Shallow Genome Sequencing for Phylogenomics of Mycorrhizal Fungi from **Endangered Orchids** Sarah A. Unruh¹, J. Chris Pires¹, Lawrence Zettler², Luigi Erba², Igor Grigoriev³, Kerrie Barry³, Christopher Daum³, Anna Lipzen³, and Jason E. Stajich⁴ 1. Division of Biological Sciences, University of Missouri, Columbia, MO, United States Sarah Unruh Roles: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Project Administration, Resources, Visualization, Writing - Original Draft Preparation, Writing – Review and Editing J. Chris Pires Roles: Conceptualization, Funding Acquisition, Project Administration, Resources, Supervision, Writing – Review and Editing 2. Department of Biology, Illinois College, Jacksonville, IL, United States Lawrence W. Zettler Roles: Funding acquisition, Resources Luigi Erba Roles: Investigation 3. United States of America Department of Energy Joint Genome Institute, Walnut Creek, CA, **United States** Igor Grigoriev Roles: Project Administration, Resources Kerrie Barry Roles: Project Administration Christopher Daum: Resources Anna Lipzen: Investigation 4. Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, United States Jason E. Stajich Roles: Data Curation, Formal analysis, Investigation, Methodology, Resources, Software, Visualization, Writing – Review and Editing

41 ABSTRACT

42 43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Most plant species form symbioses with mycorrhizal fungi and this relationship is especially important for orchids. Fungi in the genera Tulasnella, Ceratobasidium, and Serendipita are critically important for orchid germination, growth and development. The goals of this study are to understand the phylogenetic relationships of mycorrhizal fungi and to improve the taxonomic resources for these groups. We identified 32 fungal isolates with the internal transcribed spacer region and used shallow genome sequencing to functionally annotate these isolates. We constructed phylogenetic trees from 408 orthologous nuclear genes for 50 taxa representing 14 genera, 11 families, and five orders in Agaricomycotina. While confirming relationships among the orders Cantharellales, Sebacinales, and Auriculariales, our results suggest novel relationships between families in the Cantharellales. Consistent with previous studies, we found the genera Ceratobasidium and Thanatephorus of Cerabotasidiaceae to not be monophyletic. Within the monophyletic genus *Tulasnella*, we found strong phylogenetic signals that suggest a potentially new species and a revision of current species boundaries (e.g. Tulasnella calospora); however it is premature to make taxonomic revisions without further sampling and morphological descriptions. There is low resolution of *Serendipita* isolates collected. More sampling is needed from areas around the world before making evolutionary-informed changes in taxonomy. Our study adds value to an important living collection of fungi isolated from endangered orchid species, but also informs future investigations of the evolution of orchid mycorrhizal fungi.

INTRODUCTION

62 63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

Fungi are more than mere decomposers, they form symbioses with every other group of organisms on Earth. Fungal interactions span the entire symbiotic spectrum, from parasitism to mutualism. Most intertwined with plants, may have even enabled development/existence of land plants (Lutzoni et al., 2018). As a result of this long-term association, fungi are essential symbionts to almost every plant species on Earth. The fungi live in plant roots are called mycorrhizal fungi and associate with more than 85% of plant species (Smith and Read, 2008). Mycorrhizal fungi are critical for plant health and function by helping obtain and retain water, mediating defense responses, participating in signaling between roots, and facilitating the exchange of nutrients like carbon, phosphorus, and nitrogen (Barto et al., 2012; Jung et al., 2012; Peterson and Massicotte, 2004; Wang et al., 2017; Yoder et al., 2010). The plant group that relies the most on their mycorrhizal fungi are orchids. Orchids rely on their mycorrhizal symbionts to stimulate plant development during seed germination by providing carbon resources (Kuga et al., 2014). Orchid mycorrhizal fungi (ORM) form hyphal coils termed pelotons inside the cells of orchid embryos and in the adult roots, tubers, or rhizomes (McCormick et al., 2016; Rasmussen et al., 2015). These pelotons are the sites of nutrient exchange and the molecular nature of this marketplace remains poorly understood though exciting new research shedding light (Fochi et al., 2017a; Fochi et al., 2017b; Kuga et al., 2014). Most orchids associate with mycobionts belonging to the basidiomycete groups Sebacinales, Ceratobasidiaceae and Tulasnellaceae. In addition to orchid mycorrhizal fungi, these groups contain saprotrophs, plant pathogens, and ectomycorrhizal representing a wide array of metabolic capabilities (Kohler et al., 2015; Nagy et al., 2016). Furthermore, molecular studies have revealed simultaneous root colonization by multiple fungal partners in

both photosynthetic terrestrial and epiphytic orchids (Martos et al., 2012). Concluding sentence that makes the argument that there are many dynamics we need to better understand so we need to characterize the diversity of these fungi to untangle their interactions and mechanisms.

Although fungi play critical roles, they are rarely visible on the landscape. The number of extant fungal species on Earth ranges from 2-5 million (Blackwell, 2011; Hawksworth and Lücking, 2017) up to 166 million species (Larsen et al., 2017). Most species are microscopic and over the last few decades species identification has relied on molecular methods. Historically, these methods often have used a single molecular marker such at ITS (Nilsson et al., 2014). However modern genome sequencing methods are important tools to discover and describe taxonomic, phylogenetic and functional diversity. The use of different, new analytical tools has also greatly benefited our knowledge of the below-ground ecology of orchids and orchid mycorrhizal fungi. On the right track with multiple markers and Bayesian species delimitations (Ruibal et al., 2014; Ruibal et al., 2013; Whitehead et al., 2017). New species of Tulasnella and relatives are constantly being identified (Linde et al., 2017). Continue to combine sequencing with taxonomic knowledge to provide a comprehensive description of the species that associate with orchids.

The genera of orchid fungi we have sampled belong to two orders, Cantharellales and Sebacinales, in the Agaricomycetes. Cantharellales is sister to the rest of class Agaricomycetes and comprises seven families total (Ceratobasidiaceae, Tulasnellaceae, Botryobasidiaceae, Cantharellaceae, Clavulinaceae, Hydnaceae, and Aphelariaceae), though Hibbett et al., (2014), define Cantharellaceae and Clavulinaceae as synonymous with Hydnaceae and the status of Aphelariaceae is unknown (Kirk et al., 2008; Leacock, 2018). Ceratobasidiaceae has two genera (*Ceratobasidium* and *Rhizoctonia/Thanatephorus*) that have been demonstrated to be

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

polyphyletic (Veldre et al., 2013). In fact, the type specimen for *Ceratobasidium* has since been reclassified as a member of the order Auriculariales based on the characters like the shape of the basidia and the dolipore (specialized hyphal septa) ultrastructure, leading Oberwinkler et al., (2013a) to restrict *Ceratobasdium* and Ceratobasidiaceae to the type specimen and reclassifying Ceratobasidium spp. as Rhizoctonia (Kirk et al., 2008). Tulasnellaceae contains 3 genera and c. 50 sp (Kirk et al., 2008). In addition to these described families, the genus Sisotrema is known to be polyphyletic with members in Auriculariales as well as Cantharellales. Successively sister to the rest of the Agaricomycetes is the order Sebacinales which includes two families – the Sebacinaceae and Serendipitaceae (Weiss et al., 2016). Though this order comprises a wide swath of diversity, it remains difficult to adequately describe species due to a high volume of environmental sequence data without information about morphological characters (Oberwinkler et al., 2013b; Weiss et al., 2016). In this study, our primary goal is to shallowly sequence a rich living collection of fungi isolated from orchid roots and seedlings to provide a phylogenetic framework for future genomeenabled evolutionary and functional studies. Our secondary goal, with the addition of key outgroups, is to answer a series of nested phylogenetic questions about the relationships among the orders, families and genera of Agaricomycetes, with a focus on Ceratobasicaceae, Tulasnellaceae, and Sebacineaceae. We screened taxa using ITS sequencing, and after contaminants were removed we chose 32 taxa for shallow genome sequencing. A total of 50 taxa were analyzed and we extracted 408 orthologous genes. Two highly-supported phylogenetic trees were constructed with RAxML and ASTRAL-III that were overall highly congruent. We discuss how our study provides new insight into the relationships of these orchid mycorrhizal fungi, highlights areas for taxonomic attention and we suggest future research directions.

2. MATERIALS AND METHODS

2.1 Taxonomic sampling

132

133134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

32 environmental samples were isolated from endangered orchids. These samples span three genera in three families in two orders. Outgroup genomes were chosen from the repository in Mycocosm to capture the breadth of taxonomic diversity (Grigoriev et al., 2014). Two super outgroups (Kockovaella sp and Calocera sp) were chosen from the successively sister classes outside the ingroup class Agaricomycetes [Tremellomycetes, [Dacrymycetes, [Agaricomycetes]]]. In the Cantharellales we sampled the three genomes in Ceratobasidiaceae (Rhizoctonia solani, Thanatephorus cucumeris, and Ceratobasidium sp AGI), the two genomes in Tulasnellaceae (Tulasnella calospora AL13/4D, and Tulasnella calospora UAMH9824), and one genome each from 4 of the remaining 5 families Botryobasidium botryosum (Botryobasidiaceae), Clavulina sp (Clavulinaceae), Cantharellus anzutake (Cantharellaceae), and Hydnum rufescens (Hydnaceae). We also included three genomes in Serendipitaceae (Sebacinales) Sebacina vermifera (syn. Serendipita vermifera), Piriformospora indica (syn. Serendipita indica), and Serendipita sp. 407. We sampled representatives from the order Auriculariales to capture the entire diversity of these sequences (Oliveonia pauxilla, Auricularia subglabra, Aporpium carvae, and Exidia glandulosa).

