explained by the observation that CHD8 

repression also decreased the expression of PTEN (Figure 6A), implying that these genes 

are in the same pathway. A proliferation assay in these cells after individual gene 

repression functionally confirmed that ASH1L and CHD2 decreased proliferation and 

CHD8 repression enhanced it (Fig 6e). These results broadly confirm both the 

membership and functional interpretation of ASD-genes modules in a second human 

neural progenitor system, further validating the LUHMES as a relevant model for first 

pass high-throughput functional genomics screening.   
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Figure 6: CRISPR repression in iPSC neural progenitor cells confirms modules of ASD 
genes and transcriptional convergence at cell-cycle dysregulation. a) Efficient dCas9-
KRAB repression of individual target genes using the designated gRNAs in iPSC-NPCs. N = 
3 biological replicates for all qPCR experiments. Values represent mean ± SEM. b) 
Clustering of RNA-seq profiles by principal component analysis reveals clustering of 
‘Delayed’- and ‘Accelerated Differentiation’ module ASD genes c) ‘Delayed 
Differentiation’ module gene repression elicits strongly overlapping transcriptional 
consequences. d) Gene Ontology analysis of downregulated genes shows enrichment 
for chromatin remodeling and cell-cycle genes. e) Cellular proliferation measured by cell 
number after individual gene repression reveals significant decreases or increases (* 
indicates p < 0.01, n = 4).  
 
 
Functionally convergent ASD gene modules predict shared clinical phenotypes 
 
Linking genotype to phenotype is the ultimate goal of functional genomics. To this end, 

we sought to determine if the functional convergence of ASD genes observed in our 

cellular model could predict a convergence of clinical phenotypes for these genes.  To 

do so, we first integrated the results of our pseudotime analysis, transcriptional 
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clustering, and functional profiling by hierarchical clustering (Figure 7a). As expected, 

this integrated model clearly separated the ‘Delayed Differentiation’ module genes from 

those in the ‘Accelerated Differentiation’ module. Next, we performed hierarchical 

clustering on the prevalence of clinical phenotypes from one study on individuals with 

dominant loss-of-function mutations in these genes48. Strikingly, clustering by clinical 

phenotypes fully recapitulated our proposed convergent modules and supports 

mechanistic links of convergent pathways to shared clinical outcomes (Fig 7b). For 

example, individuals with mutations in the ‘Delayed Differentiation’ module genes were 

highly likely to have intellectual disability, consistent with increased severity owing to 

early neurodevelopmental dysregulation. Comparing across the two clusters, these 

individuals have a higher incidence of microcephaly which is mechanistically consistent 

with the neural progenitor cell proliferation defects we observed. Likewise, individuals 

with PTEN and CHD8 mutations have a comparatively reduced prevalence of intellectual 

disability but a high prevalence of macrocephaly, consistent with the observed 

functional convergence of these genes on promoting neuronal differentiation, 

proliferation, and neurite outgrowth. Recent studies have confirmed that disruptive 

mutations in ADNP, ARID1B, CHD2 and DYRK1A are associated with a higher prevalence 

of severe neurodevelopmental delay. Conversely, CHD8 and PTEN mutations are 
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associated with ASD without neurodevelopmental delay6.  

 

Figure 7: Experimental and clinical convergence of functional ASD gene modules. A) 
Integrating transcriptional and functional assays reveals and refines two functionally 
convergent modules of ASD genes. b) Clinical phenotype data reveals the same two 
modules of ASD genes.  %: Prevalence of phenotype (percentage) in individuals from 48    
 
Discussion 
 

The genetic and phenotypic heterogeneity of neurodevelopmental disorders 

challenge the understanding and treatment of these conditions. Over 1100 genes have 

been discovered to cause neurodevelopmental disorders when mutated and this 

number will continue to increase.  As a result, it is imperative to develop better methods 

to cost-effectively unravel the functional contributions of these genes to both normal 

development and disease. Furthermore, the identification of convergent pathogenic 

mechanisms across diverse causative genes would facilitate the development of 

therapeutic interventions, but this requires a rapid, scalable, and disease-relevant 

model system in which tens to hundreds of genes can be modulated in parallel and their 
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effects measured in a robust manner.  Here we have taken an important step toward 

establishing such a system by coupling pooled dCas9-based transcriptional repression to 

single-cell RNA-sequencing in a simple and highly tractable human model of neuron 

differentiation. Using this approach, we perturbed the expression of 13 diverse autism-

associated genes and uncovered unique and overlapping consequences on 

transcriptional networks and pathways. This led to specific predictions about functional 

roles of these genes in growth and neurite extension which we then validated through 

imaging. In addition to demonstrating the utility of a high-throughput functional 

genomics approach to dissect gene function, our results suggest that many ASD genes 

might act on common pathways, namely by modifying neural progenitor cell 

proliferation and cell-cycle.  

