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Abstract 14 

One of the fundamental tenets of biology is that the phenotype of an organism (Y) is determined 15 
by its genotype (G), the environment (E) and their interaction (GE). Quantitative phenotypes can 16 
then be modeled as Y=G+E+GE+e, where e is the biological variance. This simple and tractable 17 
model has long served as the basis for studies investigating the heritability of traits and 18 
decomposing the variability in fitness. Increasingly, the importance of microbe interactions on 19 
organismal phenotypes is being recognized, but it is currently unclear what the relative 20 
contribution of microbiomes to a given host phenotype is and how this translates into the 21 
traditional GE model. Here we address this fundamental question and propose an expansion of 22 
the original model, referred to as GEM, which explicitly incorporates the contribution of the 23 
microbiome (M) to the host phenotype, while maintaining the simplicity and tractability of the 24 
original GE model. We show that by keeping host, environment and microbiome as separate but 25 
interacting variables, the GEM model can capture the nuanced ecological interactions between 26 
these variables. Finally, we demonstrate with an in vitro experiment how the GEM model can be 27 
used to statistically disentangle the relative contributions of each component on specific host 28 
phenotypes.  29 

The genetic basis of ecological interactions 30 

Leveraging the beneficial interactions between plant hosts and their microbiomes represents a 31 
new direction in sustainable crop production. In particular, the emergence of microbiome-32 
associated phenotypes (MAPs) (Oyserman et al., 2018), such as growth promotion and disease 33 
suppression, is expected to reduce our dependency on energy-intensive and environmentally 34 
disturbing management practices. This may either be achieved through the addition of probiotics 35 
and prebiotics, or through breeding programs targeting MAPs to develop a next generation of 36 
‘microbiome-activated’ or ‘microbe-assisted’ crop production systems (Busby et al., 2017; 37 
Oyserman et al., 2018). Hence, a major challenge is to identify the genotypic underpinning of 38 
emergent MAPs and understanding the pivotal role of the environment. To date, however, the 39 
relative contribution of microbiomes to a given host phenotype is not known for most host 40 
phenotypes. The interaction between genotype (G) and environment (E) has long been 41 
recognized as an important factor both in evolutionary biology (Via & Lande, 1985; Anderson et 42 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2019. ; https://doi.org/10.1101/863399doi: bioRxiv preprint 

https://doi.org/10.1101/863399
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2

al., 2013) and breeding programs (Allard & Bradshaw, 1964). While a significant body of 43 
literature exists on quantitative investigations of GE interactions (El-Soda et al., 2014), the bulk 44 
of this work has focused on abiotic parameters and has largely overlooked the microbiome. 45 
Nevertheless, the interactions between hosts, microbiomes and their environments are coming 46 
into increasing focus and scrutiny (Dal Grande et al., 2018; Wallace et al., 2018; Beilsmith et al., 47 
2019; Bonito et al., 2019).  48 

One current opinion is that rather than viewing host plants and animals as individuals, 49 
they should be viewed together with their microbiomes as single cohesive unit of selection 50 
termed a 'holobiont’ with a ‘hologenome’(Bordenstein & Theis, 2015; Moran & Sloan, 2015; 51 
Douglas & Werren, 2016). Under this view, the microbiome (M) could be integrated into the G 52 
term of the GE model of host phenotypes. However, others have pointed out that treating hosts 53 
and their microbiomes as a single unit does not capture the broad range of interactions and 54 
fidelity between host and microbe (Douglas & Werren, 2016). Another popular opinion is that, 55 
as the environment is classically defined to include “physical, chemical, and biotic factors (such 56 
as climate, soil, and living things) that act upon an organism” (‘Environment’, 2019), M should 57 
be integrated into the E term of the GE model. However, an important distinction exists between 58 
E and M components; M is dynamic (i.e., have many interdependencies and may adapt or evolve 59 
through time), while E is driven through external processes. Here, we address these two 60 
viewpoints and propose that it is useful to introduce microbiomes and MAPs as a discrete unit 61 
within the GE model. In doing so, we put forth an updated GEM model that explicitly 62 
incorporates the microbiome (M) and its respective interactions with the genotype (G) and 63 
environment (E). Using these mathematical representations, we conceptually emphasize 64 
interesting cases that emerge from this framework (Figure 1). Finally, we present a simple ‘one-65 
microbe-at-a-time’ experiment to highlight key features and challenges of unearthing GEM 66 
interactions, and to statistically disentangle the relative contributions of each of the GEM model 67 
components (Figure 2). 68 

