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Abstract:  
 
The hippocampus is a medial temporal lobe brain structure that contains circuitry and 
neural representations capable of supporting declarative memory. Hippocampal place 
cells fire in one or few restricted spatial locations in a given environment. Between 
environmental contexts, place cell firing fields remap (turning on/off or moving to a new 
spatial location), providing a unique population-wide neural code for context specificity. 
However, the manner by which features associated with a given context combine to drive 
place cell remapping remains a matter of debate. Here we show that remapping of neural 
representations in region CA1 of the hippocampus is strongly driven by prior beliefs about 
the frequency of certain contexts, and that remapping is equivalent to an optimal estimate 
of the identity of the current context under that prior. This prior-driven remapping is 
learned early in training and remains robust to changes in behavioral task-demands. 
Furthermore, a simple associative learning mechanism is sufficient to reproduce these 
results. Our findings demonstrate that place cell remapping is a generalization of 
representing an animal’s location. Rather than simply representing location in physical 
space, the hippocampus represents an optimal estimate of location in a multi-dimensional 
stimulus space. 
 

Main Text: 

The neural firing of hippocampal place cells often strongly correlates with an animal’s current 
spatial location in an environment, providing a neural basis for the brain’s code for space1. 
Between environmental contexts, place cell firing fields can appear, disappear or move - 
phenomena collectively referred to as ‘remapping’2–10. This reorganization in the firing locations 
of place cells results in unique population-wide representations for different environmental 
contexts. However, the factors that drive remapping remain incompletely understood. Here, we 
consider the idea that the animal’s prior beliefs about the frequency with which it encounters 
stimuli determine remapping patterns11. We find that context specific spatial codes are activated 
in a way that allows an animal to optimally estimate its location in the multi-dimensional stimulus 
space that determines ‘context’. We further show that this result can be accounted for by simple 
and long-standing models of hippocampal associative memory. This work provides the first 
quantitative framework for making precise predictions of how hippocampal population codes are 
formed and recruited across contexts.  
 
Prior beliefs about stimulus frequency determine CA1 place cell remapping 
To examine how prior experience affects remapping of hippocampal representations, we 
performed two-photon imaging of CA1 pyramidal cells as mice traversed a number of visually 
similar virtual reality (VR) linear tracks, which were presented with different frequencies. We 
designed the VR tracks such that three dominant visual features of the environment could 
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gradually blend (i.e. morph) between two extremes (visual features = orientation and frequency 
of bars on the wall, background color, color of tower landmarks) 3,6,10. The degree of blending in 
each feature is the coefficient of the affine combination of two values of that stimulus, referred to 

as the ‘morph value’, S (Fig 1a, Methods). For each trial, a shared morph value, �̃�, was chosen 
for all features from one of five values (0, .25, .5, .75, and 1) and then a jitter (uniformly distributed 
between -.1 to .1) was added to each feature independently. The overall morph value of a trial is 
the sum of the shared morph value and each of the jitters (S = -.3 to 1.3). Weber-Fechner’s law 
suggests that the animals will perceive log-fold rather than linear changes in the stimuli, so we 
considered the “log-morph” of a trial for some analyses (see Methods)12. In all sessions, mice 
performed a random foraging task, which required them to lick for water at a reward cue that 
appeared at a random location on the back half of the track (Extended Data Fig 1 and 
Supplementary Video 1). In each session, we were able to image several hundred to thousands 
of putative CA1 pyramidal cells simultaneously (98 - 2,149 cells simultaneously recorded; Fig 1b 
and Extended Data Fig 1f-g) 
 
We considered two training conditions. In the Rare Morph condition (n = 4 mice, R1 - R4), mice 

experienced very few trials with intermediate morph values (shared �̃� = .25 - .75) during the first 
seven training sessions (< 4% of trials with intermediate morph values before session 8; Fig 1c), 
giving these animals a bimodal prior over the (log-)morph values  (idealized prior Fig 1c and 
empirical prior per mouse Extended Data Fig 2). By contrast, in the Frequent Morph condition (n 
= 5 mice, F1 - F5), mice were frequently exposed to trials with intermediate morph values (60% 
of trials with intermediate morph values before session 8; Fig 1e), giving these animals a flat prior 
over the morph values (except the tails of the distribution) and a ramping prior over log-morph 
values (idealized prior Fig 1f & empirical prior per mouse Extended Data Fig 2). Given these 
priors, an observer performing probabilistic inference would make different predictions about the 
identity of intermediate stimuli. In particular, the Maximum a Posteriori (MAP) estimate of the 
stimulus (i.e. choosing the most likely stimulus from the posterior distribution), is discontinuous in 
the Rare Morph condition (“Rare Morph MAP estimate curve”, Fig 1e) and continuous in the 
Frequent Morph condition (“Frequent Morph MAP estimate curve”, Fig 1f). MAP estimation in the 
Frequent Morph condition is also nearly identical to Maximum Likelihood estimation before the 
log morph correction.  
 
We focused on CA1 remapping in sessions 8-N, as animals have had 7 sessions to develop a 
stable prior for the frequency of different stimuli (See Extended Data Fig 1 for number of sessions 
per mouse). In both the Frequent and Rare Morph condition, large numbers of place cells tiled 
the track with place fields (Rare = 13,985 place cells, 49.23% of recorded population; Frequent = 
7,192 place cells, 34.02% of recorded population). For environments at the extreme morph values 

(�̃�= 0 and �̃�= 1), the proportion of cells with a place field in both environments slightly exceeded 
the proportion expected by randomly choosing cells with replacement from the population (11.4% 
and 4.92% of recorded cells with significant fields in both environments for Rare Morph and 
Frequent Morph sessions respectively; chance 9.12% and 3.76%, Extended Data Fig 3). This 
suggests that the place representations between the environments at the extreme morph values 
were largely independent in both the Frequent and Rare Morph conditions. Consistent with the 
probabilistic inference framework introduced above, the transition between these representations 
clearly differed between the Rare and Frequent Morph condition. In the Rare Morph condition, 
place cells maintained their representation until a threshold morph value (S = .25 - .50) and then 
coherently switched to a different representations (Fig 1g-h). In the Frequent Morph condition, 
place cells gradually changed their representation across intermediate morph values (Fig 1i-j). 
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Figure 1: Training animals with different prior beliefs about stimulus frequency results in distinct CA1 remapping patterns. a, 