By integrating pseudotime analysis, transcriptional clustering, and the cellular 

phenotyping of individual neurodevelopmental genes, we uncovered two consistent 

modules of genes with opposing functionality in altering the course of neuron 

differentiation. We identified a ‘Delayed Differentiation’ module comprised of 5 ASD-

genes and predicted that the knockdown of these genes would decrease neural 

progenitor cell proliferation.  We further predicted, for a subset of this ‘Delayed 

Differentiation’ module, that individual gene knockdown would decrease neuron 

projection. Finally, we also predicted that PTEN repression would increase both 

proliferation and neuron projection. Neural progenitor cell proliferation, the decision to 
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exit the cell-cycle, and neuron differentiation are complex and interrelated processes49. 

Increased proliferation could either drive an expansion of a progenitor pool or increase 

neurogenic cell divisions leading to precocious differentiation. A parsimonious 

explanation of our data in LUHMES is that the progression of neuron differentiation is 

preceded by a few requisite neurogenic cell divisions. Delaying these divisions by 

disrupting cell cycle, or enhancing them by increasing proliferation rate, will 

consequently delay or accelerate neuronal differentiation progression respectively. We 

confirmed these predictions by performing live-cell imaging of cell proliferation and 

neurite extension after gene knockdown, providing experimental functional validation 

for these ASD genes. Convergence of ASD genes at the regulation of cell-cycle genes was 

supported in an orthogonal model using human iPSC-derived NPCs. Heterochronicity of 

neurodevelopmental gene expression networks and consequent dysregulation of 

neuron differentiation is a plausible mechanism underlying ASD pathology, and has 

been observed in other cellular models of ASD13,50.  

We have demonstrated that LUHMES cells enable the rapid and robust 

generation of post-mitotic human neurons with transcriptional profiles that correspond 

closely to early human cortical development, a critical period of neurodevelopment that 

has been implicated in the etiology of ASD and other neurodevelopmental disorders. 

Confirmation of our results in human iPSC-derived NPCs further validates the utility of 

LUHMES for discovering potential mechanisms of a subset of neurodevelopmental 
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disease-associated genes. Because transcriptional regulators are particularly enriched 

for high early-fetal expression6, LUHMES may be especially suited to studying this class 

of genes. However, for some other classes of neurodevelopmental genes, LUHMES cells 

may not be the most well-suited model system.  For example, synaptic genes are more 

postnatally expressed across a broad range of neuronal types. iPSC-derived induced 

excitatory and inhibitory neurons, co-cultures of these cells, or 3D-organoids are likely 

to be more suitable than LUHMES for studying these genes and their roles in 

establishing synaptic phenotypes. These alternative human neurodevelopmental 

models may also be better suited for investigating genes and pathways involved in cell-

fate specification, neuronal migration, and neuronal activity.  However, the 

experimental complexity and heterogeneity of these models compared to the rapid and 

reproducible differentiation of LUHMES make them less suited for high-throughput 

analyses of sets of genes that are likely to be involved in neuronal differentiation or 

maturation.   

Compared to traditional single gene disease modeling experiments in mice or 

human cells (e.g. refs. 51–55), our approach increases the number of genes that can be 

assayed in parallel while also overcoming many of the primary sources of variation in 

such models. Critically, this enables direct comparison of results across genes to 

discover convergent mechanisms. Current single-cell technology enables pathway-level 

inferences of transcriptional dysregulation and prioritization of candidate genes for 
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further functional validation in a rapid and cost-effective manner for tens of disease 

implicated genes. However, noise and sparsity in single cell RNA-seq data limit its power 

to detect differentially expressed genes. Quantitative measurements of knockdown 

efficiency of individual gRNAs within single cells are difficult, and individually validating 

gRNAs is incompatible with the goal of high-throughput screening.  Our qPCR 

measurements of gRNA efficiencies showed a range of 40-90% knockdown for all tested 

target genes, which may better represent haploinsufficiency than a total knock-out 

approach.  Exquisite dosage sensitivity of certain genes raises the possibility of variable 

cellular phenotypes depending on the degree of knockdown. Including more gRNAs per 

gene, and enough cells to analyze effects on a per-gRNA instead of per-gene basis, 

would resolve these potential confounds. Improvements in the sensitivity and 

throughput of scRNA-seq, as well as declining costs, will enhance its utility in future 

experiments. 