The microbiome as a phenotype or microbiome-associated phenotypes? 69 

The relationship between the host and its microbiome may be generally defined and viewed in 70 
two ways. Firstly, microbiome community structure may be considered a phenotype of the host 71 
(Y), henceforth ‘microbiome as a phenotype’(Belheouane et al., 2017; Rothschild et al., 2018; 72 
Walters et al., 2018). Under this view, taxonomic/functional features of the microbiome, are 73 
treated as the phenotype of the host (Y). In this manner, Y (e.g. the abundance of a taxon or 74 
functional gene) may be represented based on the contribution and interaction between the 75 
genotype (G), the environment (E) and the remaining variance (e) (Equation 1). 76 

Secondly, a microbiome may be quantified by their impact on the host phenotypes 77 
(Kopac & Klassen, 2016; Oyserman et al., 2018). In this view, MAPs such as plant growth 78 
promotion or plant health are treated as the phenotype (Y) (Zeevi et al., 2019). Here, we suggest 79 
explicitly expanding the environmental parameter of the traditional GE model (Equation 1), such 80 
that host genotype (G), environmental factors (E) and microbiome structure and function (M) and 81 
their interactions all contribute to the observed host phenotype (Equation 2). Thus, measurements 82 
of the microbiome structure and function are used in conjunction with genotypic and 83 
environmental data to explain a MAP, an emergent phenotype of the host-microbe interaction. 84 
Additional components may be added to the GEM model to accommodate additional complexity. 85 
For example, M may be split into i components, where Mi represents the ith taxonomical or 86 
functional feature. In this way, the GEM model is amenable for investigating the role of 87 
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microbe-microbe interactions within natural or synthetic communities, the interactions between 88 
multiple environmental factors, or any complex arrangements (see supplemental materials for 89 
discussion on an expanded GEM model). In Figure 1, we exhibit some basic features of the GEM 90 
model.  91 

Extracting the GEMs 92 

To demonstrate how the GEM model may be used to disentangle the relative influence of 93 
various factors on a particular host phenotype, we investigated GEM interactions in a simplified 94 
in vitro assay with one bacterial strain (Bacillus sp., accession number MN512243) interacting 95 
with two plant genotypes, a modern domesticated tomato cultivar (Solanum lycopersicum var 96 
moneymaker) and a wild tomato relative (Solanum pimpinellifolium) under two environmental 97 
conditions. In this model system, all genotype, environmental, microbial parameters are 98 
controlled and therefore can be systematically explored in a fully factorial design (details are in 99 
the supplemental material). For each tomato genotype, seedlings were grown in two 100 
environments, i.e. Murashige and Skoog agar medium (MS0) and MS agar medium 101 
supplemented with 10 g/L of sucrose (MS10). After germination, the root tips were inoculated 102 
with the Bacillus strain, which was originally isolated from the wild tomato rhizosphere. Control 103 
seedlings were inoculated with buffer only (Figure 2A). The plant phenotypes monitored were 104 
root architecture (using WinRhizoTM) and root and shoot dry mass (Figure 2B). An ANOVA was 105 
done to test the significance of each variable in the GEM model (Figure 2C). Together, the 106 
microbiome (M) and all interacting variables (GM, EM and GEM) explained 26% of root dry 107 
mass variance, 21% of shoot dry mass variance and 8% of root length total variance. 108 
Furthermore, in all cases the interacting parameters, GM, EM, and GEM interactions explained 109 
greater variance than GE interactions (Figure 2D).  110 

A clear consensus is forming that microbiomes impact host phenotypes, but its relative 111 
contribution to that host phenotype is, in most cases, not known. The GEM model provides a 112 
simple, tractable and testable model demonstrating that the interactions of the microbiome and 113 
other model terms (GM, EM and GEM) are also essential determinants of host phenotypes. It is 114 
important to highlight that, in this case, GM interactions actually explain more variability than 115 
canonical GE interactions. Furthermore, the expanded GEM model captures other important 116 
features that may otherwise be easily overlooked, such as the genotype-independent interaction 117 
between EM. This states that microbe and environment may interact to alter host fitness 118 
independent of the genotype. For example, auxin is a plant hormone that promotes growth that is 119 
also produced by bacteria. Many bacterial cultures have differential auxin production dependent 120 
on their environment (Tsavkelova, 2005); therefore, it is likely that EM interactions can promote 121 
auxin production and thus plant growth independent on genotype. In practice, identifying EM 122 
may have important implications for synbiotics (mixtures of probiotics and prebiotics). In this 123 
manner, the GEM model not only provides a model to disentangle the contribution of G, E and 124 
M, but also serves as a powerful tool for conceptualization. 125 

