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ABSTRACT  25 

Splitting bioactive proteins, such as enzymes or fluorescent reporters, into conditionally reconstituting 26 

fragments is a powerful strategy for building tools to study and control biochemical systems. However, split 27 

proteins often exhibit a high propensity to reconstitute even in the absence of the conditional trigger, which 28 

limits their utility. Current approaches for tuning reconstitution propensity are laborious, context-specific, or 29 

often ineffective. Here, we report a computational design-driven strategy that is grounded in fundamental 30 

protein biophysics and which guides the experimental evaluation of a focused, sparse set of mutants—31 

which vary in the degree of interfacial destabilization while preserving features such as stability and catalytic 32 

activity—to identify an optimal functional window. We validate our method by solving two distinct split 33 

protein design challenges, generating both broad insights and new technology platforms. This method will 34 

streamline the generation and use of split protein systems for diverse applications.  35 

 36 
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INTRODUCTION 39 

 40 

Split proteins and conditional reconstitution systems are powerful tools for interrogating biology and 41 

controlling cell behavior.1-4 These systems work by splitting a protein into two fragments to disrupt the 42 

protein’s function. Each fragment is then fused to a partner domain such that the split protein is 43 

reconstituted, and its function is restored only when the partner domains interact. This modular strategy 44 

may be applied to diverse functional proteins to control bioluminescence5, 6, fluorescence7, proteolytic 45 

cleavage8-10 and transcription11, 12. As a result, conditionally-reconstituted split proteins have been 46 

employed in a variety of applications including probing and discovering new protein-protein interactions13-47 

16, studying post-translational modifications17, imposing small molecule-regulated control over enzymatic 48 

activity18, 19, and rewiring cellular signaling9, 20.  49 

 50 

Despite their utility in certain contexts, broader application of split protein systems is largely limited by the 51 

spontaneous reconstitution of fragments, resulting in high background activity (Fig. 1a). Splitting a protein 52 

tends to expose its hydrophobic core, creating highly unfavorable interactions between the core and 53 

solvent. Reconstitution is driven by a strong inherent preference to desolvate by recombining the fragments. 54 

Evaluating alternative splitting sites can vary reconstitution propensity, but this approach often only partially 55 

ameliorates the problem because changing splitting sites may not significantly affect underlying 56 

hydrophobic forces. Therefore, it is necessary to identify variants with a reconstitution propensity that 57 

precludes spontaneous reconstitution but enables reconstitution under desired conditions. Variants with a 58 

range of reconstitution propensities can be generated by random mutagenesis and screened for the desired 59 

property. However, high-throughput screening is not readily available for all split protein systems, and low-60 

throughput clonal testing of variants can be laborious and suffer from inefficient exploration of sequence 61 

space. Even when screens generate improved variants, it may be difficult to interpret why only certain  62 

mutants were successful, and as a result, generalizable rules cannot be transferred to guide the tuning of 63 

new split protein systems. Furthermore, split protein systems tuned by mutagenesis exhibit performance 64 

characteristics determined by (and limited to) the conditions used in the initial screens, again posing a 65 

barrier to general applications. 66 
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 67 

Here, we report a general strategy based on fundamental principles of protein biophysics for optimizing 68 

split protein systems which we term Split Protein Optimization by Reconstitution Tuning, or SPORT. We 69 

use computational mutagenesis with the Rosetta macromolecular modeling suite to guide limited 70 

experimental screening and thereby discretely map the sequence-energy landscape of the split interface. 71 

This allows us to determine optimal interaction energies that maximize the performance of the split protein 72 

system. We demonstrate proof-of-concept by optimizing a split protease system for conditional 73 

reconstitution in two different contexts: membrane-embedded and cytosolic. Our approach generates 74 

simple design rules that may be extended to tune other split protein systems for distinct design goals and 75 

can be implemented by most research laboratories. This work demonstrates a new method for efficiently 76 

engineering split protein systems, which will streamline the generation and expand the use of split protein 77 

systems for diverse applications.  78 

 79 

RESULTS 80 

 81 

Formulation of the design challenge and strategy 82 

 83 

As a first step toward developing a strategy that addresses the challenge of designing split proteins, we 84 

selected a model system based on the well-studied Tobacco Etch Virus protease (TEVp)—we sought to 85 

tune the reconstitution propensity of split TEVp. For this purpose, we modified a synthetic receptor system 86 

