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Abstract 
 
The overwhelming success of exome- and genome-wide association studies in 
discovering thousands of disease-associated genes necessitates novel high-throughput 
functional genomics approaches to elucidate the mechanisms of these genes.  
Here, we have coupled multiplexed repression of neurodevelopmental disease-
associated genes to single-cell transcriptional profiling in differentiating human neurons 
to rapidly assay the functions of multiple genes in a disease-relevant context, assess 
potentially convergent mechanisms, and prioritize genes for specific functional assays. 
For a set of 13 autism spectrum disorder (ASD) associated genes, we demonstrate that 
this approach generated important mechanistic insights, revealing two functionally 
convergent modules of ASD genes: one that delays neuron differentiation and one that 
accelerates it. Five genes that delay neuron differentiation (ADNP, ARID1B, ASH1L, 
CHD2, and DYRK1A) mechanistically converge, as they all dysregulate genes involved in 
cell-cycle control and progenitor cell proliferation. Live-cell imaging after individual ASD 
gene repression validated this functional module, confirming that these genes reduce 
neural progenitor cell proliferation and neurite growth. Finally, these functionally 
convergent ASD gene modules predicted shared clinical phenotypes among individuals 
with mutations in these genes. Altogether these results demonstrate the utility of a 
novel and simple approach for the rapid functional elucidation of neurodevelopmental 
disease-associated genes. 
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Introduction 
 
The tremendous progress in identifying disease-associated genes and variants has far 

outpaced the discovery of the functions and pathological mechanisms of these genes.  

Exome- and genome-wide sequencing studies have identified ~5500 single gene 

disorders and traits caused by mutations in over 3800 genes1. Over 1100 of these genes 

have been causally linked to neurodevelopmental disorders2.  In autism spectrum 

disorder (ASD) alone, recent exome sequencing studies have identified over 100 genes 

that cause ASD when a single copy is mutated to a loss-of-function allele3–6. This genetic 

heterogeneity provides a substantial challenge to the development of broadly useful 

therapeutics. If, at an extreme, each disease-associated gene follows a separate 

mechanistic route, then each will require the development of an independent 

therapeutic. On the other hand, if subsets of these genes converge in their mechanisms, 

then these points of convergence would be logical targets for more broadly applicable 

therapeutics that apply to the entire subset.  Identifying convergent mechanisms across 

diverse disease-associated genes first requires establishing a high-throughput and 

disease-relevant model system to both perturb numerous genes and systematically 

assess the functional consequences. 

 

While animal models and patient-derived induced pluripotent stem cell (iPSC) models 

are powerful tools for the study of disease mechanisms, these systems are generally 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2020. ; https://doi.org/10.1101/862680doi: bioRxiv preprint 

https://doi.org/10.1101/862680
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Page 3 

low-throughput, require long generation times, and results can vary across laboratories, 

strains, or individuals7,8.  A rapid, reproducible, and disease-relevant system in which 

multiple genes could be studied in parallel would fill an important gap in the functional 

genomics toolbox and enable direct comparison across genes to assess their 

mechanistic convergence. Fortunately, recent technological advancements coupling 

CRISPR/Cas9 transcriptional repression to single-cell RNA sequencing (scRNA-seq) 

enable high-throughput perturbation of multiple genes in a single batch with a parallel 

functional readout of the transcriptional consequences9–12.  Such an approach holds 

great promise for efficiently defining the functional consequences of dominant loss-of-

function mutations, as transcriptional repression can phenocopy haploinsufficiency.  

As the pathology of many neurodevelopmental diseases likely arises during neural 

development, especially when proliferating progenitors are differentiating into post-

mitotic neurons13, we set out to establish a scalable functional genomics approach in a 

simple human cellular model of neuron differentiation. Further, as a large fraction of 

causative genes in ASD are haplo-insufficient transcriptional regulators4,6,14, we tested 

this approach on a select subset of such genes to determine what insights into 

pathological mechanisms can be gleaned by measuring the transcriptional 

consequences of their perturbation.   
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Here, we used catalytically inactive Cas9-based transcriptional repression (dCas9-KRAB) 

to knock down the expression of 13 ASD-related genes in a human cellular model of 

neuronal differentiation and captured the resulting transcriptional consequences using 

scRNA-seq. For all candidate genes, we identified individual transcriptional signatures 

after repression. We found that many ASD genes altered the trajectory of neuronal 

differentiation when repressed. Furthermore, by clustering the disease genes by their 

shared transcriptional changes after perturbation, we identified sets of diverse autism 

genes that acted either by delaying or accelerating neuronal differentiation. 

Transcriptional convergence of these genes at the pathway level generated specific 

mechanistic hypotheses which we then tested and confirmed by combining individual 

knock-down experiments with live-cell imaging. Supporting the validity of our model of 

neuronal differentiation, we replicated our key results in an orthogonal system using 

iPSC-derived neural progenitor cells. Finally, we show that clustering of ASD genes by 

experimental data predicted shared clinical phenotypes of individuals with mutations in 

these genes.  These results demonstrate the promise of a high-throughput functional 

genomics screening platform to identify convergently disrupted cellular pathways across 

diverse causative genes in a simple cellular model of neuronal differentiation.  
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Results  
  
Establishing a human model of neuronal differentiation for high-throughput disease 
gene perturbation  

Human neuronal models are needed for studying neurodevelopmental disorders such as 

ASD8.  While human iPSC-derived neurons are a powerful cellular model system, the 

genetic heterogeneity, variability of neuronal differentiation, and technical difficulties 

achieving efficient transcriptional modulation in these cells complicate multiplexed 

transcriptional and phenotypic analyses15,16. Therefore, we aimed to establish a 

tractable, diploid human neuronal model amenable to differentiation and 

transcriptional perturbation to enable high-throughput evaluation of the consequences 

of disease-associated gene repression. We selected the LUHMES neural progenitor cell 

line as such a model for their ease of use, capacity for rapid differentiation into post-

mitotic neurons, and suitability for high-content imaging17–20. Recent studies have used 

LUHMES to model neurodevelopmental disorders and their underlying pathways21,22.  To 

further validate the relevance of these cells, we performed RNA sequencing (RNA-seq) 

analysis of LUHMES cells at multiple time points after inducing differentiation. 

Hierarchical clustering analysis of differentially expressed genes across the 

differentiation time-course confirmed that differentiation of LUHMES was rapid and 

reproducible (Pearson’s r2 between replicates > 0.99), with biological replicates 

clustering together and samples arranged temporally by their day of differentiation 

(Figure 1a, Supplementary Figure 1A).  Genes that were down-regulated during 
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differentiation were enriched for cell-cycle markers such as CCND2, genes involved in 

proliferation (MKI67 and TP53), as well as the canonical neural stem cell marker gene 

SOX2. Genes that increased expression during differentiation included known neuronal 

markers MAP2 and DCX, and were heavily enriched for critical neurodevelopmental 

pathways including axon growth, synaptic development, and neuron migration (Fig 1b 

Left). Importantly, genes expressed during differentiation were strongly enriched for 

genes implicated in a variety of neurological disorders, including schizophrenia, bipolar 

disorder, and ASD (Fig 1b Right).  