2.2 Fungal Isolates

The 32 fungal samples used in this study were isolated from roots or protocorms (the seedling stage) of endangered orchid species in areas spanning from Hawaii to Florida, with a focus on the Midwest and the Florida Panther National Wildlife Refuge (Table 1). For the full description of the isolation techniques used, see Zettler and Corey (2018). Briefly, root tissue

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

was surface-sterilized then placed in a petri dish with sterile water and finely diced with a scalpel. Fungal Isolation Media (Clements et al., 1986) was poured on the diced root tissue and left at ambient temperature. After 24-48 hours, the plates were examined with a dissecting microscope to identify fungal growth. Mycelia were excised and placed on Difco Potato Dextrose Agar (PDA; Becton Dickinson and Co., Sparks, MD, Mfr # BD 213400). Those fungi with morphological characteristics consistent with fungi in the form genus *Rhizoctonia* as identified in Currah et al., (1997) were retained for identification with ITS sequencing (Figure 1). Fungi were grown in flasks with 75ml of full strength Difco Potato Dextrose Broth (Difco Becton Dickinson and Co., Sparks, MD, Mfr # BD 254920) on a shaker table until there was enough tissue for extraction. Depending on the isolate this took 2-6 weeks. Often multiple flasks of each isolate were grown at one time to speed up this process. For extraction, the entire contents of each flask was poured into a 150mL Polystyrene Bottle Top Filter 0.45um (Corning Incorporated, Corning, USA, Cat # 430627) and washed with DI water. These samples were weighed to determine how many samples could be processed from each sample (minimum of 0.2 grams filtered weight/tube). Fungi were isolated with either the Bacterial/Fungal DNA extraction kit (Zymo Research, Irvine, USA, Cat # D6005, Lot # ZRC201856) according to manufacturer protocol or a CTAB, phenol chloroform isoamyl procedure (Supplemental Figure S1). When the Zymo kit was used, fungi were added to lysis tubes and put on bead beater for two rounds of four minutes. If the CTAB extraction was employed, fungal tissue was ground with liquid Nitrogen in ceramic mortar and pestle. Extracted DNA was assayed on a NanoDrop 2000 (ThermoFisher Scientific, USA, cat # ND-2000) and on a Qubit 2.0 Fluorometer (ThermoFisher Scientific, USA, cat # Q32866) with the Qubit double-stranded DNA High Sensitivity Assay kit

(ThermoFisher Scientific, USA, cat # Q32851). We followed JGI instruction for sample submission by submitting approximately 500 ng of each sample in a total volume of 25-35 uL in one 96-well plate provided by JGI.

2.3 ITS sequencing for Species Identification

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199 200

201

202

To determine species identity, we sequenced the internal transcribed spacer (ITS) region of the rDNA. We used the same DNA extraction methods referenced above. We used the primer pairs ITS1/ITS4-Tul or ITS1-OF/ITS4-OF for isolates presumed to be *Tulasnella* as the ITS sequences in this genus are highly divergent and not captured well with other primers (Taylor and McCormick, 2008). For the genera Ceratobasidium and Serendipita, the general primers ITS1/ITS4 or ITS1-OF/ITS4-OF were used and if these did not successfully amplify the ITS region of Serendipita isolates the primer pair ITS3Seb/NL4 (Bellemain et al., 2010; Ray et al., 2015; White et al., 1990). The amplified DNA was cleaned with the DNA Clean and Concentrator-25 kit (Zymo Research, Irvine, USA, cat # D4033). These PCR products were assessed on a 1.5% agarose gel and Sanger sequencing was performed at the University of Missouri DNA Core Facility. These sequences were evaluated for confidence in base calling and edited by trimming low quality bases from the beginning and end of each sequence in Geneious 9.1.8 (http://www.geneious.com/). These trimmed sequences were queried against NCBI's default nucleotide-nucleotide database as well as the UNITE database for species identification (Nilsson et al., 2019). These sequences were generated for the purpose of accurate species ID before sending DNA samples for shallow genome sequencing.

2.4 Shallow Genome Sequencing and Quality Control

Shallow genome sequencing of 32 samples, quality control, and filtering were performed at the Joint Genome Institute (JGI) under a Community Sequencing Proposal (#2000). Samples

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

were run on an Illumina NovaSeq with 2x151 base pair (bp) reads. The quality control and filtering at the JGI use BBmap to remove contamination and remove low quality reads (Bushnell B., BBMap. http://sourceforge.net/projects/bbmap/). Three samples were sequenced at the University of Missouri's DNA Core Facility which were run on an Illumina NextSeq 500 machine on one lane with 45 other samples generating 2x150 bp reads. 2.5 Shallow Genome Assembly and Annotation All cleaned and filtered sequences from the Joint Genome Institute and the University of Missouri were assembled with the AAFTF pipeline for read assembly, remove vector contamination and duplicate contigs, contig sequence polishing and sorting the contigs by length (Stajich, JE., Automatic Assembly For the Fungi. https://github.com/stajichlab/AAFTF). The pipeline performs assembly with Spades 3.10.0 using default parameters which consider 3 kmer values and select the optimal assembly based on summary statistics (Nurk et al., 2013). As a measure to assess genome completeness, all samples were run through BUSCO 3.0.2 using the Basidiomycota database (Simao et al., 2015). For most samples, RNA sequence data was used to facilitate annotation. When samples were too distantly related to map efficiently to the RNA sequencing reads, these taxa were annotated without aligning to the RNA sequences (Table 5). The RNA sequences used for reference were also generated from JGI CSP #2000 and will be published as part of a separate study. All samples were then prepared for gene prediction using Funannotate 1.6.0 (Palmer JP, Stajich JE. 2018, https://github.com/nextgenusfs/funannotate), which performs all the steps necessary for genome annotation from gene prediction training to final gene consensus model, functional prediction, and dataset preparation for deposition into GenBank. The tool first runs RepeatMasker 4.0.7 (http://www.repeatmasker.org). This "softmasks" the genome by converting repetitive elements into lowercase letters in the assembly files. This step is necessary for the gene prediction steps that follow. After masking, each assembly is run through a training step to provide the initial models for the ab initio gene prediction programs AUGUSTUS 3.3.0 (Keller et al., 2011; Stanke and Waack, 2003), SNAP (Korf, 2004), CodingQuarry (Testa et al., 2015), and GeneMark-ES/ET 4.38.0 (Lomsadze et al., 2014). Protein sequences are also aligned with diamond (Buchfink et al., 2015) and gene models polished with exonerate (Slater and Birney, 2005). When RNASeq reads were available for a strain, these were applied as part of a training step which first aligned short RNASeq reads, followed by assembly of these reads into contig with Trinity. Finally these assembled transcripts were aligned to the genome to produce gene models which were used for gene predictor training. Table 5 has the strains which were able to use the RNASeq data as support for gene model training and prediction. These combined evidence of these gene predictions, both ab initio and protein and transcript sequence based, were combined with EvidenceModeler to use combined evidence to predict a final set of protein coding genes. In addition tRNA gene predictions were performed with tRNAScan-SE (Lowe and Eddy, 1997). The resulting predicted protein files were then used for the phylogenetic analyses.

2.6 Phylogenomic analysis

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

We used the pipeline PHYling 1.0 (https://doi.org/10.5281/zenodo.1257001) developed by the Stajich lab, to extract orthologous genes from the predicted proteins of our taxa (Spatafora et al., 2016). PHYling uses Hmmer3 (v3.2.1) to compare our predicted proteins to a list of Profile-Hidden-Markov models of phylogenetically informative markers. The list we used is the 434 orthologous gene set (https://doi.org/10.5281/zenodo.1251476) constructed by the 1000 Fungal Genomes Project and identified as single-copy in orthologous gene clusters available from the Joint Genome Institute's MycoCosm repository (Grigoriev et al., 2014). We used

hmmsearch to compare each sample's proteome to the 434 gene list. The protein sequence homologs we identified were aligned to the marker-profile HMM with hmmalign. These alignments were concatenated to run a phylogenetic analysis with RAxML 8.2.12 (Stamatakis, 2006; Stamatakis et al., 2008). The model of evolution was determined automatically and bootstrapped with 100 replicates. The gene trees generated from RAxML were used to construct a consensus tree with ASTRAL-III 5.6.3 (Mirarab et al., 2014; Zhang et al., 2017).

2.7 Data accessibility

Isolates with UAMH numbers are stored in the UAMH Centre for Global Microfungal Biodiversity repository. Raw DNA sequence data have been deposited in SRA and are associated with BioProjects listed in Table 3. Scripts used for these analyses and all alignments, trees, and intermediate files will be made available in a Dryad repository upon publication. BioProject IDs and JGI Mycocosm repositories are summarized in Table 3.

3. RESULTS

3.1 ITS identifications

For the 35 isolates studied, ITS identifications, primers used and the length of each sequence are summarized in Table 2. One sample sent to the Joint Genome Institute was not sequenced due to poor DNA quality. Two isolates were identified as contaminants (isolates 420 and 422) and were excluded from further analysis (Table 2). Only four out of 35 isolates were identified to species.

3.2 Shallow genome sequencing and annotation

Shallow genome sequencing of 32 fungal isolates resulted in a wide range in the number of genes annotated in each individual genome. The isolate *Serendipita sp* 396 has the least number of annotated genes at 8,285 and *Ceratobasidium sp* 428 has the most at 25,099. The

BUSCO completeness scores ranged from 54.2% to 96.6% of the 1335 orthologues in the BUSCO dataset. For assembly statistics see Table 4 and for BUSCO completeness scores see Table 5. Out of 435 orthologous genes, 429 had enough significant hits for further analysis. The number of genes present for each taxa ranged from 299 in *Tulasnella sp* 408 to 425 in the outgroups *Auricularia subglabra* and *Botryobasidium botryosum*. For full matrix occupancy see Table 6. The outgroup *Kockovaella imperatae* contained 408 of the 429 genes so those 408 sequences were included in the phylogenetic analyses. The concatenated alignment has 128,774 distinct alignment patterns and is 14.31% gaps.