that we previously reported (Modular Extracellular Split Architecture, or MESA)21 to serve as a reporter of 87 

conditional split TEVp reconstitution. In this testbed, ligand binding-induced dimerization of a membrane 88 

receptor reconstitutes an intracellular split TEVp, which then autolytically liberates a sequestered 89 

transcription factor to drive reporter gene expression (Fig. 1b). Our initial evaluation demonstrated that the 90 

canonical split TEVp (split between residues 118/119)22 showed high propensity to reconstitute, resulting 91 

in high background from ligand-independent signaling (Supplementary Fig. 1). As the original screens 92 

used to identify this split were performed in a soluble rather than membrane-bound context, these data 93 

suggest that tethering split TEVp to a membrane may promote reconstitution. Furthermore, we determined 94 
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that this problem is not limited to the canonical split site, as other TEVp partitioning also yielded poor 95 

performance (Supplementary Fig. 2). Given these observations, we formulated a design goal: rationally 96 

mutate split TEVp to optimize two key MESA performance characteristics—minimal reporter gene 97 

expression in the absence of ligand and a substantial fold increase in reporter expression upon ligand 98 

addition.  99 

 100 

Biophysical principles underlying SPORT 101 

 102 

We developed SPORT, a computation-guided workflow to rationally design split protein interfaces to 103 

optimize reconstitution propensity (Fig. 1c). SPORT employs Rosetta, a state-of-the-art software package 104 

for protein design.23 Given a protein with a predetermined split site, our first step was to identify key 105 

interfacial residues to target for mutagenesis. Residues with large differences in solvent-accessible surface 106 

area (SASA)—when comparing intact protein and split fragments—were classified as buried residues. 107 

These buried residues are ideal targets for mutagenesis as they likely contribute substantially to the driving 108 

force for spontaneous reconstitution. For each buried residue, we performed a comprehensive, in silico 109 

mutational scan to evaluate the energy perturbation of all possible single-point mutations on the interaction 110 

energy across the split protein interface (ΔΔGInterfacial) and total stability of the mutated protein (ΔΔGTotal) 111 

relative to the parent. The degree of disruption is a critical design consideration. Insufficient disruption may 112 

retain high background activity while excessive disruption may impair catalytic activity due to loss of overall 113 

protein stability. Therefore, the interface must be carefully tuned so that the driving force provided by ligand 114 

binding-induced dimerization promotes reconstitution. This “Goldilocks zone” likely differs for each 115 

individual protein and perhaps depends upon context, and this zone is difficult to define a priori. Therefore, 116 

our strategy was to identify the Goldilocks zone for a given protein by choosing mutations that span the 117 

range of ΔΔG values. We hypothesized that a limited test set of mutants would direct subsequent 118 

mutagenesis efforts by predicting desirable mutant combinations from a vast amount of sequence space. 119 

Each of these propositions was tested using experimental case studies.  120 

 121 

Validating SPORT by tuning a membrane-tethered split TEV protease  122 
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 123 

To investigate and validate SPORT, we applied our design workflow to the split TEVp MESA system. We 124 

first assessed the per-residue change in solvent accessible surface area (ΔSASA) between the intact form 125 

and split fragments (Fig. 2a). In total, 130 of the 218 residues showed increased SASA in the isolated 126 

fragments. We excluded from this set the catalytic triad and 27 residues lying within a 6 Å coordination 127 

sphere around the catalytic triad to avoid perturbing the catalytic function of reconstituted TEVp. Of the 128 

remaining 100 positions, we chose the 15 positions with the largest ΔSASA (9 in N-terminal and 6 in C-129 

terminal halves of split TEVp) as candidates for mutagenesis. Next, we evaluated the energy perturbation 130 

of all possible single-point mutations (285 in total) at these positions using Rosetta. As expected, few 131 

mutations were predicted to increase stability, and a vast majority were destabilizing (Fig. 2b, 132 

Supplementary Figure 3). Many positions exhibited a variety of stabilizing, benign, and destabilizing point 133 

mutations that were consistent with structure. For instance, bulky sidechain substitutions (W, F, Y, R, K and 134 