Despite being a mesencephalic-derived neuronal progenitor line best characterized for 

its ability to differentiate into dopaminergic neurons, cell type-specific expression 

analysis (CSEA) of differentiated LUHMES revealed that these neurons have 

transcriptional profiles that are highly similar to a range of neuronal subtypes relevant 

to neurological disorders (Supp Figure 1B)23. Specifically, transcriptomes of 

differentiated cells resembled striatal dopaminergic neurons as expected but also 

matched some cortical, forebrain, and spinal cord neuron types. Next, to assess the 

extent to which in vitro differentiation of LUHMES cells captures aspects of human brain 

development, we performed a transition-mapping approach comparing differentially 

expressed genes during LUHMES differentiation to the BrainSpan Atlas of Developing 

Human Brain (Methods)24,25.  We found that changes in gene expression during in vitro 

differentiation closely mirror transcriptional differences that occur in the early 
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developing human fetal neocortex (Pearson’s r = 0.69, Fig 1c). This strong overlap 

suggests that LUHMES differentiation faithfully recapitulates many of the transcriptional 

pathways that are utilized during this critical neurodevelopmental window. Since 

LUHMES in vitro differentiation produces only a single neuronal cell type, some 

important disease-associated phenomena such as shifts in neuronal cell fate decisions 

or aberrations in region-specific gene regulatory networks will not be captured by this 

system.  However, as core transcriptional programs that control neuronal differentiation 

and maturation are largely conserved across neuronal subtypes26, we can model these 

critical disease-relevant processes using a simple in vitro system. 

To establish that LUHMES is an appropriate model specifically for the study of ASD 

genes, we analyzed the 25 highest-confidence autism-causing genes in the SFARI 

database (category 1), a manually curated database of ASD-associated genes27.  We 

found that 22/25 (88%) were highly expressed in these cells across differentiation time 

points. We selected 11 of these genes, plus 2 additional syndromic ASD genes (CTNND2 

and MECP2)28,29 for perturbation experiments (Table 1, Fig 1d). HDAC5 was included as a 

non-associated gene which is highly expressed in neuronal progenitors where it may 

regulate stem cell proliferation30. Genes were selected for their roles in transcriptional 

regulation (10/14), and because they are highly likely to act through 

haploinsufficiency31,32 (Table 1). Although many of these genes are co-expressed during 

neurodevelopment, module assignment of these genes by integrative bioinformatics 
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approaches has not enabled specific mechanistic predictions about the potential 

convergence of their molecular targets26,33. We expect this set of genes to be broadly 

representative of transcriptional regulators implicated in neurodevelopmental disorders 

and well-suited to demonstrate the feasibility of our approach.   

Gene 
Symbol Gene Name Annotated Function† SFARI 

score 

LoF 
intolerance 

(pLI‡) 
ADNP Activity dependent neuroprotector 

homeobox 
Transcription factor 1S 1.00 

ARID1B AT-rich interaction domain 1B SWI/SNF chromatin remodeling 1S 1.00 
ASH1L ASH1 like histone lysine 

methyltransferase 
Trithorax transcriptional 
activator 

1 1.00 

CHD2 Chromodomain helicase DNA binding 
protein 2 

SNF2-related chromatin 
remodeling 

1S 1.00 

CHD8 Chromodomain helicase DNA binding 
protein 8 

SNF2-related chromatin 
remodeling 

1S 1.00 

CTNND2 Catenin delta 2 Adhesive junction protein 2 1.00 
 

DYRK1A 
Dual specificity tyrosine 
phosphorylation regulated kinase 1A 

Nuclear expressed kinase 1S 1.00 

HDAC5 Histone deacetylase 5 Histone deacetylase NA 1.00 
MECP2 Methyl-CpG binding protein 2 Methylated DNA binding 

protein 
2S 0.78 

MYT1L Myelin transcription factor 1 like Transcription factor 1 1.00 
POGZ Pogo transposable element derived 

with ZNF domain 
Transcription factor 1S 1.00 

PTEN Phosphatase and tensin homolog Phosphatase  1S 0.82 
RELN Reelin Secreted ECM protein 1 1.00 
SETD5 SET domain containing 5 Histone methyltransferase 1S 1.00 

LoF: Loss-of-function, pLI: probability that a gene is intolerant to LoF, SFARI: Simons Foundation Autism Research 
Initiative, S: Syndromic, † RefSeq Annotations34 ‡ ref. 31  

Table 1: Description of candidate genes selected for perturbation experiments  
 
We next sought to determine whether the expression of candidate genes could be 

efficiently knocked down in LUHMES cells, a prerequisite for perturbation assays.  Three 

guide RNAs (gRNAs) per candidate gene were cloned into a CRISPR-repression optimized 

vector that also allows recovery of the gRNA from scRNA-seq 35–37. We validated the 

efficacy of repression for 2 gRNAs targeting each of 6 candidate genes using quantitative 

real-time PCR (qPCR) in LUHMES neural progenitor cells constitutively expressing dCas9-
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KRAB. All tested gRNAs induced significant downregulation of their target gene, with 

11/12 eliciting a knockdown greater than 50% (Fig 1e), a level that should phenocopy 

the autosomal-dominant loss-of-function modes of our candidate genes. Altogether, 

these data support LUHMES as a relevant and facile cellular model to evaluate the 

downstream consequences of transcriptional perturbation of neurodevelopmental 

genes.  
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Figure 1: LUHMES are a tractable, disease-relevant model of human neuronal 
differentiation amenable to perturbation. a) Hierarchical clustering of bulk RNA-seq 
time-course expression data indicates rapid and reproducible neuronal differentiation. 
Two replicates for each timepoint were performed. b) Genes induced during LUHMES 
differentiation are enriched for relevant biological processes (Left) and neurological 
disorders (Right). c) Differentially expressed genes during LUHMES differentiation are 
highly correlated with transcriptional changes during early human fetal corticogenesis. 
d) High-confidence autism-causing genes, selected for perturbation experiments, are 
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highly expressed at baseline or are increasingly expressed in LUHMES during 
differentiation and were selected for roles in transcriptional regulation. e) Efficient 
dCas9-KRAB repression of individual target genes using the designated guide RNAs. n = 3 
biological replicates for all qPCR experiments. Values represent mean ± SEM. NT1: 
Nontargeting control guide RNA. G1: gRNA 1, G2: gRNA 2. pcw: post-conception week. 
 

Pooled repression of ASD genes and scRNA-seq  
  
We produced a lentivirus pool that contained vectors expressing gRNAs targeting all 14 

candidate genes (3 gRNAs per gene), along with 5 non-targeting control gRNA 

sequences, for a total of 47 gRNAs. Given the high success rate of gene knockdown in 

dCas9-KRAB LUHMES by all tested gRNAs, and to enable high-scale perturbation 

screening experiments, we did not validate the repression efficiency of all gRNAs 

individually. We infected dCas9-KRAB expressing LUHMES neuronal progenitors at a low 

multiplicity of infection such that most cells received 0 or 1 gRNAs according to a 

Poisson distribution. Cells infected by a gRNA-expressing lentivirus were selected by 

growth in media containing puromycin for 4 days, then the cells were induced to 

differentiate according to published protocols 17(Methods). To allow sufficient time for 

CRISPR repression, we differentiated LUHMES for 7 days, a timepoint when 

differentiation appeared largely complete by RNA-seq. We then profiled the 

transcriptomes of more than 14,000 cells at this timepoint using droplet-based scRNA-

seq across two replicate experiments38 (Figure 2a,b).  