 A major strength of our approach is its extensibility to different model systems 

for the rapid functional profiling of diverse gene sets, allowing for prioritization of 

candidate genes for low-throughput cellular phenotyping by imaging. Although we only 

measured proliferation and neurite extension with live-cell imaging, the integration of 

these data with pooled transcriptomes revealed consistent gene modules that were also 

convergent at the level of clinical phenotypes in individuals with mutations in these 

genes48, illustrating the potential of this approach for linking molecular pathways to 
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clinical phenotypes. Furthermore, while not implemented in this study, this approach is 

amenable to screening of chemical libraries to discover effective pharmaceutical 

interventions for any observed defects, and to determine whether convergent genetic 

modules will respond to common treatments. Pooled, rather than arrayed, optical 

phenotyping approaches would further accelerate these efforts56. Such high-content 

imaging and screening in future experiments will enable detailed characterization of 

perturbation-induced neuronal phenotypes and the discovery of convergent molecular 

endophenotypes of disease pathogenesis.  

 
Materials and Methods  
  
Cell culture  
  
HEK293T cells were maintained in Dulbecco’s Modified Eagle Media (DMEM) 

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin, and 

passaged every 3-4 days after enzymatic dissociation using trypsin. LUHMES cells (ATCC 

cat# CRL-2927) were cultured according to established protocols with minor 

modifications 17.  Proliferating LUHMES cells were maintained in DMEM/F12 media 

supplemented with 1% N2 and 40 ng/mL basic fibroblast growth factor (bFGF) and 1% 

penicillin-streptomycin.  Cells were grown in T25 flasks coated with poly-ornithine and 

fibronectin. For differentiation, bFGF was withdrawn from the media and tetracycline 

was added (1 µg /mL) to repress the v-Myc transgene. For time-course RNA-sequencing 

experiments, neurotrophic factors (cAMP and GDNF) were added to the differentiation 
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media. These factors were withheld from repression experiments to increase the 

sensitivity to detect perturbations. For time-course differentiation, two replicates of 

LUHMES cells were differentiated for each time point and total mRNA was purified. RNA 

was sent for sequencing at the Genome Technology Access Center (GTAC) at 

Washington University School of Medicine. Polyclonal dCas9-KRAB-blast expressing 

LUHMES were generated by infecting cells with lentivirus and selecting using blasticidin 

(10 µg/mL). Lenti-dCas9-KRAB-blast was a gift from Gary Hon (Addgene #89567)57.  

dCas9-KRAB LUHMES were maintained in blasticidin-containing media to prevent 

transgene silencing.   

Human iPSC-derived neural progenitor cells (XCL4) were acquired from STEMCELL 

technologies (cat #70902) and grown in Neural Progenitor Medium 2. While now 

discontinued by STEMCELL technologies, these reagents are available from XCellScience. 

Tetracycline inducible dCas9-KRAB NPCs were generated after neomycin selection (200 

µg/mL). pHAGE TRE dCas9-KRAB was a gift from Rene Maehr and Scot Wolfe (Addgene 

#50917)58. Cells were plated at a density of 200,000 cells per well in a 12-well plate on 

Matrigel and infected in triplicate with individual guide RNAs targeting ASD genes. Next 

day, media containing doxycycline (2µg/mL) and puromycin (1 µg/mL) was added to 

induce dCas9-KRAB and select for guide-containing cells. Cells were passaged 4 days 

after selection. mRNA was collected 4 days after replating (8 days of repression), and 3’ 

RNA-seq libraries were prepared by BRB-seq59. For proliferation assays, TRE dCas9-KRAB 
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XCL4 cells were infected in quadruplicate with gRNAs targeting 7 ASD-genes and 1 non-

targeting gRNA. After puromycin selection and doxycycline induction, cells were plated 

at equal cell numbers, grown for 8 days, and total cells were counted using a 

hemocytometer. Cell counts were compared to cells infected with a nontargeting gRNA  

 

gRNA Cloning 
  
For each target gene, we selected three gRNAs optimized for repression from the 

Dolcetto library36. These gRNAs direct dead Cas9 (dCas9) to a window 25-75 nucleotides 

downstream of the gene’s transcription start site. gRNAs were screened for sequence 

features predicting high activity and no off-target effects. gRNAs were cloned into a 