Stimulus design with example tracks for different morph (S) values. Side view of the track is shown. The color bar (right) 

indicates where each track falls along the morph axis, which is determined by the color of the background (dark to light grey), 

the color of the first two towers (green to blue) and the orientation and frequency of the sine waves on the walls (low 

frequency tilted sine waves to high frequency vertical sine waves). Liquid rewards appeared at a random location between 250 

and 400 cm along the virtual track (red shaded region). b, Example mean motion-corrected image of the field of view from one 
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imaging session (mouse F2, session 12; 𝜆=920 nm) with identified CA1 neurons highlighted in different colors (Suite2p, n = 2004 

cells). Inset shows a coronal view of the histology from the same animal (Green = GCaMP; Blue = DAPI). c, Illustration of the 

training protocol for the Rare Morph condition (n = 4 animals, R1-R4), color coded for morph (S) value as in (a). Imaging was 

performed on sessions (Sess.) 1, 3, and 8-N (Extended Data Fig 1f). Intermediate morph values are only shown on sessions 3 and 

8-N, during which imaging also occurred. d, Illustration of the training protocol for the Familiar Morph condition (n = 5 animals, 

F1-F5). Imaging was performed on sessions 1, 3, and 8-N (Extended Data Fig 1g). Intermediate morph values are shown on each 

session. e, Rare Morph condition. Left: The idealized prior distribution over the morph values (black) and log-corrected morph 

values (red) experienced by the Rare Morph animals, P(S). Right: The log-corrected Maximum a Posteriori estimate of the 

stimulus, log SMAP, as a function of the true stimulus (morph value), S.  f, Same as (e) but for the Frequent Morph condition. g, 

Top Row: Co-recorded place cells from an example Rare Morph session (mouse R2, session 8). Each column corresponds to the 

heat map for a different cell. Each row in the heat map indicates the activity of that cell on a single trial as a function of the 

position of the mouse on the virtual track (n=120 trials). Color code indicates deconvolved activity rate normalized by the 

overall mean activity rate for the cell (color bar far right). Rows are sorted by increasing morph value. Bottom row: Trial by trial 

cosine similarity matrices for the corresponding cell above, color coded for maximum (yellow) and minimum (blue) values. h, 

Top row: For all Rare Morph sessions 8-N, place cells were identified in the S = 0 morph trials and sorted by their location of 

peak activity (leftmost panel, n = 8,641 cells). Each row indicates the activity rate of a single cell as a function of position, 

averaged over all �̃� = 0 morph trials. Color indicates activity rate normalized by the peak rate from the �̃� = 0 average activity 

rate map for that cell (color bar far right). The trial-averaged firing rate map for these cells is then plotted for binned morph 

values using the same sorting and normalization (remaining panels to the right).  Bottom Row: For the same Rare Morph 

Sessions, place cells were identified in the �̃� = 1.0 morph trials sorted by their location of peak activity (rightmost panel, n = 

8,583 cells), and normalized by their peak value in the �̃�= 1.0 mean activity rate map. The same sorting and normalization is 

then used for the remaining panels to the left. i, Same as in (g) for an example Frequent Morph session (mouse F4, session 8, n 

= 75 trials). j, Same as in (h) for all Frequent Morph sessions 8-N (top row n = 4,497 cells; bottom row n = 3,735 cells). 

 

Discrete versus Continuous Representations of Context in Population Codes 
We next sought to confirm that the remapping patterns we observed in place cells reflected the 
dominant patterns in the entire CA1 population in an unsupervised manner and included all 
identified cells in the subsequent analyses. To examine how single cell firing rate maps changed 
across morph values, we performed cross-validated non-negative matrix factorization (NMF)13 on 
the single cell trial x trial similarity matrices (Fig 2a). Intuitively, factors produced by the model can 
be thought of as ‘prototypical similarity matrices’. In the Rare Morph condition, a two factor NMF 
model yields one factor in which cells maintained a representation for a lower morph values and 
a second factor in which cells maintained a representation for a higher morph value (example 
session in Fig 2b, across sessions and mice in Fig 2c). On the other hand, a two factor NMF 
model for Frequent Morph condition yields factors in which cells show gradual changes in 
similarity across morph values (example session in Fig 2d, across sessions and mice in Fig 2e). 
This confirms that the place cell remapping observed in the average place cell population firing 
rate maps (Fig 1i-j) are also the dominant remapping patterns followed by all recorded 
hippocampal CA1 cells (see Extended Data Fig 4 for higher rank NMF models and model error 
analysis). 
 
Trial by trial population similarity matrices revealed results consistent with those observed at the 
single cell and population level. For the Rare Morph condition, strong block diagonal structure in 
the trial by trial similarity matrix suggested clustering of morph values into two representations 
(example session in Fig 2f, across sessions and mice in Fig 2g; examples from all mice shown in 
Extended Data Fig 5). While in the Frequent Morph condition, the trial by trial similarity matrices 
showed a gradual transition between the two extreme morph values (example session in Fig 2h, 
across sessions and mice in Fig 2i). Indicating that hippocampal remapping patterns differed 
significantly between the Rare Morph and Frequent Morph condition, the differences in across 
trial similarity between conditions were significantly away from the block diagonal (Fig 2j, p<.005 
two-sided permutation test). 
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Figure 2: CA1 cells recorded in the Rare Morph condition form two discrete representations for morph values while cells 

recorded in the Frequent Morph condition form a spectrum of representations for different morph values. a, Schematic for how 

Nonnegative Matrix Factorization (NMF) was performed. For each cell, we flattened the upper triangle of its trial by trial 

similarity matrix (as seen in Fig 1g & i) to form a vector. These vectors were then stacked to form a 𝑁𝑒𝑢𝑟𝑜𝑛𝑠 × (𝑇𝑟𝑖𝑎𝑙𝑠 ∗