  

Using a specific gRNA enrichment PCR, we were able to detect gRNA expression for the 

vast majority (~80%) of cells and restricted our analysis to the 8780 high-quality cells 
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with only a single gRNA to ensure only one perturbation per cell (Fig 2b). Cells with 

gRNAs targeting all candidate genes, and non-targeting controls, were represented in 

this dataset (Fig 2c). To evaluate the efficacy of ASD-gene repression in the pooled 

experiment, we grouped single cells by their detected gRNAs and visualized expression 

of all targeted genes across these groups (Supplementary Figure 2a)39,40. This analysis 

revealed efficient on-target repression for 13/14 genes in our library. The number of 

reads for RELN was too low in single-cell data to evaluate efficiency of repression due to 

its low expression level. We used the MIMOSCA pipeline to further evaluate the knock-

down efficiency of gRNAs on their target genes, which confirmed strong on-target 

repression11 (Fig 2d). Almost all individual gRNAs elicited significant repression of their 

target genes (Sup Fig 2B-D), and estimated knock-down efficiencies were highly 

reproducible between replicate experiments (Sup Fig 2E).  
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Figure 2: Single-cell RNA-sequencing is an efficient readout of multiplexed gene 
repression in a human model of neuronal differentiation. a) Schematic of pooled 
repression of ASD genes in LUHMES. b) The number of total single cells that were 
collected (purple area), that express at least one gRNA (red), and express a single unique 
gRNA (yellow) demonstrates the efficient recovery of gRNAs from single-cell RNA-seq 
data. c) Hundreds of cells targeting all 14 genes were recovered, as well as 939 cells with 
non-targeting gRNAs.  d) MIMOSCA beta coefficients (arbitrary units) for targeting and 
non-targeting guides are shown for each targeted gene. Three targeting gRNAs for each 
gene are merged. Beta < 0 represents repression. In all cases, targeting gRNAs have 
negative beta coefficients on target gene expression.  
 
 
ASD-gene repression alters trajectory of neuronal differentiation 
 
The efficient repression of targeted genes in the pooled experiment demonstrated 

above led us to assess the unique and shared downstream consequences of ASD-gene 

repression in human neurons. Specifically, we wanted to directly test the hypothesis 

that some of the ASD genes might alter the dynamics of neuronal differentiation. To this 

end, we reconstructed a pseudo-temporal trajectory reflecting gene expression changes 
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in our dataset and projected cells onto this pseudotime path (Figure 3a)41. Recent single-

cell CRISPR experiments have shown the advantages of trajectory analysis over global 

clustering based approaches, which can be insensitive to detecting more subtle 

phenotypes in pooled experiments (Supplementary Figure 3, Methods)42–44. Importantly, 

as all cells were differentiated for 7 days, more than 99% of single cells were post-

mitotic as assessed by the absence of proliferation markers MKI67 and TOP2A. 

However, pseudotime analysis indicated heterogeneity in the progression of 

differentiation at the single-cell level. Two neuronal marker genes (MAP2 and DCX) 

showed a gradual increase in expression across pseudotime. In contrast, two genes 

known to be important for neural progenitor cell proliferation (TP53 and CDK4) showed 

a rapid drop in expression across pseudotime. These observations suggested the axis of 

pseudotime corresponds to the progression of neuronal differentiation (Fig 3b). 

Consistent with this notion, these four genes exhibit a similar pattern of expression over 

a time-course of LUHMES differentiation (Fig 3c). To further examine the relationship 

between pseudotime and neuronal differentiation, we identified the marker genes for 

each pseudotime state and plotted their expression across the differentiation time-

course RNA-seq dataset. This analysis showed that marker genes of early pseudotime 

states (1-3) are highly expressed in early neuron differentiation (days 0-4) 

(Supplementary Figure 4A-C). Marker genes of later pseudotime states (4-6) are highly 

expressed during later neuron differentiation (days 4-8) (Sup Figure 4D-F). Altogether, 
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these data support the interpretation of pseudotime as an axis corresponding to the 

progression of neuronal differentiation after cells have completed their final division.  

 

To test whether any candidate gene knockdown shifted the developmental trajectory of 

the differentiating neurons, we computed the proportions of cells in each pseudotime 

state for each knockdown condition. Indeed, we found that several perturbations 

significantly altered the proportions of cells in specific pseudotime states. Specific 

enrichment or depletion of pseudotime state clusters for each target gene are shown in 

Fig 3d (chi-squared tests, p < 0.01). As an indicator of differentiation status, we next 

computed the average value of pseudotime across all cells in each knockdown 

condition. By this metric, we found that four of the ASD genes (CHD2, ASH1L, ARID1B, 

and DYRK1A) delayed neuronal differentiation when repressed whereas two genes 

(PTEN and CHD8) accelerated neuronal differentiation (Fig 3e, p < 0.01, t-test). These 

results demonstrate the utility of pseudotime analysis to investigate whether subsets of 

disease-associated genes alter the progression of neuronal differentiation in a pooled 

perturbation experiment.  
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Figure 3: Pseudotime analysis reveals ASD-gene repression induced alterations in 
differentiation trajectory and modules of ASD-genes delaying or accelerating neuronal 
differentiation. a) Pseudotime ordering of all single cells reveals a continuous trajectory 
of cell states corresponding to neuronal differentiation. Line segments along the 
trajectory are called ‘Pseudotime States’ and cells are colored by these states. b) 
Neuronal markers (MAP2 and DCX) increase along the pseudotime trajectory, while 
progenitor markers (TP53 and CDK4) decrease. c) These marker genes exhibit correlated 
patterns in time-course bulk RNA expression. n = 2 replicates for each timepoint. 
Expression values = mean ± SEM. d) Repression of some genes alter pseudotime state 
membership proportions. Significant enrichments and depletions are marked with 
asterisks (chi-squared test, p < 0.01). e) Significantly decreased or increased average 
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pseudotime scores relative to cells with non-targeting gRNAs (t-test, p < 0.01), indicate 
delayed or accelerated neuronal maturation. Boxed in purple is a set of ASD genes that 
delay neuronal differentiation by this metric. Boxed in red is a pair of genes, CHD8 and 
PTEN, that promote neuronal maturation.   
 
Recurrently dysregulated genes highlight convergent mechanisms of ASD genes  
  
We noticed that specific pseudotime state enrichment or depletion was not perfectly 

shared among the sets of genes that accelerated or delayed differentiation (Fig 3d).  This 

raises the possibility that although groups of genes may act similarly to promote (or 

delay) neuron differentiation, they may do so through different molecular mechanisms.  

We therefore sought to further dissect the transcriptional networks affected by gene 

perturbation using differential gene expression analysis to learn whether these 

networks converge across sets of ASD genes. Due to the low number of cells available 

for analysis of SETD5 and POGZ (Fig 2c), we excluded these cells from differential 

expression analyses. For each of the remaining genes, we found dozens to hundreds of 

differentially expressed genes for each knock-down (Supplementary Table 1). 