CRISPR-repression optimized vector to enable pooled lentiviral preparation without 

guide-barcode swapping35–37. Lentiviral gRNA expression vectors were created by 

annealing two complementary oligonucleotides encoding gRNAs at 100 µM (IDT DNA) 

with sticky-ends and ligating annealed products into BsmB1 digested CROP-seq-opti 

vector using Golden Gate assembly.  CROP-seq-opti was a gift from Jay Shendure 

(Addgene #106280)35.  Each Golden Gate assembly reaction contained 6.5 µL water, 1 µL 

1:10 diluted annealed oligos, 1 µl T4 ligase, 1 µl T4 ligase buffer, and 0.5 µL BsmB1. 

Reactions were incubated at 16 ˚C for 10 minutes (ligation) and 55 ˚C for 10 minutes 

(restriction) for 4 cycles. 1 µL of Golden Gate mixture was transformed into 30 µL Stellar 

Competent cells and plated onto ampicillin-containing agar plates.  Individual colonies 
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were miniprepped after colony PCR and all constructs were verified by Sanger 

sequencing (Genewiz).  

  
Lentivirus production of individual gRNAs and pooled gRNA libraries   
 
Lentivirus was produced according to established protocols. In brief, HEK293T cells were 

seeded at a density of one million cells per well of a 6 well plate and transfected with 2 

micrograms of DNA comprising 1 µg gRNA-transfer plasmid, 750 ng psPAX2 and 250 ng 

pMD2.G. psPAX2 and pMD2.G were gifts from Didier Trono (Addgene #12259 & 

#12260). Cells were transfected using the PEI method (Polysciences). Media was 

changed 12 hours after transfection and viral-containing supernatant was collected 24 

and 48 hours later. Lentivirus was concentrated using LentiX reagent and resuspended 

in 50 µL aliquots for each mL of original supernatant (20X concentration). Lentivirus was 

titered on LUHMES cells by infecting cells with serial dilutions of virus, followed by 

antibiotic selection (puromycin for gRNAs, 1 µg / mL). For pooled gRNA libraries, equal 

amounts of DNA for each gRNA were mixed prior to transfection.  

 

Lentiviral transduction of gRNAs  
  
For individual or pooled gRNAs, LUHMES cells were infected with serial dilutions of virus. 

Virus-containing media was removed after 4-6 hours of transduction. Antibiotic 

selection with puromycin (1 µg/mL) was applied 24 hours after infection. Wells in which 

no more than 25% of cells survived, corresponding to multiplicity of infection < 0.3, 
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were used for experiments. Cells were expanded for 4 days before plating for 

differentiation. After re-plating, cells were differentiated for 6 to 8 days in the presence 

of tetracycline to allow efficient repression and differentiation. Puromycin and 

blasticidin were maintained for the duration of all experiments to ensure gRNA and 

dCas9-KRAB expression in all cells.  

  
Quantitative real-time PCR   
  
RNA was purified from 6-8 day differentiated LUHMES using Trizol. 1 µg of RNA was 

reverse-transcribed into cDNA using qScript cDNA Supermix (Quantabio). Quantitative 

real-time PCR (qRT-PCR) was performed on an ABI 7900HT using Sybr Green SuperMix 

(Quantabio). Relative expression levels were determined using the comparative 

threshold (ΔΔCT) method60. Beta-actin (ACTB) mRNA levels were used as a 

normalization control.  Sequences for qRT-PCR primers are:  

ADNP qPCR fw: CATGGGAGGATGTAGGACTGT 
ADNP qPCR rv: ATGGACATTGCGGAAATGACT 
  
CTNND2 qPCR fw: AGGTCCCCGTCCATTGATAG 
CTNND2 qPCR rv: ACTGGTGCTGCAACATCTGAA 
  
PTEN qPCR fw: TTTGAAGACCATAACCCACCAC 
PTEN qPCR rv: ATTACACCAGTTCGTCCCTTTC 
  
DYRK1A qPCR fw:  AAGAAGCGAAGACACCAACAG 
DYRK1A qPCR rv:  TTTCGTAACGATCCATCCACTTT 
  
CHD8 qPCR fw:  CTGCACAGTCACCTCGAGAA 
CHD8 qPCR rv:  TGGTTCTTGCACTGGTTCAG 
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HDAC5 qPCR fw:  GTACCCAGTCCTCCCCTGC 
HDAC5 qPCR rv:  GCACATGCACTGGTGCTTTA 
  