3.3 Phylogenetic analysis

The best concatenated tree likelihood is -3406977.36. The bootstrap (BS) support is overall very high with the majority of branches at 100 (Figure 2). Eight branches have bootstrap values below 100, and, of those, only three are below 75. The ASTRAL-III tree shows high congruence with the concatenated tree and all but five branches are supported with 0.7 local posterior probability or higher (Figure 3). The two phylogenies have the exact same topology on the class, order, and family level and recapitulate with high support previously published relationships between orders in the Agaricomycetes [Cantharellales, [Sebacinales, [Auriculariales]]]. The phylogenies are highly congruent within Cantharellales, however, the relationships between *Serendipita* isolates are quite different as discussed below.

Within the Cantharellales, we have strong support (94 BS, 0.99 posterior probability) for Ceratobasidiaceae as sister to the rest of the order. Within Ceratobasidiaceae, the Ceratobasidium isolates cluster together with very strong support with the exception of *Ceratobasidium sp* 423, which is nested within *Rhizoctonia solani* and *Thanatephorus cucumeris*. The only difference between the ML and ASTRAL-III in the family is the placement of *Ceratobasidium sp* 370. In

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

the ML tree, 370 is sister to a clade of [414, [394+UAMH11750]] and in the ASTRAL-III tree, 370 is sister with isolate 414 and equally related to 394+UAMH11750. There is no phylogenetic signal based on orchid source, geographic location (Figure 3, Table 1). Both trees show Tulasnellaceae as sister to the clade [Botryobasidium, [Clavulina, [Cantherellus + Hydnum]]] with 100BS and 1.0 pp. The relationships in *Tulasnella* are highly supported with all but one branch with 100 BS values and all but two branches with pps less than 1.0. Notably, the genome sequence and the shallow genome sequence data for Tulasnella calospora UAMH 9824 are sister to each other in the tree, though two other isolates are included in a clade with *Tulasnella* calospora AL13. The samples in the Sebacinales are not as well-resolved. The Serendipia isolates have the least support overall due to the short branches of all isolates aside from Serendipita 399, which is sister to the rest. All Serendipita spp in this study are most closely related to Serendipita (=Piriformospora) indica with 100 BS/1.0. It is important to note our inclusion of the reference genome Serendipita 407 (Serendipita sp. 407 v1.0) and a shallow genome sequence of the same isolate (Serendipita sp 407.Orchid). In our dataset these two samples are not sister to each other. In the quartet-based ASTRAL-III tree, Serendipita 400 and 411 are sister to each other with 0.77 posterior probability, whereas in the concatenated tree, the genome of isolate 407 was sister to the rest of the Serendipita isolates aside from 399. The short branches in this group indicate a small number of changes in the alignment in the ML tree and a high degree of discordance in the ASTRAL-III tree. All of the Serendipita isolates are from epiphytic orchids in the Florida Panther National Wildlife Refuge (Figure 3, Table 1). In the ASTRAL tree, Serendipita spp tend

to cluster with orchid source compared to the ML tree.

4. DISCUSSION

The primary goal of this study was to use shallow genome sequencing and phylogenetic

4.1 Overview

318319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

methods to uncover the evolutionary relationships in a collection of fungal isolates that interact with endangered orchid species. The secondary goal was to leverage current genomic resources to investigate relationships among the orders, families and genera of Agaricomycetes, with a focus on Ceratobasicaceae, Tulasnellaceae, and Sebacineaceae. Understanding of species in the fungal genera that facilitate orchid germination is extremely poor, as the number of formally described species is much lower than the diversity of fungi revealed from metagenomic or environmental sequencing. The results of this study add to our understanding of the genetic diversity of these fungal taxa and provide an example of how sequence data can be incorporated with taxonomic expertise to better describe fungal species. The fungi that help germinate orchids were first categorized under one "form genus" called *Rhizoctonia* (Currah et al., 1997). This classification is not phylogenetically informative and today we know many orchid symbionts come from two orders (Cantharellales and Sebacinales) in the class Agaricomycetes (Hibbett, 2006). However, the taxonomy remains to be fully resolved. One reason classification can be difficult in these taxa is that these isolates do not sporulate or make sexual structures in laboratory conditions. Another is that traditionally, fungi were classified under two different names – the sexual stage (teleomorph) or vegetative state (anamorph). This policy ended during the 2011 International Botanical Congress when the

Nomenclature Section voted to eliminate this dual nomenclature system (Hibbett and Taylor,

though in many cases these changes are not strongly reinforced. This study examines the

2013). Many of the names published in literature are no longer considered the correct taxonomy

phylogenetic relationships of a collection of isolates so that the genetic distance of these strains is known and to provide a framework for future evolutionary questions. Data from these phylogenies can also provide evidence for new species or to revise current species concepts.

Understanding of taxonomy and species relationships is critical for testing evolutionary hypotheses. Increased sampling within taxonomic groups and from sites around the globe is necessary for future studies.

4.2 Relationships among Orders and Families

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

We used shallow genome sequencing for phylogenomics to describe the evolutionary relationships among a collection of orchid mycorrhizal fungi. We also included numerous outgroups to span the amount of biodiversity represented by these fungi. The large number of coding genes allowed us to provide strong evidence for relationships between orders and a novel result within the families of Cantharellales. Our results show strong support for the relationships [Cantharellales, [Sebacinales, [Auriculariales]]]. This is consistent with previously reported studies (Nagy et al., 2016). Within Cantharellales, the taxonomy is less certain and is still undergoing changes. For example, Dictionary of the Fungi lists seven families while Hibbett et al., (2014) claim four by defining Clavulinaceae and Cantharellaceae as synonymous with Hydnaceae. This decision seems to be based on the authors' interpretations as the data in the papers they cite don't support this conclusion (Leacock 2018). Gónzalez et al., (2016), found some support for the relationships [Tulasnellaceae, [Ceratobasidiaceae +Botryobasidiaceae, [Hydnaceae]]] based on the markers ITS-LSU, rpb2, tef1, and atp6. They did state that multiple coding genes would be necessary to see if their result was robust (Gónzalez et al., 2016). Our results show strong support (99 BS and .94 posterior probability) for Ceratobasidiaceae as the

sister family to [Tulasnellaceae, [Botryobasidiaceae + rest of Cantharellales]]. We did only include one sample from the four groups besides Ceratobasidiaceae and Tulasnellaceae so more sampling is needed in this group of fungi to produce a robust and consistent phylogenetic inference.

4.3 Relationships in Ceratobasidiaceae

The *Ceratobasidium* samples are closely related with the exception of isolate *Ceratobasidium sp* 423 that is nested within *Rhizoctonia solani* and *Thanatephorus cucumeris* (Figures 2, 3). These results are consistent with Veldre et al., (2013), who found that the genera Ceratobasidium and Thanatephorus are polyphyletic. Given the type specimen for Ceratobasidium has since been placed in the Auriculariales, Oberwinkler et al., (2013a) recommended Ceratobasidium should be renamed Rhizoctonia. Given these taxonomic conundrums, attention is needed to make a robust classification system. Something we found affirming was the close relationship of isolates Ceratobasidium 11750 and Ceratobasidium 394. Based on a nearly identical ITS sequence alignment, these isolates were assumed to be very closely related. This result is noteworthy because they have differential abilities to germinate seeds from the endangered Ghost orchid, *Dendrophylax lindenii*. 394 can germinate seeds but 379 does not. More sampling is needed to compare how the isolates included in our study are related to other *Ceratobasidium spp*. that are in defined Anastomosis Groups.

4.4 Relationships in Tulasnellaceae

Our *Tulasnella* isolates show a well-supported monophyletic clade in both phylogenetic trees (Figures 2 and 3). Without further targeted sampling, it is premature to delimit species boundaries; however, one species that could use revision is *Tulasnella calospora*. In both the

concatenated and coalescent phylogenies, the two *T. calospora* genomes are not sister to each other but include the isolates 408 and 417, which were not identified as *T. calospora* based on the ITS sequence. This result could be a function of the relatively low number of orthologous genes that we recovered from 408 and 417, 291 and 330 out of 434, respectively (Tables 5 and 6). However, others have voiced concern over the species concept (Melissa McCormick, pers. comm.).

Three isolates in this analysis are from the Hawaiian island of Molokai (330, 331, and 332; Table 1). These isolates cluster very closely in both phylogenies and are sister to three isolates of *Tulasnella inquilina*. These isolates turn pink when exposed to light and have highly divergent ITS sequences from the other Tulasnella isolates in this analysis. The strong support for the monophyly of these Hawaiian samples, and their placement in the tree, suggest a potentially new species. With increased sampling, more robust methods to delineate species boundaries such as those used in (Whitehead et al., 2017) and we will have the power to better describe the diversity of orchid mycorrhizal fungi.

4.5 Relationships in Sebacinales

All of the *Serenipita* isolates in this analysis are from the Florida National Wildlife Panther Refuge (NWPR) in Florida and they are associated with three different epiphytic orchid species (Table 1). In both phylogenetic analyses, *Serendipita* 399 is sister to the rest of our samples. Growing on PDA, 399 looks morphologically distinct from the other *Serendipita sp* due to a darker orange pigment and a crustose layer on the surface of the agar. This isolate also grows much more slowly than other Serendipita taxa, it would take longer than four weeks for the fungus to grow to the edge of a standard petri dish. For the remaining samples, it could be, that there is one main species or population of *Serendipita* that grows in orchid roots in the

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

NWPR as their relationships are poorly resolved in the RAxML phylogeny and highly incongruent between the two phylogenies. However, in the ASTRAL analysis, the Serendipita isolates cluster somewhat closely by the orchid species from which they were isolated though this is not a strong signal (Figure 3). A more thorough and targeted analysis is required to determine the number of distinct populations of these fungi in the Florida National Panther Wildlife Refuge similar to that conducted by Ruibal et al., (2017) to describe the population structure of *Tulasnella prima* in Australia. It would be interesting to survey the fungi growing in the roots of all plant species in the NWPR to determine the genetic diversity of Serendipita across the landscape. Such an experiment would show whether orchids are using a narrow distribution of fungi or if the plants are less discerning but the genetic diversity of the fungi is simply very low. Another result from our analysis shows that these fungal strains are most closely related to Piriformospora indica, a known ectomycorrhizal fungus species (Varma et al., 2001). Many fungi in the order Sebacinales are ecologically characterized as ectomycorrhizal fungi and interact with a wide diversity of plant species (Kohler et al., 2015). Indeed, researchers are isolating fungi in the Sebacinales from plants like switchgrass (Panicum virgatum) to determine the benefit of these fungi for applications in agriculture (Craven and Ray, 2019). Orchids might contribute to this effort, as it took more than one year for the Craven lab to isolate one strain of Sebacina vermifera ssp. bescii from switchgrass; similar fungi are much more easy to isolate from orchid roots (Prasun Ray, pers. comm.). Orchids could be environmental filters for fungi that could be beneficial in many plant-fungal interactions.