H) at position 103 resulted in many steric clashes with neighboring residues (Fig. 2b right panel) and 135 

subsequently conferred large decreases in predicted stability.  136 

 137 

Guided by these predictions, we next experimentally characterized 20 single-mutant split TEV variants that 138 

span a wide range of ΔΔGInterfacial (3.1 to 16.1 Rosetta Energy Units, or REU) and ΔΔGTotal (-1.9 to 30 REU) 139 

energies (Fig. 2c). We observed high background signaling (i.e., reporter expression) for disruptions up to 140 

ΔΔGInterfacial ~6.6 REU, which suggested that destabilization was insufficient. However, four out of ten 141 

variants with ΔΔGInterfacial >10 REU exhibited reduced background signaling and substantial ligand-induced 142 

activation (Fig. 2c). The remaining six were completely inactive (or “dead”); they induced no signaling under 143 

any conditions. Energy-based partitioning across different phenotypes (inducible, not inducible, and dead) 144 

became evident when comparing ΔΔGInterfacial and ΔΔGTotal of all 20 single mutant split TEV variants (Fig. 145 

2d). Variants with high background activity due to insufficient destabilization fell in the region where 146 

ΔΔGInterfacial < 10 and ΔΔGTotal < 10 REU. Variants with the dead phenotype had ΔΔGInterfacial > 10 and 147 

ΔΔGTotal > 10 REU; since these mutants were expressed, as confirmed by Western blot (Supplementary 148 

Fig. 4), the lack of signaling suggested that these mutations directly preclude reconstitution. Most of the 149 

inducible variants (three out of four) were observed in the energy window where ΔΔGInterfacial > 10 and 150 
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ΔΔGTotal < 10 REU, which may represent the Goldilocks zone we hypothesized to exist. An additional region 151 

contained a mixture of inducible and dead phenotypes. By inspection of these results, we then proposed a 152 

model for broadly classifying experimental phenotypes based on energy partitions (Fig. 2e). 153 

 154 

SPORT predicts outcomes of combining mutations 155 

 156 

We next evaluated whether our proposed classifier model—developed based upon observations with single 157 

mutants—could predict the phenotypes of combined NTEVp and CTEVp mutations, including both double 158 

(two mutations on one chain) and paired (one mutation on each chain) mutants derived by combining the 159 

initial  14 single non-dead mutations tested (Fig. 3a). Of the 67 possible double and paired mutants tested, 160 

28 were predicted to be inducible. We experimentally tested 14 of these and found that 10 exhibited 161 

inducible signaling as predicted, one was dead, and three were not inducible; this yields an observed 162 

accuracy of 0.71 for inducible predictions (Fig. 3b,c). Interestingly, three of the prediction failures fell at the 163 

low end of the range of predicted changes in interfacial energy, suggesting potential opportunities for 164 

refining the classifier model. We also noted an interesting trend in our ΔΔG (total and interfacial) 165 

calculations—for the sixty-seven mutants tested, the calculated ΔΔG for the double and paired mutants 166 

were nearly identical to the sums of the ΔΔG calculated for the associated single mutants (Supplementary 167 

Fig. 5). Thus, for subsequent analyses of combined mutants, we simply added the effects of single mutants 168 

in our calculations. 169 

 170 

We next investigated how variations in expression level might impact the inducibility of the mutants. We 171 

used Western blot analysis to normalize and vary chain expression levels by adjusting DNA doses 172 

(Supplementary Fig. 6). Notably, these constructs remained inducible across the entire range of 173 

expression levels tested, suggesting that the biophysical mechanism of optimized split protein reconstitution 174 

is robust to variations in the expression levels and ratio of the membrane-bound split TEVp fragments. 175 

However, we observed that the performance of these constructs (i.e., fold induction of signaling upon ligand 176 

addition) could be substantially improved through tuning expression such that protein levels of each 177 

fragment are comparable (Fig. 3d, Supplementary Fig. 7). Taken together, these results suggest that a 178 
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classifier calibrated with a limited set of experimental observations spanning the full range of ΔΔG can 179 

predict function of new mutants with high accuracy in a manner that is independent of expression level of 180 

the construct. 181 

 182 

SPORT predicts phenotypes of novel mutations and combinations   183 

 184 

All mutations previously tested were derived from predictions based on our computational method. Next, 185 

we wanted to test a broad set of mutants (outside the calibration set) to investigate the accuracy of our 186 

classification scheme. Therefore, we experimentally characterized additional single mutants (not included 187 

in the original calibration set) and all combinations of paired mutations derived from both the original and 188 

this expanded mutation set (omitting dead constructs); mutants were selected to explore the boundaries of 189 