(𝑇𝑟𝑖𝑎𝑙𝑠 − 1)/2) matrix, 𝑋. NMF was then performed on this matrix yielding a factors matrix, 𝐻𝑇, and a loadings matrix, 𝑊. The 

rows of 𝐻𝑇 can be reshaped into “prototypical similarity matrices”.  b, NMF results for a single Rare Morph session (mouse R3, 

session 8; 915 cells, 120 trials). Components from the best fitting two component model are shown. Color coding indicates 

maximum (yellow) and minimum (blue) values. See Extended Data Fig 4 for model comparisons. c, NMF results for all Rare 

Morph sessions and animals (n = 28,409 cells). Trials were binned by morph value and combined across Rare Morph sessions (8-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2019. ; https://doi.org/10.1101/864090doi: bioRxiv preprint 

https://doi.org/10.1101/864090
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

N) and animals. NMF was performed on the resulted set of matrices and the components for the best fitting two component 

model are shown. d, Same as in (b) but for an example Frequent Morph session (mouse F2, session 8; 2,127 cells, 120 trials). e, 

Same as in (c) for all Frequent Morph sessions (8-N) and animals (n = 19,324 cells). f, Left: Population trial x trial cosine 

similarity matrix for an example Rare Morph session (mouse R4, session 8; 886 cells, 90 trials), color coded for maximum (black) 

and minimum (white) values. The scatterplot below each similarity matrix indicates the morph value of the trial. Color and 

height on the vertical axis indicate morph value, with trials sorted in ascending morph value (color bar in the far right side of 

panel). Black dots indicate trials in which the reward was omitted. Right: The projection of each trial’s activity onto the principal 

two eigenvectors of the similarity matrix. Each dot indicates one trial, colored by morph value. g, Population similarity matrices 

were binned across morph value and averaged for all Rare Morph Sessions 8-N (mice R1 – R4, n = 21 sessions). h, Same as (f) for 

an example Frequent Morph session (mouse F2, session 9; 2149 cells, 120 trials). i, Same as (g) for all Frequent Morph sessions 

8-N (mice F1 – F5, n = 19 sessions). j, The difference between the average Rare Morph and Frequent Morph (g,i) trial by trial 

similarity matrices. Asterisks indicate significant differences (p < 0.001, permutation test). 

 
 
CA1 remapping approximates optimal estimation of the stimulus 
We next asked how similar the CA1 neural representation on a single trial were to the average 

CA1 neural representation �̃�= 0 and �̃�= 1 morph values. To quantify this, we defined a Similarity 

Fraction (SF) between the centroid for the �̃�= 0 and �̃�= 1 trials. This value is the ratio of the 

population vector similarity to the �̃�= 0 centroid to the sum of similarities to the �̃�= 0 and �̃�= 1 

centroids (Fig 3a). Values above .5 indicate trials relatively closer to the �̃�= 0 centroid, and values 

below .5 indicate trials relatively closer to the �̃�= 1 centroid. Plotting SF as a function of the 
animal’s position along the virtual reality track revealed two stable representations across the 
entire length of the track for the Rare Morph condition (Fig 3b-c) and a spectrum of 
representations for the Frequent Morph condition (Fig 3d-e). These results indicate that 
remapping occurred rapidly upon the start of a new trial and remained stable as the animal 
traversed the virtual track. This result suggests that we could reasonably consider one SF value 
for each trial without obfuscating position-dependent accumulation of evidence mechanisms. 
 
Consequently, we calculated a summary SF value for each trial and plotted it as a function of 
morph value for each session (8-N) and each mouse (“SF-S plot”; Fig 3f-g). The distribution of SF 
values from Rare Morph (n = 2,410 trials) and Frequent Morph (n = 1,706 trials) trials were 
significantly different (two sample KS test D = .395, p = 4.60 x 10-128, Fig 3h). Moreover, SF plots 
were highly overlapping with the MAP estimate of the stimulus under the two priors (Fig 3f-g, MAP 
estimate from Fig 1b-c in bold).  For the Rare Morph trials, the Rare Morph MAP estimate curve 
predicted a significant amount of variance in the SF-S plot (linear regression, cross-validated R2 

= .811, p < .001 permutation test). This prediction was significantly better than regressing the 
Frequent Morph MAP estimate curve or a line to the SF-S curve (Extended Data Fig 6a, two-
sided Wilcoxon Signed-Rank Tests on magnitude of residuals from cross-validated linear 
regression; Rare Morph MAP v. Frequent Morph MAP: T = 1.01 x 106, p = 5.73 x 10-39, n = 2410, 
rank-biserial correlation = .244; Rare Morph MAP vs. linear fit: T = 8.37 x 105, p = 1.09 x 10-72, n 
= 2410, rank-biserial correlation = .313). The Rare Morph MAP estimate prediction was not 
significantly different from fitting a sigmoid to the SF-S plot (Extended Data Fig 6a, two-sided 
Wilcoxon Signed-Rank Test on magnitude of residuals from cross-validated regression, T = 1.42 
x 106, p = .360, n = 2410, rank-biserial correlation = .022), but the sigmoid fit failed to capture the 
clear discontinuity in the data. Similarly, for the Frequent Morph trials, the Frequent Morph MAP 
estimate curve predicted a significant amount of variance in the SF-S plot (linear regression, 
cross-validated R2 = .5336, p < .001 permutation test). This prediction was significantly better than 
regressing the Rare Morph MAP estimate curve or a line to the SF-S curve (Extended Data Fig 
6b, two-sided Wilcoxon Signed-Rank Test on magnitude of residuals from cross-validated linear 
regression, Frequent Morph MAP vs. Rare Morph MAP: T = 6.25 x 105, p = 3.87 x 10-7, n = 1706, 
rank-biserial correlation = .090; Frequent Morph MAP vs linear fit: T = 5.75 x 105, p = 4.81 x 10-
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14, n = 1706, rank-biserial correlation = .155). As above, the Frequent Morph MAP estimate was 
not significantly different from a sigmoid regression (two-sided Wilcoxon Signed-Rank Test on 
magnitude residuals from cross-validated regression, T = 6.95 x 105, p = .103, n = 2410, rank-
biserial correlation = .041). Together, these results provide evidence that CA1 remapping can be 
approximated by MAP estimation of the animal’s location in a multidimensional stimulus space in 
which contextual representations are activated proportional to their probability.  
 