ACTB qPCR fw:  CATGTACGTTGCTATCCAGGC 
ACTB-qPCR rv:  CTCCTTAATGTCACGCACGAT 
 
  
Single cell transcriptome capture 
 
12,000 cells were loaded per lane of a 10X Chromium device using 10X V2 Single Cell 3ʹ 

Solution reagents (10X Genomics, Inc). Two biological replicates of pooled single-cell 

experiments were performed independently. Each replicate was loaded across 1 or 2 

lanes of a 10X Single Cell A Chip V2. Single cell libraries were prepared following the 

Single Cell 3' Reagent Kits v2 User Guide (Rev B). Single cell cDNA libraries were 

amplified for 12 initial cycles after reverse transcription. A fraction of the pre-

fragmented cDNA libraries was reserved for gRNA-specific enrichment PCR.  

 
gRNA-transcript enrichment PCR 
 
Three gRNA-specific enrichment PCR replicates were performed for each single cell 

library. Each reaction used 1 µL of the single-cell libraries as a template to amplify 

captured gRNA sequences.  A single-step PCR reaction was used to amplify gRNA from 

total captured cDNA libraries using custom primers: 

P5-index-Seq1-fw: 

AATGATACGGCGACCACCGAGATCTACACAGGACAACACTCTTTCCCTACACGACGCTCTTCCG

ATCT 
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P7-Index-Seq2-10x-sgRNA:  

CAAGCAGAAGACGGCATACGAGATCGGGCAACGGTGACTGGAGTTCAGACGTGTGCTCTTCCG

ATCTGTGGAAAGGACGAAACA*C*C*G       

* denotes phosphorothioate modification to reduce mispriming due to proof-reading 

polymerase  

 

gRNA Depletion Analysis 

Almost all of the gRNAs in our lentiviral pool (43/47) were well-represented in 

perturbed cells at similar frequencies, yet 4 gRNAs (targeting ASH1L, POGZ gRNAs 1 and 

2, and SETD5) were significantly depleted (chi-squared test, p < 0.01, Supplementary 

Figure 8A). We hypothesized that their depletion was the result of fitness defects 

caused by the repression of these genes61,62. To test this, we infected neural progenitor 

cells individually with three of the depleted gRNAs and monitored cell proliferation 

using live-imaging. Compared to a non-targeting gRNA, all of the depleted gRNAs caused 

a significant reduction in cellular proliferation, explaining why few cells with these 

gRNAs were detected in our pooled experiment (Supp Fig 8B).  

 
Bioinformatic Analyses  
 
Sequencing data corresponding to single-cell transcriptomes were processed using the 

10X software package Cell Ranger (v 2.1.0). We used this software to map reads to hg38 

using STAR (v2.5.1b). The output filtered gene expression matrices were imported into R 
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(v 3.5.1) for further analysis. Most analyses were performed using the Seurat (v3.0) and 

Monocle (v2.10.0) packages. Individual cells were sequenced to an average depth of 

50,208 ± 7,310 mapped reads per cell (2,145 ± 448 genes detected, 6,625 ± 1766 unique 

molecular identifiers (UMIs)).  Quality control was performed in Seurat by computing 

the number of transcripts per cell and the percentage of mitochondrial gene expression. 

Cells with more than 500 but fewer than 7500 detected genes, and less than 8% 

mitochondrial gene expression were retained. gRNAs were detected by next-generation 

sequencing of the custom gRNA-enrichment PCR. Look-up tables of gRNA and cell 

barcodes were generated using custom Python scripts with a detection threshold of 20 

UMIs per gRNA-cell barcode combination. Cell barcodes from filtered high-quality cells 

were matched against this table and only cells with a single gRNA were retained for 

analysis. We estimated gRNA knock-down efficiency separately on independent 

replicates using the mimosca.run_model() command in the MIMOSCA toolkit. 

Differences in total UMIs, experimental batch, and mitochondrial percentage were 

accounted for during data normalization.  Normalized filtered data were used for the 

remaining analyses. For each perturbation, we grouped all cells with any of the three 

gRNAs targeting the same gene, as we have demonstrated that all three gRNAs typically 

have strong on-target activity (Sup Fig 2D).  
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Clustering Analysis 

Dimensionality reduction was performed by running principal component analysis (PCA) 

and clustering cells by the first 6 PCAs using UMAP63. To assess global variation in 

transcriptional states, we visualized all single cell transcriptomes on the UMAP. This 

revealed that over 99% of all cells formed a single cluster of post-mitotic neurons as 

defined by the absence of proliferative marker expression (Sup Fig 3A-B).  This is 

consistent with our experimental design capturing a single timepoint (day 7) in a rapid 

isogenic model of neuronal differentiation. Within the major cluster, however, the 

expression of markers of neuronal differentiation showed variable patterns across the 

UMAP (Sup Fig 3C-F). Moreover, the most variably expressed genes in single-cell 

transcriptomes were enriched for functional roles in neurogenesis and axon projection, 

suggesting heterogeneity of neuronal differentiation at the single-cell level.  