the energy landscape classifier model and were expected to reflect a wide range of induced and uninduced 190 

reporter expression levels and ratios (Figs. 2e, 3a). We also sought to investigate whether the phenotypic 191 

partitioning demonstrated for inducibility (Fig. 3b,c) is extensible to the other phenotype classes (i.e., dead 192 

and not inducible). This expanded set paired 10 N-terminal mutations with 16 C-terminal mutations. In 193 

general, we observed that variants with larger ΔΔGInterfacial energies had lower reporter expression levels in 194 

both the background (OFF) and ligand-induced (ON) states (Fig. 4a, left and middle panels). Thus, the cost 195 

of lowering the OFF state is to also lower the ON state, but these reductions are not always proportional. 196 

This is evident by the diversity of calculated fold inductions (Fig. 4a, right panel). Only one variant, 197 

H75P/W198E, exhibited a significant decrease in the OFF state and an increase in the ON state relative to 198 

wild type (WT). However, the variants with highest fold inductions, such as H75S/I163P (17.3 fold induction) 199 

and H75T/I163P (9.92 fold induction), exhibited significantly lower OFF and ON states than did the WT, 200 

reflecting a tradeoff between desirable performance characteristics. Overall, we observed moderate 201 

agreement between the actual and predicted phenotypes for these novel variants and combinations (Fig. 202 

4b). The classifier model was most accurate for predicting the not inducible phenotype (25 of 29, 86%). 203 

Many inducible phenotype predictions were also confirmed (31 of 52, 60%). This success rate is impressive 204 

given that phenotypic classification boundaries were set roughly based upon the sparse calibration set (Fig. 205 
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2e). Interestingly, this analysis also indicates that the energy landscape calculated by SPORT correlates 206 

with each phenotype to differing degrees. 207 

 208 

In order to gain additional insight into how choice of calibration set and sample size may impact the accuracy 209 

of SPORT predictions, we performed retrospective bootstrapping analysis of the data presented in Figure 210 

4 (see Supplementary Note 2 for full details). Experimental data were stratified by the energy landscape 211 

and partitioned randomly into calibration and prediction subsets. Logistic regression modeling was applied 212 

to evaluate the accuracy of classification under various conditions (Supplementary Fig. 8). We observed 213 

robust prediction accuracy using multiple unique calibration sets and using sample sizes ranging from 4 to 214 

28. This outcome suggests that our ability to generate a general classification model was not dependent 215 

upon the specific calibration data we used in our initial characterization experiment (Fig. 2), and that a 216 

relatively small set of calibration data drawn from a distribution like that included in Figure 4 would be 217 

sufficient to generate a general classification model.  218 

 219 

Extension of SPORT predictions to new design goals 220 

 221 

A major limitation to current approaches for employing split proteins is that often a variant selected to 222 

perform well in one context fails in a different context. To investigate whether the SPORT design method is 223 

generalizable beyond our initial model system, we developed a distinct model system. This new system 224 

employs split TEVp in a soluble form, where we hypothesized that a different reconstitution propensity 225 

would be required compared to the membrane-bound model system. To generate such a soluble test 226 

system (Fig. 5a), ligand binding domains were fused to split TEVp domains along with a soluble 227 

transcription factor flanked by protease cleavage sites and nuclear export signals (NES); thus, TEVp-228 

mediated cleavage removes the NES from the transcription factor to enable nuclear localization and 229 

reporter expression. We first developed and tested a panel of soluble transcription factors that could 230 

implement this mechanism. This evaluation included varying the number of NES elements, their placement 231 

at N and/or C terminus of the transcription factor, and the P1’ residue of the TEVp cleavage sequence 232 

which governs cleavage kinetics24 (Fig. 5b). Several soluble transcription factor constructs exhibited the 233 
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desired phenotype of low signaling in the absence of TEVp and high signaling when co-expressed with full 234 

TEVp; construct TF10 was selected for evaluating split TEVp variants.  235 

 236 

Using our soluble split TEVp test system, we evaluated a panel of 10 single TEVp mutants and 10 paired 237 

TEVp mutants spanning a range of interfacial energies (Fig. 5c). The construct based upon WT split TEVp 238 

exhibited a substantial fold induction, which is consistent with the fact that this split protein was identified 239 

by screens performed in the soluble phase22. However, the WT construct also yielded high background 240 

signaling in the absence of ligand, indicating an opportunity to improve performance. For modest increases 241 

in ΔΔGInterfacial (~0–3.6 REU), background signaling persisted. For intermediate increases in ΔΔGInterfacial (~6-242 