We next sought to implement a network model capable of approximating MAP inference. We 
reproduced key experimental findings by implementing a model with three main components: 1) 
stimulus driven input to all cells, 2) Hebbian learning by cells on these inputs, and 3) competition 
between neurons via K-winners-take-all learning (Fig 3i; See Methods and Extended Data Fig 7 
for details and motivation)14,15. Using identical model parameters, we simulated learning under 
the Rare Morph and Frequent Morph conditions by drawing stimuli from the corresponding priors 
in a one dimensional version of the task.  Single model cells showed similar remapping patterns 
to experimentally observed CA1 cells (Extended Data Fig 7e-f), model-derived trial by trial 
similarity matrices (Fig 3j-k, Extended Data Fig 7g) bore a clear resemblance to those derived 
from experimental data (Fig 2f-j) and model-derived SF values across trials (i.e. simulations) were 
well fit by a MAP estimate curve (Fig 3l-m). This model has the strength of approximating a 
normative solution to hidden state inference with a plausible learning rule, without explicitly 
optimizing over an assumed cost function16,17. 
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Figure 3: CA1 hippocampal remapping approximates optimal estimation of the stimulus and can be explained by Hebbian learning 
mechanisms. a, Top: Schematic for how the Similarity Fraction (SF) is calculated. Each dimension indicates the activity of a single 
neuron at a single position bin. For panels (b-e), only one position bin is included in the calculation at a time. The S = 0 centroid 
is calculated by averaging this vector for all S = 0 trials (magenta dot). Likewise, the S = 1 centroid is calculated by averaging his 
vector for all S = 1 trials (cyan dot). SF for a given trial, 𝑎, is calculated by dividing the cosine similarity of the vector for 𝑎 to the S 
= 0 centroid by the sum of cosine similarities to either centroid. Bottom: Color bar for morph values used in remainder of figure.   
b, SF plotted as a function of the animal’s position on the track for each trial in an example Rare Morph session (mouse R3, session 
9; 2046 cells, 100 trials). Each line represents a single trial and color coded indicates morph value (color bar in [a]). c, Average SF 
by position plot across Rare Morph sessions (8-N) and animals (R1 – R4; n = 21 sessions). Lines represent means for binned morph 
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values (S = 0, .25, .50, .75, 1). Shaded region indicates SEM across sessions. d, Same as (b) but for an example Frequent Morph 
session (mouse F1, session 8; 301 cells, 95 trials). e, Same as (c) but for all Frequent Morph sessions (8-N, animals F1 – F5, n = 19 
sessions). f, Left: Whole-trial SF for each trial was calculated and plotted as a function of morph value for all Rare Morph sessions. 
Each dot represents a single trial (n = 2,410 trials) and each color represents a different mouse. The bold dots (brown) indicate 
the cross-validated prediction of SF values from a linear regression of the MAP estimate of the stimulus under the Rare Morph 
prior (Fig 1e) onto the data. Right: Marginal histogram of SF values. Colors correspond to individual mouse. g, Same as F but for 
all Frequent Morph sessions (n = 1,706 trials). The bold dots (navy) indicate the cross-validated prediction of SF values from a 
linear regression of the MAP estimate of the stimulus under the Frequent Morph prior (Fig 1f). h, Histogram of the SF values for 
all mice in the Rare Morph condition (brown) and Frequent Morph condition (blue). i, Schematic of the computational model. 
The input layer contains neurons that form a basis for representing the stimulus using radial basis functions. Activations are 
linearly combined via the matrix W and thresholding is applied via a K-Winners-Take-All mechanism to achieve the output 
activation. W is updated after each stimulus presentation using Hebbian learning. Model training is performed by drawing trials 
randomly from either the Rare Morph prior or the Frequent Morph prior. j, Trial by trial similarity matrix, as in Fig 2f for 
experimental data, for an example model trained under the Rare Morph condition. k, Same as (j) for an example model trained 
under the Frequent Morph condition. l, Whole-trial SF as a function of Morph, as in (f), for models trained under the Rare Morph 
condition. Each color indicates a different random model initialization (n = 50). The bold line is a linear regression of the Rare 
Morph MAP estimate. m, Same as (k) but for Frequent Morph trained models (n = 50). The bold line is a linear regression of the 
Frequent Morph MAP estimate. 

 
 
 
Remapping patterns emerge early in training but solidify with experience 
We next examined the degree to which the animal’s prior beliefs about states update over time. 

The hippocampus’s role in memory formation appears critical at the earliest stages of learning18–

21. However, the previous analyses all considered later (8-N) sessions. To examine remapping 
earlier in learning, we performed the same similarity analyses on session 3, the first session Rare 
Morph condition animals experience environments with intermediate morph values. In both the 
Rare Morph and Frequent Morph condition mice showed variable early session remapping 
patterns. In the majority of mice (3/4 in the Rare Morph condition, 4/5 in the Frequent Morph 
condition), the remapping pattern in session 3 was largely similar to the remapping pattern 
observed in later sessions (example mouse Rare Morph condition Fig 4a-c, m; Frequent Morph 
condition Fig 4g-i, n). In these animals, a linear regression of the MAP estimate from the matching 
condition provided a better fit than the MAP estimate curve from the opposite condition. Perhaps 
due to small numbers of trials, this difference was only significant in animal R2 (two-sided 
Wilcoxon signed rank test on magnitude of residuals, T = 552, p = 7.53 x 10-3, n = 60, rank-biserial 
correlation = .333) and F3 (T = 2.81 x 103, p = 3.17 x 10-2, n = 120, rank-biserial correlation = 
.150). In contrast, in session 3 of one Rare Morph animal (R1), we observed a gradual transition 
in the neural representation between S = -0.3 and S = 1.3 morph values, and indeed the Frequent 
Morph MAP estimate provided a marginally better fit to the data (Fig 4d-f, m). In addition, in 
session 3 of one Frequent Morph condition mouse (F2), we observed more discrete switches 
between representations and the Rare Morph MAP estimate provided a marginally better fit than 
the Frequent Morph MAP estimate (Fig 4j-l). For both of these mice (R1 and F2), the remapping 
patterns in later sessions (8-N) were akin to those observed in all other animals (i.e. Rare Morph 
MAP regression fit outperforms Frequent Morph MAP regression fit for R1, two-sided Wilcoxon 
signed rank test, T = 6.71 x 104, p = 5.42 x 10-8, n = 600, rank-biserial correlation = .223; Frequent 
Morph MAP regression fit outperforms Rare Morph MAP regression fit for F2, T = 3.77 x 104, p = 
2.91 x 10-3, n = 425, rank-biserial correlation = .101). Together, this indicates that prior-driven 
remapping patterns are learned early, but strengthen over training.  
 