 

To identify potential transcriptional convergence of diverse ASD-causing genes, we 

grouped cells by targeted gene then clustered their transcriptional profiles using only 

genes that were found to be differentially expressed across three or more ASD-gene 

knockdowns. The grouping of ASD genes via hierarchical clustering largely recapitulated 

the results of pseudotime analysis (Supplementary Figure 5A). Gene Ontology analysis of 

the set of dysregulated genes showed an enrichment of neuronal differentiation terms 
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in the perturbed transcriptomes, supporting the interpretation that the misregulation of 

these ASD-associated genes alters neuronal differentiation (Sup Fig 5B). This analysis 

identified ADNP as another gene delaying neuronal differentiation and indicates that 

the repression of ADNP, ASH1L, CHD2, and DYRK1A delays neuronal differentiation 

through a shared transcriptional pathway. However, since our earlier pseudotime 

analysis revealed heterogeneity in the progression of neuronal differentiation amongst 

these genes, the shared transcriptional changes that we observed in our differential 

expression analysis may have been caused by distinct transcriptional changes that 

occurred early in neuronal differentiation. To address this possibility, we leveraged the 

power of single-cell data to explicitly account for differences in neuronal maturity by 

stratifying samples based on pseudotime (Sup Fig 5C, Methods).  In order to retain 

enough cells per group required for differential gene expression analysis45, we 

dichotomized pseudotime status as either ‘early’ or ‘late’ and then recomputed 

differentially expressed genes for each ASD-gene knockdown within each group 

(Supplementary Tables 2 and 3).  

We then clustered pseudotime-stratified samples based on recurrently dysregulated 

genes (i.e. genes that were differentially expressed in three or more ASD-gene 

knockdown samples) and found shared and distinct patterns of transcriptional 

dysregulation (Figure 4a). This analysis grouped samples first by early and late 

pseudotime status, and then into stage-specific subsets of ASD genes. Because genes 
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that acted to delay differentiation clustered together at the early stage, we can infer 

that the delayed neuronal maturation detected in our pseudotime analysis is a 

consequence of early-stage transcriptional dysregulation. Furthermore, the sets of 

transcriptional targets of these genes shared significant overlap (all pair-wise 

hypergeometric p-values < 10-22, Fig 4b), implying that these genes act through a 

convergent regulatory pathway that functions early in neuronal maturation. This 

analysis also provided information about the regulatory hierarchy of these genes, with 

CHD2 downregulated by ADNP or ARID1B repression, and ASH1L downregulated by 

ARID1B repression. Despite the cells being post-mitotic, Gene Ontology enrichment of 

the recurrently dysregulated genes in the early stage samples highlighted specifically 

disrupted processes, namely the G2/M transition of cell cycle and negative regulation of 

cell development (Fig 4c). The disrupted genes themselves are not core cell-cycle 

regulators so this signature may rather reflect cell-cycle disruptions that occurred earlier 

in the differentiation protocol (Supplementary Table 4). Together these results suggest 

that CHD2, ASH1L, ARID1B, DYRK1A, and ADNP comprise a convergent functional 

module of ASD genes acting on a shared gene regulatory pathway active in early 

neurodevelopment, and that their haploinsufficiency causes cell-cycle disruption and 

impedes neuronal differentiation.  
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Notably, ADNP, CHD2, and ASH1L were also clustered in late stage cells implying they 

continue to share downstream molecular targets in maturing neurons. In contrast, 

hierarchical clustering did not support a convergence of the genes that accelerate 

differentiation, PTEN and CHD8, at either the early or late stages. We found that the 

recurrently dysregulated genes among late stage samples were enriched for processes 

specific to neuron maturation such as synapse organization, neuron projection, and 

regulation of axon diameter (Fig 4d). The specificity of these terms highlights the added 

molecular resolution we achieved by accounting for differences in pseudotime in our 

analysis.  

We next sought to generate specific predictions regarding the effects of ASD-gene 

repression on neuronal projections (axons and dendrites).  Therefore, we clustered 

samples by the expression of the dysregulated neuron projection genes and found that 

the clustering of ADNP, CHD2, and ASH1L was driven by the decreased expression of 

neuron maturation markers such as MAPT, NEFL, and MAP1B with concomitant up-

regulation of annotated negative regulators of neuron projection and differentiation (Fig 

4e). These genes were driven in the opposite direction by PTEN. From these results, we 

predicted that knockdown of ADNP, CHD2, and ASH1L would decrease the outgrowth of 

neuronal projections, whereas knockdown of PTEN would enhance this process.  
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Figure 4: Single-cell differential gene expression analysis identifies early and late stage 
convergent modules of ASD genes. a) Hierarchical clustering of ASD knockdown profiles 
using genes differentially expressed in 3 or more ASD-candidate perturbations reveal a 
convergence of the transcriptional pathways dysregulated at early and late stages. At 
the early stage (left column), ADNP, CHD2, ASH1L, DYRK1A, and ARID1B form a 
transcriptionally convergent module of ‘Delayed Differentiation’ (purple). At the late 
stage (right column), ADNP, CHD2, and ASH1L continue to converge. b) Venn diagram 
shows significant overlap of differentially expressed genes across 5 ASD-genes at the 
early stage. All pairwise overlaps have p-values < 10-22 by hypergeometric testing. c) 
Gene Ontology enrichment analysis of early-stage recurrently dysregulated genes 
highlights relevant biological processes disrupted and predicts disrupted G2/M 
transition and cellular maturation for ‘Delayed Differentiation’ genes. d) Enrichment 
analysis of late-stage recurrently dysregulated genes highlights relevant biological 
processes disrupted. e) Expression of neuron projection genes (Gene Ontology 0010975) 
in the late stage samples predicts disrupted neurite extension for PTEN but an enhanced 
phenotype for ADNP, CHD2, and ASH1L. 
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Live-cell imaging reveals abnormalities in proliferation and neurite extension and 
confirms transcriptome-based predictions   
  
Our single-cell transcriptional analyses allowed us to make several explicit predictions 

about the consequences of ASD-gene repression on cellular phenotypes. Specifically, we 

predicted that if ADNP, ARID1B, ASH1L, CHD2, or DYRK1A are repressed, then we would 

observe a reduction in neural progenitor cell proliferation. In contrast, we expected 

PTEN repression to promote proliferation. For neurite extension in differentiating 

neurons, we predicted that repression of ADNP, CHD2, and ASH1L would decrease 

outgrowth, whereas repression of PTEN would enhance extension. To test these 

predictions, we implemented live-cell imaging to measure cellular proliferation and 

neurite extension after individual knock-down of ASD genes (Figure 5a). We produced 

lentivirus expressing gRNAs that target candidate ASD genes and used them to infect 

dCas9-KRAB neuronal progenitor cells in an arrayed format. We imaged cells under both 

proliferative and differentiative conditions every 4 hours for 3 or 5 days, respectively, 

using the IncuCyte live-cell imaging system. Representative images for proliferation and 

neurite extension are shown (Fig 5b-c, Supplementary Figure 6). 
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Figure 5: Live-cell imaging after repression of individual ASD genes confirms defects in 
cellular proliferation and neurite extension. A) Schematic overview of arrayed guide 
RNA (gRNA) screening. Cells infected with a single gRNA are assayed by time-course 
imaging for confluence and neurite extension. B) Representative images of neural 
progenitor cell proliferation assay at the start and end-points (day 0 and day 3). Neural 
progenitor cell proliferation is measured by creating a cell mask (orange) and computing 
the area of confluence at each time point. C) Representative image of neurite extension 
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assay at 5 days post-differentiation. Neurite extension is measured with the NeuroTrack 
assay in the IncuCyte software. Neurite masks are shown (purple). Neurite extension 
lengths are normalized by cell cluster area to account for any differences in cell number. 
Scale bars = 200 µm. d) Time-lapse imaging of cellular proliferation (left), assessed by 
the percentage of confluence, reveals significant decreases or increases (right, * p < 
0.01, t-test, dotted horizontal line indicates average in control cells). E) Time-lapse 
imaging of neurite extension (left) and quantification (right, * p < 0.01, t-test, dotted 
horizontal line indicates average in control cells). All values in (d) and (e) represent 
mean ± SEM. Cells with each individual gRNA were plated in duplicate or triplicate wells 
for each experiment. Images were captured from 9 fields per well at each timepoint. 
Experiments were repeated 2-3 times for all gRNAs.   