10 REU), a mixture of phenotypes was observed, including dead constructs and those with both 243 

substantially reduced background signaling and substantial fold inductions. For large increase in 244 

ΔΔGInterfacial > ~10 REU, constructs were generally weakly-inducible or dead. Thus, a focused evaluation of 245 

20 design variants, guided by SPORT, yielded ~5 variants exhibiting improved performance compared to 246 

the WT construct. Altogether, these observations demonstrate that the SPORT method and associated 247 

energy landscape concept can be employed to efficiently solve distinct split protein optimization challenges. 248 

 249 

DISCUSSION 250 

 251 

In this study, we developed and validated what is—to our knowledge—the first computational strategy for 252 

tuning split protein reconstitution propensity. Although the split TEVp MESA used as our first model system 253 

would have been deemed infeasible using standard evaluations of split proteins (Supplementary Figs. 1-254 

2), application of SPORT to tune this system yielded multiple high-performing new synthetic receptor 255 

scaffolds (Fig. 3d). We show that unlike the classical MESA receptors we have characterized in prior work21, 256 

25, 26, split TEVp MESA tuned by SPORT exhibit excellent performance characteristics (i.e., low-background 257 

and high fold-induction) in a manner that is robust to variations in both biosensor expression level and the 258 

ratio at which biosensor chains are expressed (Supplementary Figure 7). This property is of great practical 259 

utility, as it precludes the need to carefully tune the implementation of each biosensor.  260 

 261 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2019. ; https://doi.org/10.1101/863530doi: bioRxiv preprint 

https://doi.org/10.1101/863530


   
 

 11 

Several important insights emerged from this study. First, our approach demonstrated that testing a sparse 262 

set of mutants along the energy landscape is an effective strategy to choose optimal interfacial energies to 263 

promote conditional reconstitution. Second, multiple point mutations with similar energies exhibited similar 264 

performance, which suggests reconstitution propensity depends on the energy of destabilization but is 265 

agnostic to specific mutations. Third, the concept of a Goldilocks zone is likely generalizable to different 266 

proteins and application contexts, but the optimal energy window may have to be adjusted on a case-by-267 

case basis. We find that membrane-bound split proteins must be destabilized to a greater degree than 268 

soluble split proteins in order to avoid spontaneous reconstitution. Altogether, these results show that split 269 

protein systems can be engineered based on fundamental principles of protein biophysics, which obviates 270 

the need for exhaustive screening and generates rules applicable to new candidate proteins.  271 

 272 

There are several interesting opportunities for extending and improving SPORT in future work. First, 273 

although our analysis showed that SPORT can be used to identify mutations that confer specific energy 274 

changes, it does not yet enable a priori prediction of where the Goldilocks zone will fall for new applications. 275 

It is possible that subsequent analysis of many case studies could identify trends that enable such 276 

predictions and thus harness SPORT to further focus experimental investigations. An additional opportunity 277 

is pairing SPORT with a multiparameteric optimization framework for exploring pareto-optimal tradeoffs 278 

between performance characteristics; for example, in our model system, there seems to be such a tradeoff 279 

between low background in the ligand-free state and high signaling in the ligand-induced state. Finally, the 280 

SPORT algorithm itself may be refined to better avoid false positives (e.g., dead mutants that share a region 281 

of the energy landscape with inducible variants). Altogether, our findings suggest many opportunities for 282 

expanding the utility of split proteins for many new applications and highlight the impact of SPORT-guided 283 

development of novel biochemical and synthetic biology tools. 284 

 285 

 286 

METHODS 287 

 288 

General DNA assembly 289 
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Plasmid cloning was performed using standard molecular biology techniques of PCR and restriction 290 

enzyme cloning with Phusion DNA Polymerase (NEB), restriction enzymes (NEB; Thermo Fisher), T4 DNA 291 

Ligase (NEB), and Antarctic Phosphatase (NEB). Development of the tTA-responsive YFP reporter plasmid 292 

was described previously21. Plasmids were transformed into chemically competent TOP10 E. coli (Thermo 293 

Fisher) and grown at 37˚C. Plasmid maps are provided as GenBank files (Supplementary Data 1). 294 