Once remapping patterns in CA1 were established, they remained highly robust. In all animals, 
late sessions displayed stable context discrimination metrics (remaining animal examples in 
Extended Data Fig 8). This provides further evidence for animals using MAP estimation, as it is 
the prior and not the amount of accumulated experience in the intermediate trials that correlates 
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with remapping (Extended Data Fig 9). In addition, requiring mice to behaviorally discriminate 
between morph values greater than .5 versus less than .5, by licking in different spatial locations 
on the VR track, yielded the same remapping patterns as those observed with the random 
foraging task (Extended Data Fig 10).  
 
We have shown that the remapping patterns observed in CA1 can be precisely predicted by an 
animal’s prior experience, with the hippocampus approximating an ideal combination of these 
prior beliefs with information about the current stimulus. This framework provides a possible 
unifying explanation for earlier works using morphed 2-dimensional environments, which resulted 
in conflicting findings regarding remapping in CA13,6,10. Moreover, our computational model 
demonstrates that our experimental results agree with associative learning mechanisms in the 
hippocampus, a long-standing proposal for how the hippocampus implements memory15,22,23. 
Broadly, these results complement the recently proposed probabilistic framework of a successor-
like representation in the hippocampus and provide a potential mechanism for switching between 
successor representations for different contexts11,24. On the other hand, these results conflict with 
models that require updates to the path integration coordinate reference frame to evoke 
remapping, as mice in both Rare and Frequent Morph conditions experienced identical path 
integration conditions yet showed very different remapping patterns. It remains to be seen 
whether these dynamics emerge in CA1 or they are inherited from an earlier stage of processing. 
Our findings build on the emerging idea that the hippocampal-entorhinal circuit represents location 
not only in physical space but also in abstract stimulus spaces25,26. We show that CA1 remapping 
is a generalization of this phenomenon and provides approximate optimal inference of location in 
the multidimensional feature space that defines “context”. 
 

 

 

Figure 4: Neural context discrimination is stable across late sessions but forms at variable rates. a, Left: Trial by trial similarity 
matrices for session 3 (first session in which the mouse experiences intermediate morph values) from an example mouse in the 
Rare Morph condition (mouse R2). Right: session 8 for the same mouse. b, Left: SF of each trial plotted as a function of the morph 
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value (S). Dots are color coded for session number, with red points indicating data from session 3 and varying shades of grey to 
blue indicate data from sessions 8-N. Right: Marginal histogram of SF values for each session. Color coded as in the left panel. C) 
Cumulative histogram of SF values for the sessions shown in (b). d-f, Same as (a-c) for a mouse in the Rare Morph condition 
(mouse R1) in which context discrimination dynamics have not stabilized by session 3. g-i, Same as (a-c) for a mouse in the 
Frequent Morph condition (mouse F1) in which context discrimination dynamics are stable by session 3. j-l, Same as (a-c) for a 
mouse in the Familiar Morph condition (mouse F2) in which the context discrimination dynamics are not stable by session 3. m, 
Top 4 histograms: histograms of SF values from session 3 in each Rare Morph mouse (n = 4). Bottom histogram: combined 
histogram of all Rare Morph mice from sessions 8-N for comparison. n, Top 5 histograms: histograms of SF values from session 3 
in each Frequent Morph mouse (n = 5). Bottom histogram: combined histogram of all Frequent Morph mice from sessions 8-N 
for comparison. 
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Methods 
 
Subjects 
All procedures were approved by the Institutional Animal Care and Use Committee at Stanford 
University School of Medicine. Male and female (n = 6 male, 7 female) mice were housed in 
groups of between one and five same-sex littermates. After surgical implantation, mice were 
housed in transparent cages with a running wheel and kept on a 12-hour light/dark schedule. All 
experiments were conducted during the light phase. Mice were between 2 and 5 months at the 
time of surgery (18.6 - 29.3 grams). Prior to surgery, animals had ad libitum access to food and 
water. 
 
Calcium indicator expression 
Three methods were used to express GCaMP6 in CA1 pyramidal cells. 1) For mice F1-F3, F5, 
R4, and FD1-FD4 (Extended Data Figure 10 only), hemizygous CaMKIIa-cre mice (Jackson 
Laboratory stock #005359)1 were first anaesthetized by an intra-peritoneal injection of a 
ketamine/xylazine mixture (8.5 mg/kg). Then, adeno-associated virus containing cre-inducible 
GCaMP6f under a ubiquitous promoter (AAV1-CAG-FLEX-GCaMP6f-WPRE; Penn Vector Core) 
was injected into the left hippocampus (500 nL injected at -1.8 mm anterior/posterior [AP], -1.3 
mm medial/lateral [ML], 1.4 mm from the dorsal surface [DV]) using a 36 gauge Hamilton syringe 
(World Precisions Instruments). The needle was left in place for 15 minutes to allow for virus 
diffusion. The needle was then retracted and the imaging cannula implant was performed 
(described in the section below). 2) For mice R1-R3, hemizygous CaMKIIa-cre mice were 
maintained under anesthesia via inhalation of a mixture of oxygen and 0.5 - 2% isofluorane. A 
retro-orbital injection of AAV-PhP.eB-EF1a-DIO-GCaMP6f (~2.6 x 10^11 vg per mouse, Stanford 
Gene Vector and Virus Core) was performed. This retro-orbital injection occurred 20 days prior to 
the imaging cannula implant (described below). 3) Mouse F4 was a transgenic GCaMP animal 
(Ai94; CaMKIIa-tTA; CaMKIIa-cre, hemizygous for all alleles; Jackson Laboratory stock #024115) 
expressing GCaMP6s in all CaMKIIa positive cells. 
 