Remarkably, in these live-cell imaging experiments, we observed decreased proliferation 

after repression of each of the 5 proposed ‘Delayed Differentiation’ genes (Fig 5d). In 

contrast, PTEN repression caused a major increase in proliferation, consistent with our 

prediction and with its known function as an inhibitor of neural stem cell proliferation46. 

For the neurite extension assay, most of our predictions were also confirmed (Fig 5e), as 

repression of 4 of the 5 ‘Delayed Differentiation’ genes, ASH1L, ADNP, ARID1B, and 

DYRK1A, caused modest to severe reductions in neurite outgrowth. In agreement with 

our transcriptome-based prediction, PTEN repression increased neurite extension in this 

assay, a result consistent with the earlier observation that PTEN enhances the length of 

regenerating axons in vivo 47. Together, proliferation and neurite extension assays 

confirmed the consequences of ASD-gene repression predicted by scRNA-seq analyses, 

demonstrating the utility of our approach for high-throughput functional elucidation of 

neurodevelopmental disease-associated genes. Live-cell imaging further supports the 
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functional convergence of some ASD genes acting at an early stage to delay neuron 

differentiation and decrease proliferation.  

 
CRISPR repression in iPSC neural progenitor cells confirms functional gene modules 
and transcriptional convergence at cell-cycle dysregulation  
 
To validate the early transcriptional convergence and effects on cellular proliferation of 

the ASD gene modules in an orthogonal cellular model system, we performed CRISPR 

repression of individual genes in human iPSC-derived neural progenitor cells. First, we 

confirmed that dCas9-KRAB repression was efficient in these cells for a subset of genes 

using qPCR (Figure 6a). Next, we performed RNA-seq after knockdown of seven 

individual ASD genes and a non-targeting control (Methods). RNA-seq confirmed 

efficient knockdown for 5/7 target genes (Supplementary Figure 7A). Clustering 

transcriptomes using principal component analysis closely reproduced the gene 

modules discovered in LUHMES, namely the clustering of four members of the ‘Delayed 

Differentiation’ gene set (ADNP, ARID1B, ASH1L, and DYRK1A) and the clustering of 

‘Accelerated Differentiation’ genes CHD8 and PTEN (Fig 6b). The same clusters were also 

observed by unsupervised hierarchical clustering of transcriptomes using highly variable 

genes (Supplementary Figure 7B). As in LUHMES, the ‘Delayed Differentiation’ genes 

strongly converged at the level of transcriptional regulation (Fig 6c), affecting genes 

enriched for roles in chromatin remodeling, Wnt signaling and cell-cycle regulation (Fig 

6d). In these cells, the two ‘Accelerated Differentiation’ genes had strongly overlapping 
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transcriptional consequences on both down- and up-regulated genes (Sup Fig 7C) 

leading to misregulation of cell-cycle genes and increased cell division pathways (Sup Fig 

7D). This transcriptional convergence could be explained by the observation that CHD8 

repression also decreased the expression of PTEN (Figure 6A), implying that these genes 

are in the same pathway. A proliferation assay in these cells after individual gene 

repression functionally confirmed that ASH1L and CHD2 decreased proliferation and 

CHD8 repression enhanced it (Fig 6e). These results broadly confirm both the 

membership and functional interpretation of ASD-genes modules in a second human 

neural progenitor system, further validating the LUHMES as a relevant model for first 

pass high-throughput functional genomics screening.   
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Figure 6: CRISPR repression in iPSC neural progenitor cells confirms modules of ASD 
genes and transcriptional convergence at cell-cycle dysregulation. a) Efficient dCas9-
KRAB repression of individual target genes using the designated gRNAs in iPSC-NPCs. N = 
3 biological replicates for all qPCR experiments. Values represent mean ± SEM. b) 
Clustering of RNA-seq profiles by principal component analysis reveals clustering of 
‘Delayed’- and ‘Accelerated Differentiation’ module ASD genes c) ‘Delayed 
Differentiation’ module gene repression elicits strongly overlapping transcriptional 
consequences. d) Gene Ontology analysis of downregulated genes shows enrichment 
for chromatin remodeling and cell-cycle genes. e) Cellular proliferation measured by cell 
number after individual gene repression reveals significant decreases or increases (* 
indicates p < 0.01, n = 4).  
 
 
Functionally convergent ASD gene modules predict shared clinical phenotypes 
 
Linking genotype to phenotype is the ultimate goal of functional genomics. To this end, 

we sought to determine if the functional convergence of ASD genes observed in our 

cellular model could predict a convergence of clinical phenotypes for these genes.  To 

do so, we first integrated the results of our pseudotime analysis, transcriptional 
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clustering, and functional profiling by hierarchical clustering (Figure 7a). As expected, 

this integrated model clearly separated the ‘Delayed Differentiation’ module genes from 

those in the ‘Accelerated Differentiation’ module. Next, we performed hierarchical 

clustering on the prevalence of clinical phenotypes from one study on individuals with 

dominant loss-of-function mutations in these genes48. Strikingly, clustering by clinical 

phenotypes fully recapitulated our proposed convergent modules and supports 

mechanistic links of convergent pathways to shared clinical outcomes (Fig 7b). For 

example, individuals with mutations in the ‘Delayed Differentiation’ module genes were 

highly likely to have intellectual disability, consistent with increased severity owing to 

early neurodevelopmental dysregulation. Comparing across the two clusters, these 

individuals have a higher incidence of microcephaly which is mechanistically consistent 

with the neural progenitor cell proliferation defects we observed. Likewise, individuals 

with PTEN and CHD8 mutations have a comparatively reduced prevalence of intellectual 

disability but a high prevalence of macrocephaly, consistent with the observed 

functional convergence of these genes on promoting neuronal differentiation, 

proliferation, and neurite outgrowth. Recent studies have confirmed that disruptive 

mutations in ADNP, ARID1B, CHD2 and DYRK1A are associated with a higher prevalence 

of severe neurodevelopmental delay. Conversely, CHD8 and PTEN mutations are 
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associated with ASD without neurodevelopmental delay6.  

 

Figure 7: Experimental and clinical convergence of functional ASD gene modules. A) 
Integrating transcriptional and functional assays reveals and refines two functionally 
convergent modules of ASD genes. b) Clinical phenotype data reveals the same two 
modules of ASD genes.  %: Prevalence of phenotype (percentage) in individuals from 48    
 
Discussion 
 

The genetic and phenotypic heterogeneity of neurodevelopmental disorders 

challenge the understanding and treatment of these conditions. Over 1100 genes have 

been discovered to cause neurodevelopmental disorders when mutated and this 

number will continue to increase.  As a result, it is imperative to develop better methods 

to cost-effectively unravel the functional contributions of these genes to both normal 

development and disease. Furthermore, the identification of convergent pathogenic 

mechanisms across diverse causative genes would facilitate the development of 

therapeutic interventions, but this requires a rapid, scalable, and disease-relevant 

model system in which tens to hundreds of genes can be modulated in parallel and their 
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effects measured in a robust manner.  Here we have taken an important step toward 

establishing such a system by coupling pooled dCas9-based transcriptional repression to 

single-cell RNA-sequencing in a simple and highly tractable human model of neuron 

differentiation. Using this approach, we perturbed the expression of 13 diverse autism-

associated genes and uncovered unique and overlapping consequences on 

transcriptional networks and pathways. This led to specific predictions about functional 

roles of these genes in growth and neurite extension which we then validated through 

imaging. In addition to demonstrating the utility of a high-throughput functional 

genomics approach to dissect gene function, our results suggest that many ASD genes 

might act on common pathways, namely by modifying neural progenitor cell 

proliferation and cell-cycle.  