The GEM model captures complex ecosystem processes 126 

As describe above, genotype, environment and microbiome may influence organismal phenotype 127 
directly, but also through their interactions. This dynamic is captured by the various terms that 128 
make up the GEM model, providing a simple means to conceptualize this otherwise complex 129 
system. In its most basic form (Equation 2), the GEM model has 8 terms in total. An example of 130 
a term with a single variable is ‘G’, a two variable term would be ‘GM’, and three variable term 131 
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would be ‘GEM’. While the basic GEM model contains terms related to inter-class interactions 132 
(GE, GM, etc.), it lacks terms representative of intra-class interactions (M:M, E:E, etc). By 133 
simply adding additional variables to the GEM model, M:M and other ecologically relevant 134 
interactions may be introduced as additional terms. The number of terms in a model is dependent 135 
on the number of variables (n) that can be mathematically represented by Supplemental Equation 136 
1. In addition, the number of terms with r variables may be mathematically represented by 137 
Supplemental Equation 2, where n is the total number of variables, and r is the number of 138 
variables in the term. From this basis, a model of organismal phenotype which takes into account 139 
ecosystem-level processes may be constructed. To this end, we developed a simple Python script 140 
to generate a GEM model based on user input for any number of G, E and M variables 141 
(https://github.com/Oyserman/GEM). 142 

To model the interactions between multiple microbiome members, such as those found in 143 
natural or synthetic communities, in Equation 3, we provide a simple expansion of the basic 144 
GEM Equation presented in the main text to add another microbiome variable. The result is a 4 145 
variable (GEM�M�� model that includes all r-way interactions terms necessary to model the 146 
impact of a two member community on any number of plant genotypes or environments. For 147 
clarity, Equation 3 is presented with all r-way interactions on separate lines. To show the 148 
versatility of the GEM model, we provide another expansion in which multiple hosts are 149 
interacting in a particular ecosystem (G1G2EM). In this case, the fitness of one plant genotype 150 
(G1) is influenced through interactions with a neighboring plant genotype (G2) and their 151 
associated microbiomes. A prominent example of this in literature are intercropping systems in 152 
which nitrogen fixation through legume-microbiome interactions benefit other non-leguminous 153 
plants in a nitrogen limited soil ecosystem (Peoples et al., 1995).  154 

Conclusions 155 

A fundamental tenet of biology is that genotype and environment interact and impact the fitness 156 
and phenotype of an organism. The GE model of organismal phenotype has been the cornerstone 157 
of modern breeding programs. Part of the power of the GE model is its simplicity and 158 
interpretability. However, the important role of host-associated microbiomes has recently come 159 
into focus. Here, we investigated how microbiomes (M) fit into the GE model, suggest an 160 
explicit expansion to include M, and argue that, because of its dynamic and evolving nature, that 161 
M should not be collapsed within E. We use a conceptual figure to show that the updated GEM 162 
model captures the diverse possible outcomes of between G, E and M. To support our model, we 163 
present an in vitro experiment with one microbe demonstrating not only how to use the GEM 164 
model, but also showing that GM interactions may explain more variability than GE interactions. 165 
Finally, additional examples of expanded GEM models which take into account M:M and 166 
G2:E:M  interactions are presented to demonstrate the ecological versatility of the GEM model. 167 
Taken together, we propose that the GEM model provides a simple and interpretable expansion 168 
of the GE model. Furthermore, given the important role of the microbiome, any investigations 169 
into GE interactions must also account or control for M. 170 
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Υ � � � � � �: � � � 
Equation 1. The traditional model for GE interactions: In the canonical model of quantitative phenotypes, the host phenotype 234 
(Y) is explained by the sum of G, E, their interactions (G:E), and e the residual error. This model may be used to calculate the 235 
proportion of variance explained by the host genome and the environment on a host associated microbiome community. In other 236 
words, the microbiome may be treated as Y, the phenotype of the host (e.g. ‘the microbiome as a phenotype’). When E has no 237 
contribution to Y, only G determines the abundance or function of the microbiome (Figure 1C). On the other side of the spectrum, 238 
only E determines to the abundance or function of the microbiome (Figure 1B).  239 

Υ � � � � � 	 �  �: � � �: 	 � �: 	 � �: �: 	 �  � 

Equation 2. The new GEM model: When a microbiome has a quantitative impact on host phenotype, the traditional GE model 240 
may be expanded to incorporate M and all respective interactions (GM, EM, and GEM). Unlike the GE model, which may be 241 
used to explain the microbiome, the expanded GEM model may be used to statistically disentangle the contribution of G, E and 242 
M and their various interactions to changes in host phenotype. When M has no impact, this variable and those associated with it 243 
fall out of the equation giving the GE model. These, and other special cases are conceptually explored further in Figure 2.  Thus, 244 
this model is capable of capturing the nuanced dynamics of host-microbiome interactions, such as host-microbe interactions that 245 
are environment-specific, or otherwise have lower fidelity than strict symbiosis (Douglas & Werren, 2016).   246 