4.6 Future directions

The next steps stemming from this study are to combine the phylogenetic relationships with taxonomic expertise to name new species or to revisit problematic species concepts like *Tulasnella calospora*. Additionally, it would be beneficial to sequence the genome of the type specimens for many of these genera and species. Being able to compare the genetic sequences of the type specimens would be extremely beneficial for fungal species that do not present sexual characteristics in the lab. A set of fifteen isolates from the collection have been sequenced on the PacBio platform and will be assembled into reference genomes as part of another aim of the Community Sequencing Proposal (Table 3).

ACKNOWLEDGEMENTS

I thank the Zettler lab students who worked in the field and the lab to isolate these beautiful fungi. We are grateful to the teams of Dr. Greg Bonito, Dr. Daniel Lindner, and Dr. Francis Martin including the 'Mycorrhizal Genomics Initiative' consortium and the 1KFG project for access to unpublished genome data. The genome sequence data were produced by the US Department of Energy Joint Genome Institute in collaboration with the user community. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computations were performed using the computer clusters and data storage resources of the University of California-Riverside HPCC, which were funded by grants from NSF (MRI-1429826) and NIH (1S10OD016290-01A1). Funding for this work is from Joint Genome Institute Community Sequencing Proposal (JGI CSP 2000), National

- 456 Science Foundation, IOS 1339156, and the Department of Energy (DOE), Defense Threat
- 457 Reduction Agency (DTRA).

LITERATURE CITED

- Barto, E.K., Weidenhamer, J.D., Cipollini, D., Rillig, M.C., 2012. Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends in Plant Science 17, 633-637.
 - Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., Kauserud, H., 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC microbiology 10, 189.
 - Blackwell, M., 2011. The Fungi: 1, 2, 3 ... 5.1 million species? American Journal of Botany 98, 426-438.
 - Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, 59-60.
- 472 Bushnell, B., 2014. BBmap.

- Clements, M., Muir, H., Cribb, P., 1986. A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bulletin, 437-445.
 - Craven, K.D., Ray, P., 2019. More than Serendipity: The Potential to Manage Soil Carbon and Emissions While Promoting Low-Input Agriculture with Serendipitoid Mycorrhizae. Phytobiomes Journal 3, 161-164.
 - Currah, R., Zelmer, C., Hambleton, S., Richardson, K., 1997. Fungi from orchid mycorrhizas. Orchid Biology. Springer, pp. 117-170.
 - Fochi, V., Chitarra, W., Kohler, A., Voyron, S., Singan, V.R., Lindquist, E.A., Barry, K.W., Girlanda, M., Grigoriev, I.V., Martin, F., Balestrini, R., Perotto, S., 2017a. Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol 213, 365-379.
 - Fochi, V., Falla, N., Girlanda, M., Perotto, S., Balestrini, R., 2017b. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae. Plant Sci 263, 39-45.
 - Gónzalez, D., Rodriguez-Carres, M., Boekhout, T., Stalpers, J., Kuramae, E.E., Nakatani, A.K., Vilgalys, R., Cubeta, M.A., 2016. Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biol 120, 603-619.
 - Grigoriev, I.V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., Smirnova, T., Nordberg, H., Dubchak, I., Shabalov, I., 2014. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research 42, D699-D704.
 - Hawksworth, D.L., Lücking, R., 2017. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. The Fungal Kingdom. American Society of Microbiology.
 - Hibbett, D.S., 2006. A phylogenetic overview of the Agaricomycotina. Mycologia 98, 917-925.
 - Hibbett, D.S., Bauer, R., Binder, M., Giachini, A.J., Hosaka, K., Justo, A., Larsson, E., Larsson, K.H., Lawrey, J.D., Miettinen, O., Nagy, L.G., Nilsson, R.H., Weiss, M., Thorn, R.G., 2014. 14 Agaricomycetes. In: McLaughlin, D.J., Spatafora, J.W. (Eds.), Systematics and Evolution: Part A. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 373-429.
 - Hibbett, D.S., Taylor, J.W., 2013. Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11, 129-133.
 - Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A., Pozo, M.J., 2012. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology 38, 651-664.
- Keller, O., Kollmar, M., Stanke, M., Waack, S., 2011. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27, 757-763.

- Kirk, P.M., Ainsworth, G.C., Bisby, G.R., 2008. Ainsworth & Bisby's dictionary of the fungi. CABI.
- Kohler, A., Kuo, A., Nagy, L.G., Morin, E., Barry, K.W., Buscot, F., Canback, B., Choi, C., Cichocki, N., Clum, A., Colpaert, J., Copeland, A., Costa, M.D., Dore, J., Floudas, D.,
- Gay, G., Girlanda, M., Henrissat, B., Herrmann, S., Hess, J., Hogberg, N., Johansson, T.,
- Khouja, H.R., LaButti, K., Lahrmann, U., Levasseur, A., Lindquist, E.A., Lipzen, A.,
- Marmeisse, R., Martino, E., Murat, C., Ngan, C.Y., Nehls, U., Plett, J.M., Pringle, A.,
- Ohm, R.A., Perotto, S., Peter, M., Riley, R., Rineau, F., Ruytinx, J., Salamov, A., Shah,
- F., Sun, H., Tarkka, M., Tritt, A., Veneault-Fourrey, C., Zuccaro, A., Mycorrhizal
- Genomics Initiative, C., Tunlid, A., Grigoriev, I.V., Hibbett, D.S., Martin, F., 2015.
- Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47, 410-415.
- Korf, I., 2004. Gene finding in novel genomes. BMC Bioinformatics 5, 59.
- Kuga, Y., Sakamoto, N., Yurimoto, H., 2014. Stable isotope cellular imaging reveals that both
 live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms.
 New Phytol 202, 594-605.
- Larsen, B.B., Miller, E.C., Rhodes, M.K., Wiens, J.J., 2017. Inordinate Fondness Multiplied and Redistributed: the Number of Species on Earth and the New Pie of Life. The Quarterly Review of Biology 92, 229-265.
- Leacock, P.R., 2018. Cantharellales MycoGuide.

529

530

537

538

- Linde, C.C., May, T.W., Phillips, R.D., Ruibal, M., Smith, L.M., Peakall, R., 2017. New species of Tulasnella associated with terrestrial orchids in Australia. IMA Fungus 8, 28-47.
 - Lomsadze, A., Burns, P.D., Borodovsky, M., 2014. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Research 42, e119-e119.
- Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research 25, 955-964.
- Lutzoni, F., Nowak, M.D., Alfaro, M.E., Reeb, V., Miadlikowska, J., Krug, M., Arnold, A.E.,
 Lewis, L.A., Swofford, D.L., Hibbett, D., Hilu, K., James, T.Y., Quandt, D., Magallón,
 S., 2018. Contemporaneous radiations of fungi and plants linked to symbiosis. Nature
 Communications 9.
 - Martos, F., Munoz, F., Pailler, T., Kottke, I., Gonneau, C., Selosse, M.-A., 2012. The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Molecular Ecology 21, 5098-5109.
- McCormick, M.K., Taylor, D.L., Whigham, D.F., Burnett, R.K., 2016. Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi. Journal of Ecology 104, 744-754.
- Mirarab, S., Reaz, R., Bayzid, M.S., Zimmermann, T., Swenson, M.S., Warnow, T., 2014.
 ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30, i541-i548.
- Nagy, L.G., Riley, R., Tritt, A., Adam, C., Daum, C., Floudas, D., Sun, H., Yadav, J.S.,
- Pangilinan, J., Larsson, K.-H., Matsuura, K., Barry, K., Labutti, K., Kuo, R., Ohm, R.A.,
- Bhattacharya, S.S., Shirouzu, T., Yoshinaga, Y., Martin, F.M., Grigoriev, I.V., Hibbett,
- D.S., 2016. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi
- Provides Insights into the Origins of Lignocellulose Decay Capabilities. Molecular Biology and Evolution 33, 959-970.

- Nilsson, R.H., Hyde, K.D., Pawłowska, J., Ryberg, M., Tedersoo, L., Aas, A.B., Alias, S.A.,
- Alves, A., Anderson, C.L., Antonelli, A., Arnold, A.E., Bahnmann, B., Bahram, M.,
- Bengtsson-Palme, J., Berlin, A., Branco, S., Chomnunti, P., Dissanayake, A., Drenkhan,
- R., Friberg, H., Frøslev, T.G., Halwachs, B., Hartmann, M., Henricot, B., Jayawardena,
- R., Jumpponen, A., Kauserud, H., Koskela, S., Kulik, T., Liimatainen, K., Lindahl, B.D.,
- Lindner, D., Liu, J.-K., Maharachchikumbura, S., Manamgoda, D., Martinsson, S.,
- Neves, M.A., Niskanen, T., Nylinder, S., Pereira, O.L., Pinho, D.B., Porter, T.M.,
- Queloz, V., Riit, T., Sánchez-García, M., De Sousa, F., Stefańczyk, E., Tadych, M.,
- Takamatsu, S., Tian, Q., Udayanga, D., Unterseher, M., Wang, Z., Wikee, S., Yan, J.,
- Larsson, E., Larsson, K.-H., Kõljalg, U., Abarenkov, K., 2014. Improving ITS sequence
 data for identification of plant pathogenic fungi. 67, 11-19.
 Nilsson, R.H., Larsson, K.-H., Taylor, A.F S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D.,
 - Nilsson, R.H., Larsson, K.-H., Taylor, A.F S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47, D259-D264.
- Nurk, S., Bankevich, A., Antipov, D., Gurevich, A., Korobeynikov, A., Lapidus, A., Prjibelsky,
 A., Pyshkin, A., Sirotkin, Y., Stepanauskas, R., McLean, J., Lasken, R.,
 Clingenpeel, S.R., Woyke, T., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2013.
 Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. Springer
 Berlin Heidelberg, Berlin, Heidelberg, pp. 158-170.
 - Oberwinkler, F., Riess, K., Bauer, R., Kirschner, R., Garnica, S., 2013a. Taxonomic reevaluation of the Ceratobasidium-Rhizoctonia complex and Rhizoctonia butinii, a new species attacking spruce. Mycological Progress 12, 763-776.
 - Oberwinkler, F., Riess, K., Bauer, R., Selosse, M.-A., Weiß, M., Garnica, S., Zuccaro, A., 2013b. Enigmatic Sebacinales. Mycological Progress 12, 1-27.
 - Palmer, J., Stajich, J.E., 2018. Funannotate.