By integrating pseudotime analysis, transcriptional clustering, and the cellular 

phenotyping of individual neurodevelopmental genes, we uncovered two consistent 

modules of genes with opposing functionality in altering the course of neuron 

differentiation. We identified a ‘Delayed Differentiation’ module comprised of 5 ASD-

genes and predicted that the knockdown of these genes would decrease neural 

progenitor cell proliferation.  We further predicted, for a subset of this ‘Delayed 

Differentiation’ module, that individual gene knockdown would decrease neuron 

projection. Finally, we also predicted that PTEN repression would increase both 

proliferation and neuron projection. Neural progenitor cell proliferation, the decision to 
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exit the cell-cycle, and neuron differentiation are complex and interrelated processes49. 

Increased proliferation could either drive an expansion of a progenitor pool or increase 

neurogenic cell divisions leading to precocious differentiation. A parsimonious 

explanation of our data in LUHMES is that the progression of neuron differentiation is 

preceded by a few requisite neurogenic cell divisions. Delaying these divisions by 

disrupting cell cycle, or enhancing them by increasing proliferation rate, will 

consequently delay or accelerate neuronal differentiation progression respectively. We 

confirmed these predictions by performing live-cell imaging of cell proliferation and 

neurite extension after gene knockdown, providing experimental functional validation 

for these ASD genes. Convergence of ASD genes at the regulation of cell-cycle genes was 

supported in an orthogonal model using human iPSC-derived NPCs. Heterochronicity of 

neurodevelopmental gene expression networks and consequent dysregulation of 

neuron differentiation is a plausible mechanism underlying ASD pathology, and has 

been observed in other cellular models of ASD13,50.  

We have demonstrated that LUHMES cells enable the rapid and robust 

generation of post-mitotic human neurons with transcriptional profiles that correspond 

closely to early human cortical development, a critical period of neurodevelopment that 

has been implicated in the etiology of ASD and other neurodevelopmental disorders. 

Confirmation of our results in human iPSC-derived NPCs further validates the utility of 

LUHMES for discovering potential mechanisms of a subset of neurodevelopmental 
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disease-associated genes. Because transcriptional regulators are particularly enriched 

for high early-fetal expression6, LUHMES may be especially suited to studying this class 

of genes. However, for some other classes of neurodevelopmental genes, LUHMES cells 

may not be the most well-suited model system.  For example, synaptic genes are more 

postnatally expressed across a broad range of neuronal types. iPSC-derived induced 

excitatory and inhibitory neurons, co-cultures of these cells, or 3D-organoids are likely 

to be more suitable than LUHMES for studying these genes and their roles in 

establishing synaptic phenotypes. These alternative human neurodevelopmental 

models may also be better suited for investigating genes and pathways involved in cell-

fate specification, neuronal migration, and neuronal activity.  However, the 

experimental complexity and heterogeneity of these models compared to the rapid and 

reproducible differentiation of LUHMES make them less suited for high-throughput 

analyses of sets of genes that are likely to be involved in neuronal differentiation or 

maturation.   

Compared to traditional single gene disease modeling experiments in mice or 

human cells (e.g. refs. 51–55), our approach increases the number of genes that can be 

assayed in parallel while also overcoming many of the primary sources of variation in 

such models. Critically, this enables direct comparison of results across genes to 

discover convergent mechanisms. Current single-cell technology enables pathway-level 

inferences of transcriptional dysregulation and prioritization of candidate genes for 
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further functional validation in a rapid and cost-effective manner for tens of disease 

implicated genes. However, noise and sparsity in single cell RNA-seq data limit its power 

to detect differentially expressed genes. Quantitative measurements of knockdown 

efficiency of individual gRNAs within single cells are difficult, and individually validating 

gRNAs is incompatible with the goal of high-throughput screening.  Our qPCR 

measurements of gRNA efficiencies showed a range of 40-90% knockdown for all tested 

target genes, which may better represent haploinsufficiency than a total knock-out 

approach.  Exquisite dosage sensitivity of certain genes raises the possibility of variable 

cellular phenotypes depending on the degree of knockdown. Including more gRNAs per 

gene, and enough cells to analyze effects on a per-gRNA instead of per-gene basis, 

would resolve these potential confounds. Improvements in the sensitivity and 

throughput of scRNA-seq, as well as declining costs, will enhance its utility in future 

experiments. 

 A major strength of our approach is its extensibility to different model systems 

for the rapid functional profiling of diverse gene sets, allowing for prioritization of 

candidate genes for low-throughput cellular phenotyping by imaging. Although we only 

measured proliferation and neurite extension with live-cell imaging, the integration of 

these data with pooled transcriptomes revealed consistent gene modules that were also 

convergent at the level of clinical phenotypes in individuals with mutations in these 

genes48, illustrating the potential of this approach for linking molecular pathways to 
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clinical phenotypes. Furthermore, while not implemented in this study, this approach is 

amenable to screening of chemical libraries to discover effective pharmaceutical 

interventions for any observed defects, and to determine whether convergent genetic 

modules will respond to common treatments. Pooled, rather than arrayed, optical 

phenotyping approaches would further accelerate these efforts56. Such high-content 

imaging and screening in future experiments will enable detailed characterization of 

perturbation-induced neuronal phenotypes and the discovery of convergent molecular 

endophenotypes of disease pathogenesis.  

 
Materials and Methods  
  
Cell culture  
  
HEK293T cells were maintained in Dulbecco’s Modified Eagle Media (DMEM) 

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin, and 

passaged every 3-4 days after enzymatic dissociation using trypsin. LUHMES cells (ATCC 

cat# CRL-2927) were cultured according to established protocols with minor 

modifications 17.  Proliferating LUHMES cells were maintained in DMEM/F12 media 

supplemented with 1% N2 and 40 ng/mL basic fibroblast growth factor (bFGF) and 1% 

penicillin-streptomycin.  Cells were grown in T25 flasks coated with poly-ornithine and 

fibronectin. For differentiation, bFGF was withdrawn from the media and tetracycline 

was added (1 µg /mL) to repress the v-Myc transgene. For time-course RNA-sequencing 

experiments, neurotrophic factors (cAMP and GDNF) were added to the differentiation 
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media. These factors were withheld from repression experiments to increase the 

sensitivity to detect perturbations. For time-course differentiation, two replicates of 

LUHMES cells were differentiated for each time point and total mRNA was purified. RNA 

was sent for sequencing at the Genome Technology Access Center (GTAC) at 

Washington University School of Medicine. Polyclonal dCas9-KRAB-blast expressing 

LUHMES were generated by infecting cells with lentivirus and selecting using blasticidin 

(10 µg/mL). Lenti-dCas9-KRAB-blast was a gift from Gary Hon (Addgene #89567)57.  

dCas9-KRAB LUHMES were maintained in blasticidin-containing media to prevent 

transgene silencing.   

Human iPSC-derived neural progenitor cells (XCL4) were acquired from STEMCELL 

technologies (cat #70902) and grown in Neural Progenitor Medium 2. While now 

discontinued by STEMCELL technologies, these reagents are available from XCellScience. 