Imaging Cannulas and Implant Procedure 
We made modifications of previously described procedures for imaging CA1 pyramidal cells2-4. 
Imaging cannulas consisted of a 1.3 mm length stainless steel cannula (3 mm outer diameter, 
McMaster) glued to a circular cover glass (Warner Instruments, #0 cover glass 3mm diameter; 
Norland Optics #81 adhesive). Excess glass overhanging the edge of the cannula was shaved off 
using a diamond tip file. 
 
For the imaging cannula implant procedure, animals were anaesthetized by an intra-peritoneal 
injection (IP) of a ketamine/xylazine mixture (8.5 mg/kg) and after one hour, were maintained 
under anesthesia via inhalation of a mixture of oxygen and 0.5 - 1% isoflurane. Before the start 
of the surgery, animals were also subcutaneously administered 0.08 mg Dexamethasone, 0.2 mg 
Carprofen, and 0.2 mg Mannitol. A 3 mm diameter craniotomy was performed over the left 
posterior cortex (centered at -2 mm AP, -1.8 mm ML). The dura was then gently removed and the 
overlying cortex was aspirated using a blunt aspiration needle under constant irrigation with sterile 
artificial cerebrospinal fluid (ACSF). Excessive bleeding was controlled using gel foam that had 
been torn into small pieces and soaked in sterile ACSF. Aspiration ceased when the fibers of the 
external capsule were clearly visible. Once bleeding had stopped, the imaging cannula was 
lowered into the craniotomy until the coverglass made light contact with the fibers of the external 
capsule. In order to make maximal contact with the hippocampus while minimizing distortion of 
the structure, the cannula was placed at approximated 15 degree roll angle relative to the animal’s 
skull. The cannula was then held in place with cyanoacrylate adhesive. A thin layer of adhesive 
was also applied to the exposed skull. A number 11 scalpel was used to score the surface of the 
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skull prior to the craniotomy so that the adhesive had a rougher surface on which to bind. A 
headplate with a left offset 7 mm diameter beveled window was placed over the secured imaging 
cannula at a matching 15 degree angle, and cemented in place with Met-a-bond dental acrylic 
that had been dyed black using India ink.   
 
At the end of the procedure animals were administered 1 mL of saline and .2 mg of Baytril and 
placed on a warming blanket to recover. Animals were typically active within 20 min and were 
allowed to recover for several hours before being placed back in their home cage. Mice were 
monitored for the next several days and given additional Carprofen and Baytril if they showed 
signs of discomfort or infection. Mice were allowed to recover for at least 10 days before beginning 
water restriction and VR training.  
 
Two Photon imaging 
To image the calcium activity of neurons, we used a resonant-galvo scanning two photon 
microscope (Neurolabware). 920 nm light (Coherent Discovery laser) was used for excitation in 
all cases. Laser power was controlled using a pockels cell (Conoptics). Average power for 
excitation of AAV1-CAG-GCaMP6f mice and the Ai94;CaMKIIa-tTA;CaMKIIa-cre mouse was 10-
40 mW (mouse F1-5, R4, and FD1-3). For AAV-PHP.EB mice the typical laser power was 50-100 
mW (mouse R1, R2 and R3). The 1 mm x 1 mm field of view (FOV) (512 x 796 pixels) was 
collected using unidirectional scanning at 15.46 Hz. Cells were imaged continuously under 
constant laser power until the animal completed 60-120 trials, the session exceeded 40 min, or 
the mouse stopped running consistently. 
 
Putative pyramidal cells were identified using the Suite2P software package 

(https://github.com/MouseLand/suite2p)5, and the segmentations were curated by hand to 

remove ROIs that contained multiple somas, dendrites, or contained cells that did not display a 
visually obvious transient. This method identified between 98 and 2,149 putative pyramidal 
neurons per session, depending on the quality of the imaging window implant and expression of 
the virus. We did not attempt to follow the same cells over multiple sessions; however we 
attempted to return to roughly the same FOV on each session.  For all analyses, we used the 

extracted “activity rate” obtained by deconvolving the 𝛥F/F with a canonical calcium kernel. We 
do not interpret this result as a spike rate. Rather, we view it as a method to remove the 
asymmetric smoothing on the calcium signal induced by the indicator kinetics.  
 
Virtual Reality (VR) Design 
All virtual reality environments were designed and implemented using the Unity game engine 
(https://unity.com/). Virtual environments were displayed on three 24 inch LCD monitors that 
surrounded the mouse and were placed at 90 degree angles relative to each other. A dedicated 
PC was used to control the virtual environments and behavioral data was synchronized with 
calcium imaging acquisition using TTL pulses sent to the scanning computer on every VR frame. 
Mice ran on a fixed axis foam cylinder and running activity was monitored using a high precision 
rotary encoder (Yumo). Separate Arduino Unos were used to monitor the rotary encoder and 
control the reward delivery system. 
 