 295 

Plasmid preparation 296 

Plasmid DNA used for transfection was prepared using the PEG precipitation method, which was previously 297 

described in detail.27  298 

 299 

Cell culture 300 

HEK293FT cells (Life Technologies/Thermo) were maintained at 37°C incubator and 5% CO2. Cells were 301 

cultured in DMEM (Gibco 31600-091) with 10% FBS, 6 mM L-glutamine (2 mM from Gibco 31600-091 and 302 

4 mM from additional Gibco 25030-081), penicillin (100 U/μL), and streptomycin (100 μg/mL) (Gibco 303 

15140122). 304 

 305 

Transfection  306 

Transfections were performed in 24 well plates seeded at 1.5 x 105 cell in 0.5 mL of DMEM media. At 6-8 307 

hours post-seeding, cells were transfected using calcium phosphate method with a total DNA content of 1-308 

2 ug DNA per mL of media, using DNA prepared by PEG precipitation. All experiments included blue 309 

fluorescent protein (BFP) as a control to assess transfection efficiency. The exact DNA amounts added to 310 

the mix per well are as follows, unless otherwise stated in figure captions: 25 ng of each TEVp chain, 200 311 

ng of BFP control, 200 ng of YFP reporter plasmid, and 150 ng of pcDNA plasmid. This mixture was added 312 

dropwise to an equal-volume solution of 2x HEPES-Buffered Saline (280 mM NaCl, 0.5 M HEPES, 1.5 mM 313 

Na2HPO4) and gently pipetted up and down four times. After 2.5 minutes, the solution was mixed vigorously 314 

by pipetting ten times and 100 µL of this mixture was added dropwise to each well of the plated cells, and 315 

the plates were swirled gently. For functional experiments, 12 hours post-transfection, media containing 0.1 316 

µM rapamycin analog (Takara AP21967) or 0.1% ethanol as a control was added to cells. At 24-30 hours 317 
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post-media change, cells were harvested for flow cytometry with Trypsin-EDTA, which was then quenched 318 

with medium, and the resulting cell solution was added to at least 2 volumes of FACS buffer (PBS pH 7.4 319 

with 2–5 mM EDTA and 0.1% BSA). Cells were spun at 150 x g for 5 min, FACS buffer was decanted, and 320 

fresh FACS buffer was added. All experiments were performed in biological triplicate. 321 

 322 

Flow Cytometry 323 

Approximately 104 live cells from each transfected well of the 24-well plate were analyzed using a BD LSR 324 

Fortessa Special Order Research Product (Robert H. Lurie Cancer Center Flow Cytometry Core) running 325 

FACSDiva software. Samples were analyzed using FlowJo v10 software (FlowJo, LLC). The HEK293FT 326 

cell population was identified by FSC-A vs. SSC-A gating, and singlets were identified by FSC-A vs. FSC-327 

H gating. A control sample of cells—generated by transfecting cells with a mass of pcDNA (empty vector) 328 

equivalent to the mass of DNA used in other samples in the experiment—was used to distinguish 329 

transfected and non-transfected cells. For the single-cell subpopulation of the pcDNA-only sample, a gate 330 

was made to identify cells that were positive for the constitutively driven blue fluorescent protein (BFP) used 331 

as a transfection control in other samples such that the gate included no more than 1% of the non-332 

fluorescent cells. The mean fluorescence intensity (MFI) of the single-cell transfected population was 333 

calculated and exported for further analysis. BD LSR Fortessa settings used were as follows: BFP was 334 

collected in the Pacific Blue channel (405 nm excitation, 450/50 nm filer) and EYFP was collected in the 335 

FITC channel (488 nm excitation, 505 LP and 530/30 nm filter). To quantify reporter expression, the FITC 336 

channel MFI was averaged across three biological replicates. Cell autofluorescence was subtracted and 337 

MFI was converted to Mean Equivalents of Fluorescein (MEFLs) using the coefficient determined by the 338 

calibration curve of UltraRainbow Calibration Particles (Spherotech URCP-100-2H) run in each individual 339 

experiment. Standard error was propagated through all calculations. 340 

 341 

Western Blotting 342 

Western blots were performed to evaluate protein expression and normalize total expression of each TEVp 343 

chain. A 3X-FLAG tagged NanoLuciferase as a normalization control, and images were analyzed using 344 