Tetracycline inducible dCas9-KRAB NPCs were generated after neomycin selection (200 

µg/mL). pHAGE TRE dCas9-KRAB was a gift from Rene Maehr and Scot Wolfe (Addgene 

#50917)58. Cells were plated at a density of 200,000 cells per well in a 12-well plate on 

Matrigel and infected in triplicate with individual guide RNAs targeting ASD genes. Next 

day, media containing doxycycline (2µg/mL) and puromycin (1 µg/mL) was added to 

induce dCas9-KRAB and select for guide-containing cells. Cells were passaged 4 days 

after selection. mRNA was collected 4 days after replating (8 days of repression), and 3’ 

RNA-seq libraries were prepared by BRB-seq59. For proliferation assays, TRE dCas9-KRAB 
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XCL4 cells were infected in quadruplicate with gRNAs targeting 7 ASD-genes and 1 non-

targeting gRNA. After puromycin selection and doxycycline induction, cells were plated 

at equal cell numbers, grown for 8 days, and total cells were counted using a 

hemocytometer. Cell counts were compared to cells infected with a nontargeting gRNA  

 

gRNA Cloning 
  
For each target gene, we selected three gRNAs optimized for repression from the 

Dolcetto library36. These gRNAs direct dead Cas9 (dCas9) to a window 25-75 nucleotides 

downstream of the gene’s transcription start site. gRNAs were screened for sequence 

features predicting high activity and no off-target effects. gRNAs were cloned into a 

CRISPR-repression optimized vector to enable pooled lentiviral preparation without 

guide-barcode swapping35–37. Lentiviral gRNA expression vectors were created by 

annealing two complementary oligonucleotides encoding gRNAs at 100 µM (IDT DNA) 

with sticky-ends and ligating annealed products into BsmB1 digested CROP-seq-opti 

vector using Golden Gate assembly.  CROP-seq-opti was a gift from Jay Shendure 

(Addgene #106280)35.  Each Golden Gate assembly reaction contained 6.5 µL water, 1 µL 

1:10 diluted annealed oligos, 1 µl T4 ligase, 1 µl T4 ligase buffer, and 0.5 µL BsmB1. 

Reactions were incubated at 16 ˚C for 10 minutes (ligation) and 55 ˚C for 10 minutes 

(restriction) for 4 cycles. 1 µL of Golden Gate mixture was transformed into 30 µL Stellar 

Competent cells and plated onto ampicillin-containing agar plates.  Individual colonies 
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were miniprepped after colony PCR and all constructs were verified by Sanger 

sequencing (Genewiz).  

  
Lentivirus production of individual gRNAs and pooled gRNA libraries   
 
Lentivirus was produced according to established protocols. In brief, HEK293T cells were 

seeded at a density of one million cells per well of a 6 well plate and transfected with 2 

micrograms of DNA comprising 1 µg gRNA-transfer plasmid, 750 ng psPAX2 and 250 ng 

pMD2.G. psPAX2 and pMD2.G were gifts from Didier Trono (Addgene #12259 & 

#12260). Cells were transfected using the PEI method (Polysciences). Media was 

changed 12 hours after transfection and viral-containing supernatant was collected 24 

and 48 hours later. Lentivirus was concentrated using LentiX reagent and resuspended 

in 50 µL aliquots for each mL of original supernatant (20X concentration). Lentivirus was 

titered on LUHMES cells by infecting cells with serial dilutions of virus, followed by 

antibiotic selection (puromycin for gRNAs, 1 µg / mL). For pooled gRNA libraries, equal 

amounts of DNA for each gRNA were mixed prior to transfection.  

 

Lentiviral transduction of gRNAs  
  
For individual or pooled gRNAs, LUHMES cells were infected with serial dilutions of virus. 

Virus-containing media was removed after 4-6 hours of transduction. Antibiotic 

selection with puromycin (1 µg/mL) was applied 24 hours after infection. Wells in which 

no more than 25% of cells survived, corresponding to multiplicity of infection < 0.3, 
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were used for experiments. Cells were expanded for 4 days before plating for 

differentiation. After re-plating, cells were differentiated for 6 to 8 days in the presence 

of tetracycline to allow efficient repression and differentiation. Puromycin and 

blasticidin were maintained for the duration of all experiments to ensure gRNA and 

dCas9-KRAB expression in all cells.  

  
Quantitative real-time PCR   
  
RNA was purified from 6-8 day differentiated LUHMES using Trizol. 1 µg of RNA was 

reverse-transcribed into cDNA using qScript cDNA Supermix (Quantabio). Quantitative 

real-time PCR (qRT-PCR) was performed on an ABI 7900HT using Sybr Green SuperMix 

(Quantabio). Relative expression levels were determined using the comparative 

threshold (ΔΔCT) method60. Beta-actin (ACTB) mRNA levels were used as a 

normalization control.  Sequences for qRT-PCR primers are:  

ADNP qPCR fw: CATGGGAGGATGTAGGACTGT 
ADNP qPCR rv: ATGGACATTGCGGAAATGACT 
  
CTNND2 qPCR fw: AGGTCCCCGTCCATTGATAG 
CTNND2 qPCR rv: ACTGGTGCTGCAACATCTGAA 
  
PTEN qPCR fw: TTTGAAGACCATAACCCACCAC 
PTEN qPCR rv: ATTACACCAGTTCGTCCCTTTC 
  
DYRK1A qPCR fw:  AAGAAGCGAAGACACCAACAG 
DYRK1A qPCR rv:  TTTCGTAACGATCCATCCACTTT 
  
CHD8 qPCR fw:  CTGCACAGTCACCTCGAGAA 
CHD8 qPCR rv:  TGGTTCTTGCACTGGTTCAG 
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HDAC5 qPCR fw:  GTACCCAGTCCTCCCCTGC 
HDAC5 qPCR rv:  GCACATGCACTGGTGCTTTA 
  
ACTB qPCR fw:  CATGTACGTTGCTATCCAGGC 
ACTB-qPCR rv:  CTCCTTAATGTCACGCACGAT 
 
  
Single cell transcriptome capture 
 
12,000 cells were loaded per lane of a 10X Chromium device using 10X V2 Single Cell 3ʹ 

Solution reagents (10X Genomics, Inc). Two biological replicates of pooled single-cell 

experiments were performed independently. Each replicate was loaded across 1 or 2 

lanes of a 10X Single Cell A Chip V2. Single cell libraries were prepared following the 

Single Cell 3' Reagent Kits v2 User Guide (Rev B). Single cell cDNA libraries were 

amplified for 12 initial cycles after reverse transcription. A fraction of the pre-

fragmented cDNA libraries was reserved for gRNA-specific enrichment PCR.  

 
gRNA-transcript enrichment PCR 
 
Three gRNA-specific enrichment PCR replicates were performed for each single cell 

library. Each reaction used 1 µL of the single-cell libraries as a template to amplify 

captured gRNA sequences.  A single-step PCR reaction was used to amplify gRNA from 

total captured cDNA libraries using custom primers: 

P5-index-Seq1-fw: 

AATGATACGGCGACCACCGAGATCTACACAGGACAACACTCTTTCCCTACACGACGCTCTTCCG

ATCT 
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P7-Index-Seq2-10x-sgRNA:  

CAAGCAGAAGACGGCATACGAGATCGGGCAACGGTGACTGGAGTTCAGACGTGTGCTCTTCCG

ATCTGTGGAAAGGACGAAACA*C*C*G       

* denotes phosphorothioate modification to reduce mispriming due to proof-reading 

polymerase  

 

gRNA Depletion Analysis 

Almost all of the gRNAs in our lentiviral pool (43/47) were well-represented in 

perturbed cells at similar frequencies, yet 4 gRNAs (targeting ASH1L, POGZ gRNAs 1 and 

2, and SETD5) were significantly depleted (chi-squared test, p < 0.01, Supplementary 

Figure 8A). We hypothesized that their depletion was the result of fitness defects 

caused by the repression of these genes61,62. To test this, we infected neural progenitor 

cells individually with three of the depleted gRNAs and monitored cell proliferation 

using live-imaging. Compared to a non-targeting gRNA, all of the depleted gRNAs caused 

a significant reduction in cellular proliferation, explaining why few cells with these 

gRNAs were detected in our pooled experiment (Supp Fig 8B).  