Υ � 

� � � � 	� �  	� �  

�: � � �: 	� �  �: 	� � �: 	� � �: 	� � 	�: 	� � 

�: �: 	� � �: E: 	� �  �: 	�: 	� �  �: 	�: 	� � 

�: �: 	�: 	� 

� � 

Equation 3. A GEMM model: The basic GEM model may be expanded to include any number of complex interactions. Here 247 
we expand the GEM model to include microbe-microbe interactions. This results in the addition of 1-way, 2-way, 3-way and 4-248 
way interaction terms, which are shown on separate lines for clarity. 249 

Figure 1. Conceptualizing the GEM model: Here we graphically explore how the interactions between genotypes, environment 250 
and microbiome may impact a host phenotype (Y). The two genotypes are indicated by G1 and G2, and the presence of a 251 
microbiome is indicated by solid circles (as shown in panel a). The different environments are indicated as Env 1 and Env 2 on 252 
the X-axis. In each case (panels a-o), the corresponding equation is depicted over the figure itself. In cases when we treat the 253 
microbiome as a phenotype of the host, the relative abundance of a particular taxon, or other features of a microbiome, may be 254 
considered as the sum of G and E interactions (panels a-e). In simple cases, the relative abundance is independent of genotype 255 
(panel b) or environment (panel c). More likely, both genotype and environment, and their interactions will contribute to relative 256 
abundance/function (panels d and e respectively). Panels a-e are special cases of the GEM model, indicating situations in which 257 
the microbiome does not contribute to a particular host phenotype. Building complexity, each of G, E and M may contribute to 258 
host phenotypes individually or in combination, but without interaction (panels a-d and f-i). Finally, the highest level of 259 
complexity occurs once interactions between G, E and M occur (panels e, j-o). A salient feature of this representation is that 260 
when no interaction between variables exists, the slope is equal between treatments. This model may also provide practical 261 
insights, such as identifying optimal prebiotics which may be expected to have a broad host range (no G interaction) and be 262 
conditionally neutral (panel l). Additionally, this model may serve to characterize complex interactions, such as conditional 263 
symbiosis where a host fitness is reduced to zero without a microbiome (taxon or function) in a particular environment (panel o).   264 

Figure 2. Extracting the GEMs from the simplified GEM experiment: (Panel a) In this in vitro experiment, the contribution of 265 
G, E, M and their interactions were investigated in a fully factorial design. (Panel b) In total, two tomato genotypes, two 266 
environments and one microbe treatment were investigated.  Various plant phenotypes were measured, but for clarity, only the 267 
average dry root mass of each treatment are visualized here. (Panel c) The GEM model shows that G, E, M, GM and GEM all 268 
contribute significantly to root mass. The ANOVA table displays the reported Df (Degrees of freedom), Sum sq (Sum-of-squares), 269 
Mean sq (Mean some-of-squares), the F-value (the test statistic of an ANOVA), Pr(>F) (the p-value), and Signif. (a visual 270 
indication of the level of significance).  (Panel d) Here we present the ANOVA outcome showing the percent of the total sum of 271 
squares for dry shoot mass, dry root mass and root length. For shoot mass, plant genotype explained the greatest portion of 272 
variance. In contrast, both E and M explained a greater amount of variation than plant genotype for root length. Importantly, for 273 
each of the three plant phenotypic parameters measured, GM explained a greater amount of variation than GE. 274 
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Df Sum Sq Mean Sq F-value Pr(>F)

G 1 4034366 4034366 46.011 3.28E-09 ***

E 1 2645446 2645446 30.17 6.19E-07 ***

M 1 1755184 1755184 20.017 2.95E-05 ***

GE 1 4965 4965 0.057 0.81262

GM 1 850067 850067 9.695 0.00269 **

EM 1 249609 249609 2.847 0.09608 .

GEM 1 584801 584801 6.669 0.01193 *

Res. 69 6050144 87683

Signif.

Shoot Mass Root Mass Root Length

G 53% 25% 9%

E 16% 16% 22%

M 3% 11% 12%

GE 1% 0% 1%

GM 2% 5% 10%

EM 2% 2% 1%

GEM 1% 4% 3%

Res. 23% 37% 43%

a

b

c
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