ImageJ software. A detailed western blot protocol was previously described.27  345 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2019. ; https://doi.org/10.1101/863530doi: bioRxiv preprint 

https://doi.org/10.1101/863530


   
 

 14 

 346 

Solvent-accessible Surface Area 347 

The structure of TEVp was obtained from the Research Crystallography for Structural Bioinformatics 348 

(RCSB) PDB (ID code: 1LVM). Per-residue solvent-accessible surface areas (SASA) were computed using 349 

GROMACS v2018.1, which utilizes the double cubic lattice method (DCLM) described by Eisenhaber et 350 

al.28 The change in solvent accessible area was computed as 351 

∆𝑆𝐴𝑆𝐴 = 𝑆𝐴𝑆𝐴%&'()*+,- − 𝑆𝐴𝑆𝐴&*/0+-,1,2,*3 352 

where structures of the N and C-terminal fragments were isolated from the crystal structure. 353 

 354 

Computational Interface Scanning  355 

All modeling calculations were performed using the Rosetta molecular modeling suite v3.9. Single-point 356 

mutants were generated using the standard Relax application, which enables local conformational sampling 357 

to minimize energy (Supplementary Note 1 includes full details). The total energy (ΔGTotal) of each mutant 358 

was computed as the average of 100 relaxed models. The energy perturbation to total energy was 359 

computed as 360 

𝛥∆𝐺60,'7 = 𝛥𝐺60,'782,'+, − 𝛥𝐺60,'796  361 

The Rosetta Scripts application with the InterfaceAnalyzeMover was applied to each relaxed model to 362 

compute the average residue-residue interaction energies between the N- and C-terminal fragments 363 

(Supplementary Note 1 includes the full details). The interfacial energy was computed as the pair-wise 364 

sum of all short-range interaction energies as shown by 365 

𝛥𝐺:+,*&%'/1'7 =;;𝐸𝑛𝑒𝑟𝑔𝑦1BCDE
C1

 366 

where i and j denote the sets of residues within each fragment. The energy perturbation of each mutation 367 

to the interfacial energy was then computed as 368 

𝛥∆𝐺:+,*&%'/1'7 = 𝛥𝐺:+,*&%'/1'782,'+, − 𝛥𝐺:+,*&%'/1'796  369 

 370 

Phenotype Classifier 371 
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Experimentally characterized variants were assigned class labels (not-inducible, inducible and dead) based 372 

on reporter expression levels in the ligand-absent and ligand-induced states. Variants with ≥1.2 fold higher 373 

reporter expression in the ligand-induced state relative to the ligand-absent state were labeled as inducible. 374 

For variants with expression levels <5% of wild-type (WT) sequence in the ligand-induced state and <1.2 375 

fold activation were classified as functionally dead. The remaining variants were assigned the not-inducible 376 

class label.   377 

 378 

STATISTICAL ANALYSIS 379 

 380 

Statistical details for each experiment are included the figure legends. The data shown reflect the mean 381 

across these biological replicates of the mean fluorescence intensity (MFI) of approximately 2,000–3,000 382 

single, transfected cells. Error bars represent the SEM (standard error of the mean).  For statistical 383 

analyses, two-tailed Student’s t-tests were used to evaluate whether a significant difference exists between 384 

two groups of samples, and the reported comparisons meet the two requirements of this test: (1) the values 385 

compared are expected to be derived from a normal distribution, and (2) the variance of each group is 386 

expected to be comparable to that of the comparison group since the same transfection methodologies and 387 

data collection methods were used for all samples that were compared. A p value of ≤ 0.05 was considered 388 

to be statistically significant.  389 

 390 

DATA AVAILABILITY 391 

 392 

Data reported in composite figures (Figs. 2a,b,d, 3a, 4b, Supplementary Fig. 4) are included as Source 393 

Data. 394 

 395 

CODE AVAILABILITY 396 

 397 

Rosetta details and script are provided in Supplementary Note 1. 398 

 399 
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FIGURES  493 

 494 

 495 

Fig. 1 Design-driven strategy for tuning split protein systems. a, Current methods for optimizing split 496 

proteins are limited (left); an ideal tool would enable adapting split proteins for multiple applications, each 497 

of which may require distinct reconstitution propensities (right). b, This cartoon illustrates the experimental 498 

testbed used here; ligand binding-induced chain dimerization results in split TEVp reconstitution, trans-499 

cleavage, and release of a previously sequestered transcription factor to drive reporter expression. c, Split 500 