Water Restriction and VR Training 
In order to incentivize mice to run, animals water intake was restricted. Water restriction was not 
implemented until 10-14 days after the imaging cannula implant procedure. Animals were given 
0.8 - 1 mL of 5% sugar water each day until they reach ~85% of their baseline weight and given 
enough water to maintain this weight.  
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Mice were handled for 3 days during initial water restriction and watered through a syringe by 
hand to acclimate them to the experimenter. On the fourth day, we began acclimating animals to 
head fixation (day 4: ~30 minutes, day 5: ~1 hour). After mice showed signs of being comfortable 
on the treadmill (walking forward and pausing to groom), we began to teach them to receive water 
from a “lickport”. The lickport consisted of a feeding tube (Kent Scientific) connected to a gravity 
fed water line with an in-line solenoid valve (Cole Palmer). The solenoid valve was controlled 
using a transistor circuit and an Arduino Uno. A wire was soldered to the feeding tube and 
capacitance of the feeding tube was sensed using a simple RC circuit and the Arduino capacitive 
sensing library. The metal headplate holder was grounded to the same capacitive-sensing circuit 
to improve signal to noise, and the capacitive sensor was calibrated to detect single licks. The 

water delivery system was calibrated to deliver ~4 𝜇L of liquid per drop. 
 
After mice were comfortable on the ball, we trained them to progressively run further distances 
on a VR training track in order to receive sugar water rewards. The training track was 450 cm 
long with black and white checkered walls. A pair of movable towers indicated the next reward 
location. At the beginning of training, this set of towers were placed 30 cm from the start of the 
track. If the mouse licked within 25 cm of the towers, it would receive a liquid reward. If the animal 
passed by the towers without licking, it would receive an automatic reward. After the reward was 
dispensed the towers would move forward. If the mouse covered the distance from the start of 
the track (or the previous reward) to the current reward in under 20 seconds, the inter-reward 
distance would increase by 10 cm. If it took the animal longer than 30 seconds to cover the 
distance from the previous reward, the inter-reward distance would decrease by 10 cm. The 
minimum reward distance was set to 30 cm and the maximal reward distance was 450 cm. Once 
animals consistently ran 450 cm to get a reward within 20 seconds, the automatic reward was 
removed and mice had to lick within 25 cm of the reward towers in order to receive the reward. 
After the animals consistently requested rewards with licking, we began Rare Morph or Frequent 
morph training described below. Training (from first head fixation to the beginning Rare Morph or 
Frequent Morph protocols) took 2 - 4 weeks.  
 
Morphed Environments 
For the Rare and Familiar Morph condition experiments, trained mice ran down 450 cm tracks in 
order to receive sugar water rewards. These rewards were placed at a random location between 
250 and 400 cm down the track. The reward location was indicated by a small white box with a 
blue star. Animals received a reward if they licked within 25 cm of the box. Once the animals were 
well trained they often ran consistently down the first half of the track and begin licking as they 
approached the reward (Extended Data Fig 1). They typically stopped to consume the reward and 
ran at a consistent speed to the end of the track. Well-trained mice ran until they received around 
0.8 - 1 mL of liquid (~200 rewards). In order to increase the number of trials in a session, rewards 
were omitted on 20% of trials for some sessions. Reward omissions or missed rewards are shown 
in the results when necessary.  
 
The visual stimuli for the VR track were chosen so that the extremes of the stimulus distributions 
could be gradually and convincingly morphed together. The tracks did not change in length or the 
location of salient landmarks. The aspects of the stimulus that did change were, i) the frequency 
and orientation of the sine waves on the wall (low frequency, oriented sine waves into high 
frequency nearly vertical sine waves), ii) the color of the first two towers (green to blue), and iii) 

the color of the background of the visual scene (light grey to dark grey). The morph value, 𝑆, for 
each trial is the coefficient of an affine combination between two extreme values of the stimulus 

(𝑆𝑓0 + (1 − 𝑆)𝑓1). On every trial, a shared morph value, �̃�, was chosen for all features from one of 
five values (0, .25, .5, .75, and 1) and a jitter was applied independently to the wall, tower color, 
and background colors. The jitters were uniform random values from -.1 to .1. The total morph 
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value is given by the sum of the shared morph value and all of the jitters (shared morph + wall 
jitter + background jitter + tower jitter). The resulting range of S values is between -0.3 and 1.3, 
though values close to -0.3 and 1.3 will be rare.  
 
Rare Morph Condition 

Mice in the Rare Morph condition experienced only trials with a shared morph value of �̃� = 0 or 

�̃� = 1, with the exception of a subset of imaging sessions. Only one session was run per day. For 

the first two sessions, the animals experienced trials with randomly interleaved �̃� = 0 or �̃� = 1 
trials. On the third session, before imaging, the animals experienced 30-50 ‘warm-up’ trials of with 

randomly �̃� = 0 or �̃� = 1 trials. During imaging (60-120 trials, depending on the running speed of 

the animal), 50% of the trials were �̃� = .25, .5, or . 75 trials. The remaining 50% were �̃� = 0 or �̃� =
1 trials.  After the imaging session, animals continued to run �̃� = 0 and �̃� = 1 trials until they 
received the rest of their water for the day. For the next four sessions (4-7), the animals again 

only experienced �̃� = 0 and �̃� = 1 trials. For session 8 and all subsequent sessions (8-N) the 
protocol used in the third session was repeated. 
 
Frequent Morph Condition 

Mice in the Frequent Morph condition experienced randomly interleaved �̃� = 0, .25, .5, .75, or 1.0 
trials with equal probability on every session. On imaging sessions, as in the Rare Morph 
condition, animals experienced 30-50 ‘warm-up’ trials before imaging and continued trials after 
imaging until they received the rest of their water for the day.  
 
Log-Morph Calculation 
According to Weber-Fechner’s Law, the percept of a stimulus is proportional to the log of the 
stimulus intensity. Therefore, despite the fact that the stimulus values are linearly interpolated, 
the mouse likely does not perceive the morph in a linear fashion. To correct for this, we calculated 
a new morph value based on the log-scale of the stimuli. We first calculated the log of each 
possible feature value in its native range and then normalized so that this value was between -
0.3 and 1.3, log S.  
 
Maximum A Posteriori Morph (MAP) Inference  
MAP inference is the process of taking the maximum value from the posterior distribution using 
Bayes’ formula. The posterior distribution, in this case, describes the probability of the stimulus, 

𝑆,  given an observation, �̂�. We can calculate the posterior using 𝑃(𝑆|�̂�)  ∝ 𝑃(�̂�|𝑆)𝑃(𝑆). 𝑃(𝑆) is 
the prior distribution and describes the frequency of previously seen stimuli. The Rare Morph and 
Frequent Morph conditions were designed to vary this distribution and are described below. 