 

Pseudotime Analysis 

We projected cells in pseudotime in Monocle by ordering cells by highly variable genes. 

Dimensionality reduction was performed using the “DDRTree” method. Trajectories 

based on different sets of highly variable genes were qualitatively similar, showing a 

single trajectory with only minor branching. The pseudotime trajectory is comprised of 

individual line segments called pseudotime ‘States’. To ensure high correlation between 

pseudotime and neuron differentiation status, we computed the state-specific genes in 
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the bulk RNA-seq dataset for each day of differentiation and used these genes for 

pseudotime ordering. We then transferred pseudotime state labels into Seurat to 

discover marker genes for each pseudotime state. Transferring pseudotime labels onto 

the UMAP plot showed distinct banding patterns representing subtle transcriptional 

state differences within the main cluster (Supplementary Figure 9A). Re-clustering the 

earliest and latest pseudotime labeled cells revealed two completely distinct cell states 

expressing either differentiation (NEUROD1) or maturation (STMN2) markers64,65 (Supp 

Fig 9C-E). This confirms that pseudotime is more sensitive to detect biologically relevant 

transcriptional patterns than UMAP clustering in our dataset.  We tested for altered 

pseudotime state membership proportions for each gRNA using chi-squared test. We 

computed the distribution of pseudotime state scores for each gRNA, and compared 

their averages using t-tests.  

 

Transition Mapping of LUHMES Differentiation  

Transition mapping allows the comparison of in vitro neuron differentiation to in vivo 

development by computing the overlap of differentially expressed genes at selected 

time points across datasets24. We compared the in vitro LUHMES differentiation 

timepoints day 0 to day 8 to transcriptional changes across brain regions and 

developmental timepoints in the BrainSpan Atlas of the Developing Human Brain. 

LUHMES differentiation had the strongest overlap with transcriptional changes 
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occurring in the cortex of post-conception week 8-10 embryos and week 10-13 

embryos.  

 

Differential Gene Expression Analysis 

 Differential gene expression testing was performed using the FindMarkerGenes 

function in Seurat using the Wilcoxon Rank Sum test and a relaxed log2FC threshold of 

0.1 to increase the number of differentially expressed genes. This cutoff was calibrated 

against a ‘gold standard’ dataset comparing single-cell and bulk RNA-seq data to identify 

differentially expressed genes66. To find marker genes of pseudotime state clusters, only 

positive markers were returned.  

Pseudotime state by was binarized with states 1-3 labeled as ‘early’ and states 4-6 as 

‘late’.  We next created another label combining the targeted gene with binary 

pseudotime state (e.g. CHD8_early). Averaged profiles were re-computed for each 

group based on these new labels and differentially expressed genes were also re-

calculated. Principal component analysis and hierarchical clustering were performed on 

these samples. As expected, unsupervised clustering of the stratified profiles by 

principal component analysis perfectly discriminated between ‘early’ and ‘late’ samples 

(Sup Fig 5C). This analysis showed that the first principal component corresponds to 

pseudotime status and explains almost 20% of the total variance in the dataset. Gene 

Ontology and pathway enrichment analyses were performed using WebGestalt67.   
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Live-cell Imaging 
 
Cells were imaged using an IncuCyte S3 live imaging system (Essen BioScience) For each 

experiment, dCas9-KRAB LUHMES were infected in duplicate or triplicate with individual 

gRNAs and were plated in duplicate or triplicate in wells of a 24 well plate in either self-

renewing or differentiation conditions. 9 fields per well were imaged every 4 hours for 

either 3 or 5 days for proliferation or differentiation respectively. These experiments 

were repeated 2-3 times for each individual gRNA. Images were analyzed using the 

IncuCyte Software. Specifically, we performed the Proliferation Analysis and NeuroTrack 

neurite tracing analyses with default parameters. Cell bodies and neurites were 

detected from phase contrast images. Representative images are shown in 

Supplementary Figure 4.  

Data Availability 

Sequencing data generated in this study are available through GEO (GSE142078). 
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