565

566

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

- Peterson, R.L., Massicotte, H.B., 2004. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Canadian Journal of Botany 82, 1074-1088.
- Rasmussen, H.N., Dixon, K.W., Jersakova, J., Tesitelova, T., 2015. Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116, 391-402.
- Ray, P., Ishiga, T., Decker, S.R., Turner, G.B., Craven, K.D., 2015. A Novel Delivery System for the Root Symbiotic Fungus, Sebacina vermifera, and Consequent Biomass Enhancement of Low Lignin COMT Switchgrass Lines. BioEnergy Research 8, 922-933.
- Ruibal, M.P., Peakall, R., Foret, S., Linde, C.C., 2014. Development of Phylogenetic Markers for Sebacina (Sebacinaceae) Mycorrhizal Fungi Associated with Australian Orchids. Applications in Plant Sciences 2, 1400015.
- Ruibal, M.P., Peakall, R., Smith, L.M., Linde, C.C., 2013. Phylogenetic and microsatellite markers for Tulasnella (Tulasnellaceae) mycorrhizal fungi associated with Australian orchids. Appl Plant Sci 1.
- Ruibal, M.P., Triponez, Y., Smith, L.M., Peakall, R., Linde, C.C., 2017. Population structure of an orchid mycorrhizal fungus with genus-wide specificity. Scientific Reports 7.
- Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M., 2015.
 BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212.
- 596 Slater, G.S.C., Birney, E., 2005. Automated generation of heuristics for biological sequence 597 comparison. BMC Bioinformatics 6, 31.

- 598 Smith, S.E., Read, D.J., 2008. Mycorrhizal symbiosis. Academic press.
- Spatafora, J.W., Chang, Y., Benny, G.L., Lazarus, K., Smith, M.E., Berbee, M.L., Bonito, G.,
 Corradi, N., Grigoriev, I., Gryganskyi, A., James, T.Y., O'Donnell, K., Roberson, R.W.,
 Taylor, T.N., Uehling, J., Vilgalys, R., White, M.M., Stajich, J.E., 2016. A phylum-level
 phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia
 108, 1028-1046.
- Stajich, J.E., 2019. Automatic Assembly For the Fungi.
- Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690.
- Stamatakis, A., Hoover, P., Rougemont, J., 2008. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Systematic Biology 57, 758-771.
- Stanke, M., Waack, S., 2003. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215-ii225.
- Taylor, D.L., McCormick, M.K., 2008. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177, 1020-1033.
- Testa, A.C., Hane, J.K., Ellwood, S.R., Oliver, R.P., 2015. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts.

 BMC Genomics 16, 170.
- Varma, A., Singh, A., Sudha, Sahay, N.S., Sharma, J., Roy, A., Kumari, M., Rana, D., Thakran, S., Deka, D., Bharti, K., Hurek, T., Blechert, O., Rexer, K.H., Kost, G., Hahn, A., Maier, W., Walter, M., Strack, D., Kranner, I., 2001. Piriformospora indica: An Axenically Culturable Mycorrhiza-Like Endosymbiotic Fungus. In: Hock, B. (Ed.), Fungal Associations. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 125-150.
- Veldre, V., Abarenkov, K., Bahram, M., Martos, F., Selosse, M.-A., Tamm, H., Kõljalg, U.,
 Tedersoo, L., 2013. Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales,
 Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology 6,
 256-268.
- Wang, W., Shi, J., Xie, Q., Jiang, Y., Yu, N., Wang, E., 2017. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Molecular Plant 10, 1147-1158.
- Weiss, M., Waller, F., Zuccaro, A., Selosse, M.A., 2016. Sebacinales one thousand and one interactions with land plants. New Phytol 211, 20-40.
- White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18, 315-322.
- Whitehead, M.R., Catullo, R.A., Ruibal, M., Dixon, K.W., Peakall, R., Linde, C.C., 2017.

 Evaluating multilocus Bayesian species delimitation for discovery of cryptic mycorrhizal diversity. Fungal Ecology 26, 74-84.
- Yoder, J.A., Imfeld, S.M., Heydinger, D.J., Hart, C.E., Collier, M.H., Gribbins, K.M., Zettler,
 L.W., 2010. Comparative water balance profiles of Orchidaceae seeds for epiphytic and
 terrestrial taxa endemic to North America. Plant Ecology 211, 7-17.
- Zettler, L.W., Corey, L.L., 2018. Orchid Mycorrhizal Fungi: Isolation and Identification
 Techniques. Orchid Propagation: From Laboratories to Greenhouses—Methods and
 Protocols. Springer, pp. 27-59.
- Zhang, C., Sayyari, E., Mirarab, S., 2017. ASTRAL-III: Increased Scalability and Impacts of
 Contracting Low Support Branches. Springer International Publishing, Cham, pp. 53-75.

Figure 1. Morphological examples of Tulasnella, Ceratobasidium, and Serendipita. One representative from each genus from the Zettler collection. All three isolates started growing on Potato Dextrose Agar on the same day as indicated by the date on the petri dish (25 November 2015). Photographs: Sarah Unruh.

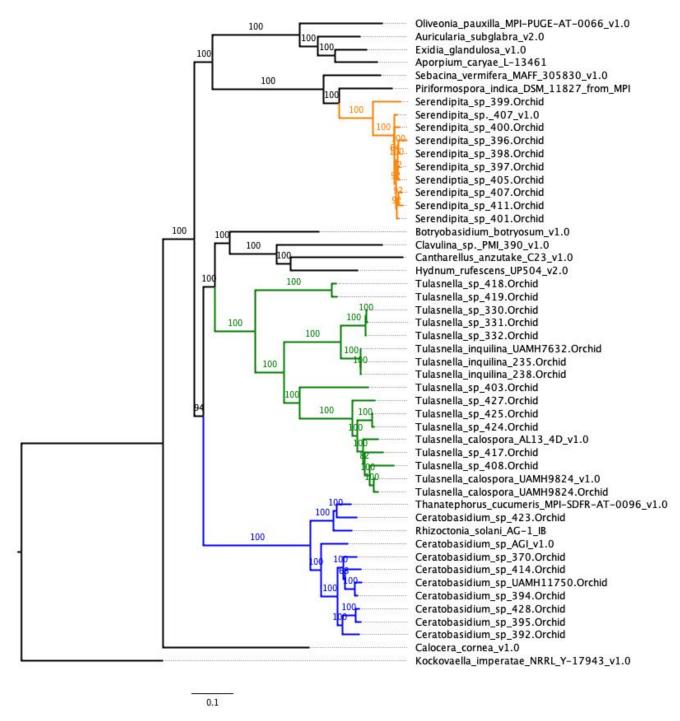


Figure 2. Concatenation-based phylogeny of orchid mycorrhizal fungi.

Phylogenetic tree of the orchid mycorrhizal fungi in the Zettler collection with outgroups from the MycoCosm repository (genome.jgi.doe.gov/mycocosm/home). Alignments were made with the Phyling pipeline and the phylogeny was built with RAxML.

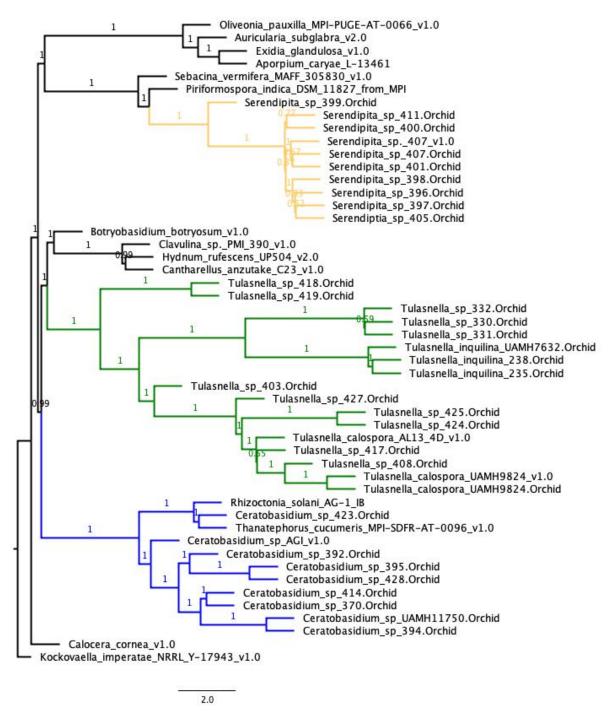


Figure 3. Quartet-based phylogeny of orchid mycorrhizal fungi.

Phylogenetic tree of the 32 orchid mycorrhizal fungi in the Zettler collection with 16 outgroups from the MycoCosm repository (genome.jgi.doe.gov/mycocosm/home). Alignments were made with the Phyling pipeline the gene trees were produced with RAxML and the tree was inferred using ASTRAL-III. All posterior probabilities are reported on the tree.