 
Bioinformatic Analyses  
 
Sequencing data corresponding to single-cell transcriptomes were processed using the 

10X software package Cell Ranger (v 2.1.0). We used this software to map reads to hg38 

using STAR (v2.5.1b). The output filtered gene expression matrices were imported into R 
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(v 3.5.1) for further analysis. Most analyses were performed using the Seurat (v3.0) and 

Monocle (v2.10.0) packages. Individual cells were sequenced to an average depth of 

50,208 ± 7,310 mapped reads per cell (2,145 ± 448 genes detected, 6,625 ± 1766 unique 

molecular identifiers (UMIs)).  Quality control was performed in Seurat by computing 

the number of transcripts per cell and the percentage of mitochondrial gene expression. 

Cells with more than 500 but fewer than 7500 detected genes, and less than 8% 

mitochondrial gene expression were retained. gRNAs were detected by next-generation 

sequencing of the custom gRNA-enrichment PCR. Look-up tables of gRNA and cell 

barcodes were generated using custom Python scripts with a detection threshold of 20 

UMIs per gRNA-cell barcode combination. Cell barcodes from filtered high-quality cells 

were matched against this table and only cells with a single gRNA were retained for 

analysis. We estimated gRNA knock-down efficiency separately on independent 

replicates using the mimosca.run_model() command in the MIMOSCA toolkit. 

Differences in total UMIs, experimental batch, and mitochondrial percentage were 

accounted for during data normalization.  Normalized filtered data were used for the 

remaining analyses. For each perturbation, we grouped all cells with any of the three 

gRNAs targeting the same gene, as we have demonstrated that all three gRNAs typically 

have strong on-target activity (Sup Fig 2D).  
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Clustering Analysis 

Dimensionality reduction was performed by running principal component analysis (PCA) 

and clustering cells by the first 6 PCAs using UMAP63. To assess global variation in 

transcriptional states, we visualized all single cell transcriptomes on the UMAP. This 

revealed that over 99% of all cells formed a single cluster of post-mitotic neurons as 

defined by the absence of proliferative marker expression (Sup Fig 3A-B).  This is 

consistent with our experimental design capturing a single timepoint (day 7) in a rapid 

isogenic model of neuronal differentiation. Within the major cluster, however, the 

expression of markers of neuronal differentiation showed variable patterns across the 

UMAP (Sup Fig 3C-F). Moreover, the most variably expressed genes in single-cell 

transcriptomes were enriched for functional roles in neurogenesis and axon projection, 

suggesting heterogeneity of neuronal differentiation at the single-cell level.  

 

Pseudotime Analysis 

We projected cells in pseudotime in Monocle by ordering cells by highly variable genes. 

Dimensionality reduction was performed using the “DDRTree” method. Trajectories 

based on different sets of highly variable genes were qualitatively similar, showing a 

single trajectory with only minor branching. The pseudotime trajectory is comprised of 

individual line segments called pseudotime ‘States’. To ensure high correlation between 

pseudotime and neuron differentiation status, we computed the state-specific genes in 
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the bulk RNA-seq dataset for each day of differentiation and used these genes for 

pseudotime ordering. We then transferred pseudotime state labels into Seurat to 

discover marker genes for each pseudotime state. Transferring pseudotime labels onto 

the UMAP plot showed distinct banding patterns representing subtle transcriptional 

state differences within the main cluster (Supplementary Figure 9A). Re-clustering the 

earliest and latest pseudotime labeled cells revealed two completely distinct cell states 

expressing either differentiation (NEUROD1) or maturation (STMN2) markers64,65 (Supp 

Fig 9C-E). This confirms that pseudotime is more sensitive to detect biologically relevant 

transcriptional patterns than UMAP clustering in our dataset.  We tested for altered 

pseudotime state membership proportions for each gRNA using chi-squared test. We 

computed the distribution of pseudotime state scores for each gRNA, and compared 

their averages using t-tests.  

 

Transition Mapping of LUHMES Differentiation  

Transition mapping allows the comparison of in vitro neuron differentiation to in vivo 

development by computing the overlap of differentially expressed genes at selected 

time points across datasets24. We compared the in vitro LUHMES differentiation 

timepoints day 0 to day 8 to transcriptional changes across brain regions and 

developmental timepoints in the BrainSpan Atlas of the Developing Human Brain. 

LUHMES differentiation had the strongest overlap with transcriptional changes 
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occurring in the cortex of post-conception week 8-10 embryos and week 10-13 

embryos.  

 

Differential Gene Expression Analysis 

 Differential gene expression testing was performed using the FindMarkerGenes 

function in Seurat using the Wilcoxon Rank Sum test and a relaxed log2FC threshold of 

0.1 to increase the number of differentially expressed genes. This cutoff was calibrated 

against a ‘gold standard’ dataset comparing single-cell and bulk RNA-seq data to identify 

differentially expressed genes66. To find marker genes of pseudotime state clusters, only 

positive markers were returned.  

Pseudotime state by was binarized with states 1-3 labeled as ‘early’ and states 4-6 as 

‘late’.  We next created another label combining the targeted gene with binary 

pseudotime state (e.g. CHD8_early). Averaged profiles were re-computed for each 

group based on these new labels and differentially expressed genes were also re-

calculated. Principal component analysis and hierarchical clustering were performed on 

these samples. As expected, unsupervised clustering of the stratified profiles by 

principal component analysis perfectly discriminated between ‘early’ and ‘late’ samples 

(Sup Fig 5C). This analysis showed that the first principal component corresponds to 

pseudotime status and explains almost 20% of the total variance in the dataset. Gene 

Ontology and pathway enrichment analyses were performed using WebGestalt67.   

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2020. ; https://doi.org/10.1101/862680doi: bioRxiv preprint 

https://doi.org/10.1101/862680
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Page 45 

 
Live-cell Imaging 
 
Cells were imaged using an IncuCyte S3 live imaging system (Essen BioScience) For each 

experiment, dCas9-KRAB LUHMES were infected in duplicate or triplicate with individual 

gRNAs and were plated in duplicate or triplicate in wells of a 24 well plate in either self-

renewing or differentiation conditions. 9 fields per well were imaged every 4 hours for 

either 3 or 5 days for proliferation or differentiation respectively. These experiments 

were repeated 2-3 times for each individual gRNA. Images were analyzed using the 

IncuCyte Software. Specifically, we performed the Proliferation Analysis and NeuroTrack 

neurite tracing analyses with default parameters. Cell bodies and neurites were 

detected from phase contrast images. Representative images are shown in 

Supplementary Figure 4.  

Data Availability 

Sequencing data generated in this study are available through GEO (GSE142078). 
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