Protein Optimization by Reconstitution Tuning (SPORT) workflow: identify important residues at the split 501 

interface which are mutable, identify mutations that alter the total and interfacial energy, and use an 502 

application-specific model, trained on limited experiments, to identify those mutations that are predicted to 503 

yield a desired functional phenotype. 504 

  505 
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Fig. 2 Computation guided method development and experimental analysis. a, Left, characterization 507 

of the solvent accessible surface area (SASA) of each residue of 118/119 split TEVp. Right, 3D depiction 508 

of 118/119 split TEVp, showing the catalytic triad (orange), coordination sphere (yellow), and ΔSASA 509 

(greyscale). b, Mutational scanning of high ΔSASA residues (left) and example of all possible mutations of 510 

residue 103 (right), with change in interfacial energy indicated by color. c, Experimental analysis of TEVp 511 

mutations predicted to span a range of interfacial energies. Error bars depict S.E.M. (*p ≤ 0.05, ***p ≤ 512 

0.001). d, Experimental phenotypes observed in c were plotted on an energy landscape and annotated as 513 

indicated by color (reporter expression normalized to WT < 0.05 is “dead”, fold induction < 1.2 is “not 514 

inducible”, fold induction ≥ 1.2 is “inducible”). e, Proposed model for predicting zones of functional 515 

phenotypes based upon total and interfacial energy; the boundaries were proposed based upon 516 

observations using the initial 20 mutants tested in c. 517 

  518 
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 519 

Fig. 3 Evaluation of model-predicted phenotypes for combined mutations. a, Computed energies and 520 

predicted phenotypes based on the classifier model—proposed in Fig. 2e—of all possible double and 521 

paired mutants constructed by combinatorial sampling of the initial single mutants tested (omitting dead 522 

mutations) in Fig. 2c. b, Experimental evaluation of selected mutants predicted to be inducible. c, 523 

Experimentally observed phenotypes for the fourteen mutants predicted to be inducible (from b), showing 524 

that the model predicts inducibility at a fairly high rate (10/14). d, Normalizing protein expression levels 525 

improves performance (fold induction) of selected mutants (from b), whereas WT function is not changed. 526 

Normalization was achieved using Western Blot analysis (Supplementary Fig. L4) to adjust DNA doses 527 

transfected (per well, N-terminal chains: 0.4 ng WT, 1 ng 75S, 1.4 ng 75E; C-terminal chains: 5 ng WT, 12 528 

ng 190K). Error bars depict S.E.M. (*p ≤ 0.05, ***p ≤ 0.001). 529 
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 531 

Fig. 4 Evaluation of model-predicted phenotypes for novel mutations and combinations. a, For each 532 

experimentally characterized construct, reporter output was quantified in the absence of ligand (OFF state) 533 

and following ligand addition (ON state), and the fold induction was calculated. Calculated interfacial energy 534 

for each construct is indicated by circle color, magnitude of reporter expression (or fold-induction) is 535 

indicated by circle size, and constructs with a fold induction ≥ 1.2 are denoted with a black border. Single 536 

mutants observed to be dead (Fig. 2) were not carried forward to this analysis. b, Left, experimentally 537 

observed phenotypes (data point color) were mapped onto the proposed classifier model from Fig. 2e, with 538 

observed frequency distributions shown as histograms. Right, evaluation of model prediction accuracy 539 

compared to random assignment of phenotypes.  540 
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 542 

Fig. 5 Model guided design of a new split TEVp application in soluble context. a, This cartoon 543 

illustrates the soluble split TEVp testbed. Ligand-binding-induced dimerization mediates reconstitution of 544 

split TEVp, which then cleaves one or more nuclear export sequence (NES) elements from a soluble 545 

transcription factor, leading to nuclear import and reporter expression. b, Developing the testbed by 546 

evaluating engineered transcription factors (TF) for consistency with the mechanism proposed in a; shaded 547 

cleavage sequence (CS) domains indicate a G residue in the P1’ position, unshaded CS domains indicate 548 
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a M residue in this position.24 c, Experimental analysis of single and paired mutants sampling a range of 549 

interfacial energies (indicated by color and labeled), employing TF10 from b. Error bars depict S.E.M. (*p ≤ 550 

0.05, ***p ≤ 0.001). 551 

 552 
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