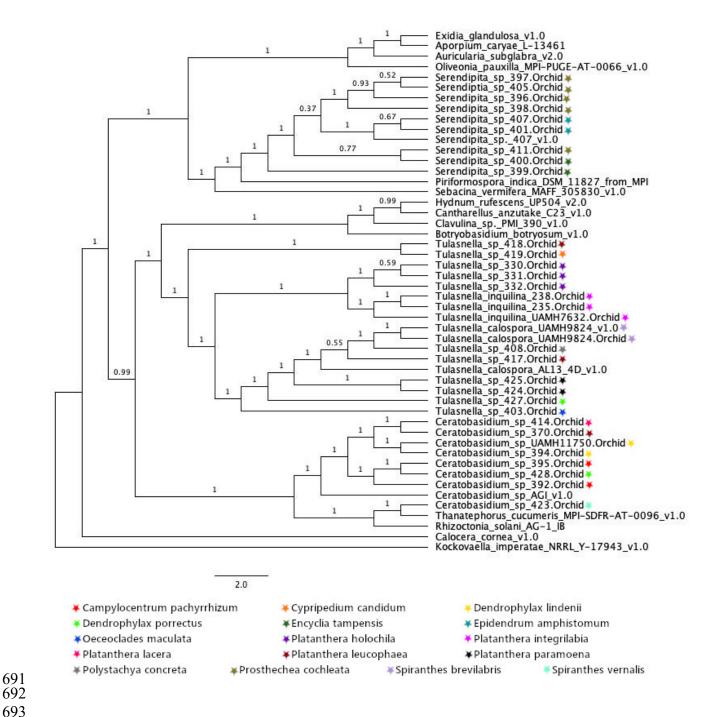


Figure 4. Annotated Quartet-based phylogeny.

 Phylogenetic tree of the 32 orchid mycorrhizal fungi in the Zettler collection with 18 genomes from the MycoCosm repository (genome.jgi.doe.gov/mycocosm/home). Branches were transformed in FigTree and annotated with colored stars indicating the origin they were isolated from.

Sample ID	Species	Strain	Orchid source	Tissue source	Location
Cerato11750	Ceratobasidium sp	UAMH11750	Dendrophylax lindenii (Lindl.) Benth. ex Rolfe	root	Florida Panther National Wildlife Refuge (NWR)
Cerato370	Ceratobasidium sp	370	Platanthera leucophaea (Nutt.) Lindl.	root	Tuscola Co., MI
Cerato392	Ceratobasidium sp	392	Campylocentrum pachyrrhizum (Rchb.f.) Rolfe	root	Florida Panther National Wildlife Refuge (NWR)
Cerato394	Ceratobasidium sp	394	Dendrophylax lindenii (Lindl.) Benth. ex Rolfe	root	Florida Panther National Wildlife Refuge (NWR)
Cerato395	Ceratobasidium sp	395	Campylocentrum pachyrrhizum (Rchb.f.) Rolfe	root	Florida Panther National Wildlife Refuge (NWR)
Cerato414	Ceratobasidium sp	414	Platanthera lacera (Michx.) G.Don	root	Fayette Co., IL
Cerato423	Ceratobasidium sp	423	Spiranthes vernalis Engelm. & A.Gray	root	Madison Co., IL
Cerato428	Ceratobasidium sp	428	Dendrophylax porrectus (Rchb.f.) Carlsward & Whitten	root	Florida Panther National Wildlife Refuge (NWR)
Serend396	Serendipita sp	396	Prosthechea cochleata (L.) W.E.Higgens	root	Florida Panther National Wildlife Refuge (NWR)
Serend397	Serendipita sp	397	Prosthechea cochleata (L.) W.E.Higgens	root	Florida Panther National Wildlife Refuge (NWR)
Serend398	Serendipita sp	398	Prosthechea cochleata (L.) W.E.Higgens	root	Florida Panther National Wildlife Refuge (NWR)
Serend399	Serendipita sp	399	Encyclia tampensis Small	root	Florida Panther National Wildlife Refuge (NWR)
Serend400	Serendipita sp	400	Encyclia tampensis Small	root	Florida Panther National Wildlife Refuge (NWR)
Serend401	Serendipita sp	401	Epidendrum amphistomum A.Rich	root	Florida Panther National Wildlife Refuge (NWR)
Serend405	Serendiptia sp	405	Prosthechea cochleata (L.) W.E.Higgens	root	Florida Panther National Wildlife Refuge (NWR)
Serend407	Serendipita sp	407	Epidendrum amphistomum A.Rich	root	Florida Panther National Wildlife Refuge (NWR)
Serend411	Serendipita sp	411	Prosthechea cochleata (L.) W.E.Higgens	root	Florida Panther National Wildlife Refuge (NWR)
Tulasn330	Tulasnella sp	330	Platanthera holochila (Hillebr.) Kraenzl.	peloton	Molokai, HI
Tulasn331	Tulasnella sp	331	Platanthera holochila (Hillebr.) Kraenzl.	peloton	Molokai, HI
Tulasn332	Tulasnella sp	332	Platanthera holochila (Hillebr.) Kraenzl.	peloton	Molokai, HI
Tulasn403	Tulasnella sp	403	Oeceoclades maculata Lindl.	root	Florida Panther National Wildlife Refuge (NWR)
Tulasn408	Tulasnella sp	408	Polystachya concreta (Jacq.) Garay & H.R.Sweet	root	Florida Panther National Wildlife Refuge (NWR)
Tulasn417	Tulasnella sp	417	Platanthera leucophaea (Nutt.) Lindl.	root	McHenry Co., IL
Tulasn418	Tulasnella sp	418	Platanthera leucophaea (Nutt.) Lindl.	root	McHenry Co., IL
Tulasn419	Tulasnella sp	419	Cypripedium candidum Muhl. ex Willd.	protocorm/seedling	McHenry Co., IL
Tulasn424	Tulasnella sp	424	Platanthera paramoena A.Gray	root	Fayette Co., IL
Tulasn425	Tulasnella sp	425	Platanthera paramoena A.Gray	root	Fayette Co., IL
Tulasn427	Tulasnella sp	427	Dendrophylax porrectus (Rchb.f.) Carlsward & Whitten	root	Florida Panther National Wildlife Refuge (NWR)
Tulasn9824	Tulasnella calospora	UAMH9824	Spiranthes brevilabris Lindl.	root	Levy Co., FL
Tulinq235	Tulasnella inquilina	235	Platanthera integrilabia (Correll) Luer	root	McMinn Co., TN
Tulinq238	Tulasnella inquilina	238	Platanthera integrilabia (Correll) Luer	root	McMinn Co., TN
Tulinq7632	Tulasnella inquilina	UAMH7632	Platanthera integrilabia (Correll) Luer	root	Greenville, SC

Table 1. Description of fungal isolates.

UAMH numbers refer to the repository number for isolates deposited in the UAMH Centre for Global Microfungal Diversity

SampleID	Morphological ID	Top hit UNITE	Top hit GenBank	Primer sequenced	Length edited in base pairs
Cerato11750	Ceratobasidium	Ceratobasidiaceae	Uncultured <i>Ceratobasidium</i> clone LP8-Cer1	ITS1	641
Cerato370	Ceratobasidium	Ceratobasidium	Ceratobasidium UAMH 9847	ITS4	538
Cerato392	Ceratobasidium	Basidiomycota (same as ncbi	orchid mycorrhizae KH4-8	ITS4	550
Cerato394	Ceratobasidium	Ceratobasidium	Ceratobasidium	ITS1	586
Cerato395	Ceratobasidium	Ceratobasidiaceae	Ceratobasidium sp JTO161	ITS1	548
Cerato414	Ceratobasidium	Ceratobasidiaceae	Ceratobasidium sp	ITS1	100
Cerato423	Ceratobasidium	Ceratobasidium	Uncultured Ceratobasidiaceae clone 207	ITS4	390
Cerato428	Ceratobasidium	Ceratobasidiaceae	Ceratobasidium sp JTO161	ITS1	420
Serend396	Serendipita	Sebacinales (orchid fungus)	uncultured Sebacinales clone	ITS1	189
Serend397	Serendipita	Sebacinales	uncultured Sebacinales clone	NL4	680
Serend398	Serendipita	Sebacinales	uncultured Sebacinales clone	NL4	567
Serend399	Serendipita	Sebacinales	uncultured Sebacinales clone	NL4	740
Serend400	Serendipita	Sebacinales	Serendipita sp MAFF 305831	NL4	780
Serend401	Serendipita	Sebacinales	Uncultured Sebacinales clone LP49- 23S	ITS4	614
Serend405	Serendipita	Serendipita	Serendipita sp MAFF 305831	NL4	380
Serend407	Serendipita	Sebacinales	Uncultured Sebacina mycobiont of Riccardia palmata	*	2316
Serend411	Serendipita	Sebacinales	Uncultured Sebacinales clone LP49- 23S	ITS3Seb	880

Tulasn330	Tulasnella	Tulasnellaceae	Uncultured Tulasnellaceae isolate 55P- Leu13	ITS4	570
Tulasn331	Tulasnella	Tulasnellaceae	Uncultured Tulasnellaceae	ITS1	620
Tulasn332	Tulasnella	Tulasnellaceae	Uncultured Tulasnellaceae	ITS4-OF	810
Tulasn403	Tulasnella	Tulasnella	Tulasnella sp CH01	ITS1	490
Tulasn408	Tulasnella	Tulasnellaceae	Uncultured Tulasnellaceae clone DOf-YC9	ITS4	622
Tulasn417	Tulasnella	Tulasnella	Tulasnella sp 9 MM-2012	ITS1	870
Tulasn418	Tulasnella	Tulasnellaceae	Uncultured Tulasnellaceae P94	ITS1	350
Tulasn419	Tulasnella	Tulasnella	Tulasnellaceae sp Pch 253	ITS4	368
Tulasn424	Tulasnella	Tulasnellaceae	Tulasnellaceae	ITS4	605
Tulasn425	Tulasnella	Tulasnella	Tulasnella sp 149	ITS1	570
Tulasn427	Tulasnella	Tulasnellaceae	Uncultured Tulasnella clone 9980F	ITS4	380
Tulasn9824	Tulasnella calospora	Tulasnella calospora	Tulasnella calospora isolate Pch-QS-0-1	ITS4-Tul	148
Tulinq235	Epulorhiza inquilina	Tulasnella	Tulasnella sp 3MV-2011 PA 053A	ITS4	650
Tulinq238	Epulorhiza inquilina	Tulasnellaceae	Tulasnella sp 3MV-2011 PA 053A	ITS4	758
Tulinq7632	Epulorhiza inquilina	Tulasnella	Tulasnella sp 3MV-2011 PA 053A	ITS1	790
Isolate 420*	Tulasnella	Phanerochaete australis	Phanerochaete australis	ITS1	350
Isolate 422*	Tulasnella	Trichoderma petersenii	Trichoderma sp isolate ARMI-23	ITS4	390

Table 2. Identifications of fungal isolates based on the internal transcribed spacer (ITS)

SampleID	BioProject or JGI web portal	BioSample
*Ceratobasidium_sp_UAMH11750.Orchid	PRJNA558776	SAMN12498506
Ceratobasidium_sp_370.Orchid	PRJNA557749	SAMN12427929
Ceratobasidium_sp_392.Orchid	PRJNA557750	SAMN12427914
*Ceratobasidium_sp_394.Orchid	PRJNA557751	SAMN12427897
*Ceratobasidium_sp_395.Orchid	PRJNA557752	SAMN12427926
Ceratobasidium_sp_414.Orchid	PRJNA557753	SAMN12427925
*Ceratobasidium_sp_423.Orchid	PRJNA557754	SAMN12427910
Ceratobasidium_sp_428.Orchid	PRJNA557755	SAMN12427923
Serendipita_sp_396.Orchid	PRJNA557757	SAMN12427894
Serendipita_sp_397.Orchid	PRJNA557758	SAMN12427928
Serendipita_sp_398.Orchid	PRJNA557759	SAMN12427900
Serendipita_sp_399.Orchid	PRJNA557760	SAMN12427906
*Serendipita_sp_400.Orchid	PRJNA557761	SAMN12427895
Serendipita_sp_401.Orchid	PRJNA557762	SAMN12427903
*Serendipita_sp_405.Orchid	PRJNA557763	SAMN12427917
*Serendipita_sp_407.Orchid	PRJNA558790	SAMN12498938
*Serendipita_sp_411.Orchid	PRJNA557734	SAMN12427911
Tulasnella_sp_330.Orchid	PRJNA557739	SAMN12427924
Tulasnella_sp_331.Orchid	PRJNA557740	SAMN12427908
*Tulasnella_sp_332.Orchid	PRJNA557741	SAMN12427902
Tulasnella_sp_403.Orchid	PRJNA557742	SAMN12427920
Tulasnella_sp_408.Orchid	PRJNA557743	SAMN12427916
Tulasnella_sp_417.Orchid	PRJNA557744	SAMN12427919
Tulasnella_sp_418.Orchid	PRJNA557745	SAMN12427921
*Tulasnella_sp_419.Orchid	PRJNA557746	SAMN12427922
Tulasnella_sp_424.Orchid	PRJNA557747	SAMN12427899
*Tulasnella_sp_425.Orchid	PRJNA557748	SAMN12427912
*Tulasnella_sp_427.Orchid	PRJNA557733	SAMN12427904
*Tulasnella_calospora_UAMH9824.Orchid	PRJNA558788	SAMN12498837
Tulasnella_inquilina_235.Orchid	PRJNA557736	SAMN12427891

*- , , , , , , , , , , , , , , , , , , ,		
*Tulasnella_inquilina_238.Orchid	PRJNA557737	SAMN12427893
*Tulasnella_inquilina_UAMH7632.Orchid	PRJNA557738	SAMN12427890
Aporpium_caryae_L-13461.	https://mycocosm.jgi.doe.go	ov/Elmca1
Auricularia_subglabra_v2.0	https://mycocosm.jgi.doe.go	ov/Aurde3_1
Botryobasidium_botryosum_v1.0	https://mycocosm.jgi.doe.go	ov/Botbo1
Calocera_cornea_v1.0	https://mycocosm.jgi.doe.go	ov/Calco1
Cantharellus_anzutake_C23_v1.0	https://mycocosm.jgi.doe.go	ov/Cananz1
Clavulina_spPMI_390_v1.0	https://mycocosm.jgi.doe.go	ov/ClaPMI390
Exidia_glandulosa_v1.0	https://mycocosm.jgi.doe.go	ov/Exigl1
Hydnum_rufescens_UP504_v2.0	https://mycocosm.jgi.doe.go	ov/Hydru2
Kockovaella_imperatae_NRRL_Y-17943_v1.0	https://mycocosm.jgi.doe.go	ov/Kocim1
Oliveonia_pauxilla_MPI-PUGE-AT-0066_v1.0	https://mycocosm.jgi.doe.go	ov/Olipa1
Piriformospora_indica_DSM_11827_from_MPI	https://mycocosm.jgi.doe.go	ov/Pirin1
Rhizoctonia_solani_AG-1_IB	https://mycocosm.jgi.doe.go	ov/Rhiso1
Sebacina_vermifera_MAFF_305830_v1.0	https://mycocosm.jgi.doe.go	ov/Sebve1
Serendipita_sp407_v1.0	https://mycocosm.jgi.doe.go	ov/Serend1
Thanatephorus_cucumeris_MPI-SDFR-AT-0096_v1.0	https://mycocosm.jgi.doe.go	ov/Thacu1
Tulasnella_calospora_AL13_4D_v1.0	https://mycocosm.jgi.doe.go	ov/Tulca1

Table 3. List of taxa and data availability.

Asterisks * indicate isolates selected for reference genome sequencing.

SampleID	CONTIG COUNT	TOTAL LENGTH	MIN	MAX	MEDIAN	MEAN	L50	N50	L90	N90
Ceratobasidium_sp_UAMH11750.Orchid	7239	47766782	2000	131072	4320	6598.53	1452	8784	5266	2947
Ceratobasidium_sp_370.Orchid	8028	47284605	2000	145775	3838	5889.96	1613	7304	5991	2715
Ceratobasidium_sp_392.Orchid	8904	52465834	1500	100768	3806	5892.39	1693	8316	6228	2516
Ceratobasidium_sp_394.Orchid	8562	53454716	1500	94250	3864	6243.25	1547	9440	5859	2601
Ceratobasidium_sp_395.Orchid	8769	67010313	1500	125675	4575	7641.73	1478	12298	5716	3127
Ceratobasidium_sp_414.Orchid	4161	50425407	1500	342430	4339	12118.58	349	34639	2143	4179
Ceratobasidium_sp_423.Orchid	15380	66434938	1500	107431	2946	4319.57	3306	5259	11578	2042
Ceratobasidium_sp_428.Orchid	8999	69097995	1500	121965	4552	7678.41	1493	12317	5876	3139
Serendipita_sp_396.Orchid	1431	20638744	2072	267195	9279	14422.6	279	17663	1083	6736
Serendipita_sp_397.Orchid	4253	28775535	1500	270096	3582	6765.94	580	10829	2793	2618
Serendipita_sp_398.Orchid	4302	28851264	1500	267525	3546	6706.48	574	11054	2835	2583
Serendipita_sp_399.Orchid	5013	31004825	1500	127831	3844	6184.88	906	8927	3450	2622
Serendipita_sp_400.Orchid	4392	28560853	1502	143991	3564	6502.93	635	10584	2927	2562
Serendipita_sp_401.Orchid	3823	28571286	1500	662216	3626	7473.52	429	13497	2433	2804
Serendipita_sp_405.Orchid	4254	28724145	1500	280457	3539	6752.27	566	10892	2796	2594
Serendipita_sp_407.Orchid	4028	27230538	1500	297010	3154	6760.31	426	12923	2590	2442
Serendipita_sp_411.Orchid	4211	28400685	1500	296955	3574	6744.4	574	10730	2767	2605
Tulasnella_sp_330.Orchid	1013	42302809	1500	967722	8117	41759.93	66	175815	323	19296
Tulasnella_sp_331.Orchid	3446	44512311	1500	298887	4965	12917.1	311	35916	1764	4762
Tulasnella_sp_332.Orchid	3329	44576393	1501	416704	5260	13390.33	297	36313	1699	5096

(J	د
(7)

Tulasnella_sp_403.Orchid	2963	29964626	1502	501591	4201	10112.93	303	23340	1647	3550
Tulasnella_sp_408.Orchid	10591	63626598	1500	92931	3595	6007.61	1850	9042	7284	2490
Tulasnella_sp_417.Orchid	9866	61487333	1500	224139	3694	6232.25	1709	9469	6703	2528
Tulasnella_sp_418.Orchid	3880	32841821	1501	268652	3496	8464.39	411	18771	2277	2844
Tulasnella_sp_419.Orchid	3865	33665047	1500	229676	3923	8710.23	419	18466	2308	3120
Tulasnella_sp_424.Orchid	781	48431701	1507	1054277	13975	62012.42	71	195410	275	36329
Tulasnella_sp_425.Orchid	769	48399368	1507	1089567	16223	62938.06	74	189857	290	37534
Tulasnella_sp_427.Orchid	6018	39289859	1500	134256	3802	6528.72	956	9789	4051	2663
Tulasnella_calospora_UAMH9824.Orchid	4164	49802335	1500	345740	5668	11960.21	481	25557	2334	4747
Tulasnella_inquilina_235.Orchid	1742	44191844	1503	570014	3948	25368.45	119	102565	508	11931
Tulasnella_inquilina_238.Orchid	2874	45488573	1500	444022	4355	15827.62	240	54071	1242	5477
Tulasnella_inquilina_UAMH7632.Orchid	2898	46174977	1501	520136	4010	15933.39	209	56439	1211	5431

Table 4. Assembly statistics.

	SampleID	RNASeq	Gene Count	BUSCO Complete %	BUSCO Single	BUSCO Fragmented	BUSCO Missing	BUSCO # Genes
	Ceratobasidium_sp_UAMH11750.Orchid	Cerato379	16971	65.8	60.3	11.6	22.6	1335
	Ceratobasidium_sp_370.Orchid	CeratoAll	11343	78.4	77.7	8.5	13.1	1335
	Ceratobasidium_sp_392.Orchid	CeratoAll	14816	72.3	66.3	13.4	14.3	1335
	Ceratobasidium_sp_394.Orchid	Cerato394	18818	71.1	62.6	13.6	15.3	1335
	Ceratobasidium_sp_395.Orchid	Cerato395	19777	71.1	42.9	13.2	15.7	1335
	Ceratobasidium_sp_414.Orchid	CeratoAll	12172	96.6	95.5	1.6	1.8	1335
	Ceratobasidium_sp_423.Orchid	CeratoAll	13213	77.6	76.6	11.7	10.7	1335
	Ceratobasidium_sp_428.Orchid	CeratoAll	25061	71.4	39.4	11.9	16.7	1335
37	Serendipita_sp_396.Orchid	Serend400	8272	65.5	64.9	5.8	28.7	1335
	Serendipita_sp_397.Orchid	Serend400	12078	74.7	73.8	11.9	13.4	1335
	Serendipita_sp_398.Orchid	Serend400	12311	74.6	73.6	11.4	14	1335
	Serendipita_sp_399.Orchid	Serend400	11252	72.2	64.6	11.6	16.2	1335
	Serendipita_sp_400.Orchid	Serend400	12369	72	70.9	11.3	16.7	1335
	Serendipita_sp_401.Orchid	Serend400	11951	76.4	75.4	10	13.6	1335
	Serendipita_sp_405.Orchid	Serend400	11992	73.3	72.6	10.7	16	1335
	Serendipita_sp_407.Orchid	Serend400	11442	69	67.8	13.3	17.7	1335
	Serendipita_sp_411.Orchid	Serend400	11996	74.5	73.2	10.6	14.9	1335
	Tulasnella_sp_330.Orchid		9146	95.4	94.5	1.8	2.8	1335
	Tulasnella_sp_331.Orchid		9039	92.9	91.7	2.8	4.3	1335
	Tulasnella_sp_332.Orchid		9025	93	91.7	2.7	4.3	1335

,		,	
ì	Ŷ	Š	

Tulasnella_sp_403.Orchid	Tulinq7632	8272	77.7	77.2	10.3	12	1335
Tulasnella_sp_408.Orchid	Tulinq7632	15407	54.2	48.4	17.5	28.3	1335
Tulasnella_sp_417.Orchid		13362	62.4	56.7	15.3	22.3	1335
Tulasnella_sp_418.Orchid	Tulasn419	12415	86.3	85.5	6.1	7.6	1335
Tulasnella_sp_419.Orchid	Tulasn419	12897	88	87.3	6	6	1335
Tulasnella_sp_424.Orchid		11832	95.6	94.3	1.6	2.8	1335
Tulasnella_sp_425.Orchid		10834	96	94.4	1.4	2.6	1335
Tulasnella_sp_427.Orchid		11876	71.4	62	14.6	14	1335
Tulasnella_calospora_UAMH9824.Orchid	Tulinq7632	12307	88.9	87.3	5.4	5.7	1335
Tulasnella_inquilina_235.Orchid	Tulinq7632	13948	95.4	94.3	1.9	2.7	1335
Tulasnella_inquilina_238.Orchid	Tulinq7632	14664	94.1	92.5	2.6	3.3	1335
Tulasnella_inquilina_UAMH7632.Orchid	Tulinq7632	14741	94.2	92.5	2.3	3.5	1335

Table 5. Annotation and BUSCO completeness metrics.

Taxa without an RNA sequence listed did not sufficiently map to the Tulinq7632 RNA sequences and were annotated without expression data. The colors in the BUSCO complete % column range from blue-green (lowest percentage) to dark red (highest percentage).

	Sample ID	Number best hit genes (429 total)
	Ceratobasidium_sp_UAMH11750.Orchid	354
	Ceratobasidium_sp_370.Orchid	356
	Ceratobasidium_sp_392.Orchid	368
	Ceratobasidium_sp_394.Orchid	376
	Ceratobasidium_sp_395.Orchid	369
	Ceratobasidium_sp_414.Orchid	387
	Ceratobasidium_sp_423.Orchid	376
	Ceratobasidium_sp_428.Orchid	382
	Serendipita_sp_396.Orchid	311
	Serendipita_sp_397.Orchid	391
	Serendipita_sp_398.Orchid	371
	Serendipita_sp_399.Orchid	358
	Serendipita_sp_400.Orchid	375
	Serendipita_sp_401.Orchid	382
	Serendipita_sp_405.Orchid	379
	Serendipita_sp_407.Orchid	364
	Serendipita_sp_411.Orchid	382
39	Tulasnella_sp_330.Orchid	401
9	Tulasnella_sp_331.Orchid	401
	Tulasnella_sp_332.Orchid	398
	Tulasnella_sp_403.Orchid	376
	Tulasnella_sp_408.Orchid	291
	Tulasnella_sp_417.Orchid	330
	Tulasnella_sp_418.Orchid	400
	Tulasnella_sp_419.Orchid	408
	Tulasnella_sp_424.Orchid	408
	Tulasnella_sp_425.Orchid	403
	Tulasnella_sp_427.Orchid	376
	Tulasnella_calospora_UAMH9824.Orchid	398
	Tulasnella_inquilina_235.Orchid	416
	Tulasnella_inquilina_238.Orchid	410
	Tulasnella_inquilina_UAMH7632.Orchid	417
	Aporpium_caryae_L-13461.	423
	Auricularia_subglabra_v2.0	425
	Botryobasidium_botryosum_v1.0	425
	Calocera_cornea_v1.0	410
	Cantharellus_anzutake_C23_v1.0	412
	Ceratobasidium_sp_AGI_v1.0	422

Clavulina_spPMI_390_v1.0	423
Exidia_glandulosa_v1.0	422
Hydnum_rufescens_UP504_v2.0	413
Kockovaella_imperatae_NRRL_Y-17943_v1.0	408
Oliveonia_pauxilla_MPI-PUGE-AT-0066_v1.0	419
Piriformospora_indica_DSM_11827_from_MPI	417
Rhizoctonia_solani_AG-1_IB	410
Sebacina_vermifera_MAFF_305830_v1.0	420
Serendipita_sp407_v1.0 Thanatephorus_cucumeris_MPI-SDFR-AT-	415
0096_v1.0	424
Tulasnella_calospora_AL13_4D_v1.0	405
Tulasnella_calospora_UAMH9824_v1.0	426

Table 6. Matrix Occupany.

Stajich lab CTAB Protocol:

Reagents required:
BUFFER A: 0.35 M sorbitol 0.1 M Tris-HCl, pH 9 5 mM EDTA, pH 8
BUFFER B: 0.2 M Tris-HCl, pH 9 50 mM EDTA, pH 8 2 M NaCl 2% CTAB
BUFFER C: 5% Sarkosyl (N-lauroylsarcosine sodium salt SIGMA L5125)
Potassium Acetate 5M (KAc precipitate polysaccharides) pH 7.5
RNAse A (10 mg/ml) Proteinase K (20 mg/ml)
PVP 1 %

(PCI) Phenol:Chloroform:Isoamyl alcohol (25:24:1)
(CI)Chloroform:Isoamyl alcohol (24:1)
Sodium Acetate (NaAc) 3M
Isopropanol 100%
Ethanol 70%

- 1. Add Lysis Buffer (650 μ L Buffer A, 650 μ L Buffer B, 260 μ L Buffer C, 175 μ L .1% PVP, 10 μ L Proteinase K) to 2 mL microcentrifuge tube, mix, and split equally into two 2 mL tubes.
- 2. Place in hot plate and heat to 65° C.
- 3. Grind young fungal tissue in liquid nitrogen, add 50-100 mg of tissue to each tube.
- 4. Incubate 30 min at 65° mixing by inversion frequently (2-5 min).
- 5. Add 280 µL KAc to each tube, mix by inversion, incubate on ice for 5 min.
- 6. Add 500-700 (the more the better) μL PCI, mix by inversion (>5 min) or vortex briefly then incubate for 2 min at room temp (RT).
- 7. Spin at 6,000 g for 10 min
- 8. Take supernatant, add equal volume CI (usually about 1000ul).
- 9. Mix by inversion (>5 min) then incubate for 2 min.
- 10. Spin at 6,000 g for 10 min
- 11. Take supernatant (usually 700uL):
 - a. RNAse treatment (2.5 µL RNAse, 37°, 90-120 min)*
 - b. Optional additional CI washes
- 12. Add 1/10 vol NaAc, mix, add 1 vol Isopropanol.
- 13. Incubate at RT 5 min, should start to see lots of DNA threads.
- 14. Spin at 3,000 g for 2 min, pour out the supernatant.
- 15. Wash with 1 mL freshly prepared, cold 70% ethanol.
- 16. Spin at 3,000 g for 2 min, pipette out the EtOH. Remove as much EtOH as possible before drying.
- 17. Dry pellet at RT for 10-15 min and/or 65° for <2 min to dry any leftover ethanol
 - a. Resuspend in 50-100 μ L TE (adjusted to pH9) at 65° Optional CI wash (add 600-800 TE buffer at 65°, resuspend DNA, add equal volume CI, mix as directed in step 9, carry on protocol from there minus the RNAse and CI steps, I usually take 500-600 supernatant if added 800 uL CI).
- 18. Nanodrop, 260/280 is indicative of nucleic acid and 260/230 indicative of protein
- 19. Qubit

41

- 20. Run on Gel
- 21. Check ITS and 16S by PCR

Supplemental Figure S1. CTAB DNA extraction protocol from Stajich lab