𝑃(�̂�|𝑆) is the likelihood function which describes observation noise. In all cases, we assume that 

this function is a Gaussian centered at 𝑆 in the log-morph scale with a variance of .3, 𝑃(𝑆) ∝
𝑁(𝑆, .3). We then compute the MAP estimate as 𝑃(𝑆|�̂�) . In Fig 1e-f, we plot this value as a 

function of  �̂�. 
 
For the Rare Morph condition, 𝑃(𝑆) ∝  𝐺(−.1, .1) + 𝐺(.9,1.1) +  𝑐. Where 𝐺(𝑎, 𝑏)  =  𝑈(𝑎, 𝑏) ∗
𝑈(𝑎, 𝑏) ∗ 𝑈(𝑎, 𝑏). The ∗ operator denotes a convolution, 𝑈(𝑎, 𝑏) is a uniform distribution over the 

interval [𝑎, 𝑏], and 𝑐 is constant. The convolutions come from the fact that the total morph value 
is the sum of three features with the same distribution and the property that the distribution of the 
sum of random variables is proportional to the convolution of the distributions. We add a constant, 
𝑐, to account for intermediate trials seen in session 3 and to prevent the probability of seeing an 
intermediate stimulus from being exactly 0. For the Frequent Morph condition, 𝑃(𝑆) ∝  𝐺(−.1, .1) +
𝐺(.15, .35) + 𝐺(.4, .6) + 𝐺(.65, .85) + 𝐺(.9,1.1) +  𝑐. 
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Both priors were then smoothed with a small Gaussian kernel (variance = .1) and converted to 
the log-morph scale where the MAP estimation was performed.  
 
Place cell identification and plotting 

Place cells were identified separately in �̃� = 0 and �̃� = 1 trials using a previously published spatial 

information (SI)6 metric 𝑆𝐼 = ∑ 𝑝𝑗𝑗 𝜆𝑗 log2
𝜆𝑗

𝜆
   . Where 𝜆𝑗 is the average activity rate of a cell in 

position bin 𝑗, 𝜆 is the position-averaged activity rate of the cell, and 𝑝𝑗 is the fractional occupancy 

of bin 𝑗. The track was divided into 10 cm bins, giving a total of 45 bins. To prevent cells that were 
active on only a small number of trials from having spuriously high spatial information, we 

performed a bootstrapping procedure for estimating 𝜆𝑗 and 𝜆. On each iteration of the bootstrap 

(30 total iterations), 67% of the trials were chosen with replacement and the SI was calculated 
from the cellular activity in these trials. The median SI across bootstrapping iterations was taken 
as the final SI value.  
 
To determine the significance of the SI value for a given cell, we created a null distribution for 
each cell independently using a shuffling procedure. On each shuffling iteration, we circularly 
permuted the cell’s time series relative to the position trace within each trial and repeated the 
bootstrapping procedure to determine SI for the shuffled data. Shuffling was performed 1000 
times for each cell, and only cells that exceeded all 99% of permutations were determined to be 
significant “place cells”.  
 

Place cell sequences (Fig 1h & j) were found separately in the �̃� = 0 and �̃� = 1 trials using split-
halves cross-validation. The average firing rate maps from a randomly selected half of the trials 
were used to identify the position of peak activity. Cells were sorted by this position and then the 
activity on the other half of the trials was plotted. This gives a visual impression of both the 

reliability of the place cells within the �̃�=0 and �̃�=1 morphs and the extent to which these 
sequences are retained across the intermediate morph values. 
 
For visualization, single trial activity rate maps (Fig 1g & i) were smoothed with a 20 cm (2 spatial 
bin) Gaussian kernel.  
 
Single Cell Trial x Trial Similarity Matrices 
For each cell, 𝑖, we stack smoothed single trial activity rate maps (10 cm/1 spatial bin width 

Gaussian kernel) to form a matrix, 𝐴𝑖 ∈  𝑅𝑇,𝐽. 𝑇 is the number of trials and 𝐽 is the number position 

bins. Each row was then divided by its 𝑙2norm, yielding a new matrix 𝐴�̃�. The single cell trial by 

trial cosine similarity matrix is then given by 𝐶𝑖 = �̃��̃�𝑖  𝑇 
 
Population Trial x Trial Similarity Matrices 
For a single session, we horizontally concatenated all single cell trials by positions matrices, 𝐴𝑖, 

to form the fat matrix 𝐴 = [𝐴1|𝐴2| … |𝐴𝑁], where 𝑁 is the number of neurons recorded in that 
session. To calculate the population trial x trial cosine similarity matrix, we again divide the rows 

of 𝐴 by their 𝑙2norm to give the matrix �̃�. As above, the population cosine similarity matrix is then 

given by 𝐶 = �̃� �̃�𝑇. In order to average across sessions, the rows and columns of 𝐶 were binned 
by morph value.  
 
Non-negative Matrix Factorization 
For each session, we applied a previously described cross-validated version of non-negative 

matrix factorization (NMF)7 to the set of matrices 𝐶1, 𝐶2, … , 𝐶𝑁 described above to identify dominant 
remapping patterns seen across the population. To perform NMF, we flatten the upper triangle of 
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each matrix 𝐶𝑖 giving a row vector 𝑣𝑖  =  [𝑐1,2
𝑖  𝑐1,3

𝑖 … 𝑐1,𝑇
𝑖  𝑐2,3

𝑖  𝑐2,4
𝑖 … 𝑐2,𝑇

𝑖 … 𝑐𝑡,𝑡+1
𝑖 … 𝑐𝑡,𝑇

𝑖 … 𝑐𝑇−1,𝑇
𝑖 ]  and 

stack them to form matrix 𝑋𝑇 = [𝑣1
𝑇|𝑣2

𝑇| … |𝑣𝑁
𝑇], so 𝑋 ∈ 𝑅𝑁,𝑇(𝑇−1)/2 . The goal of NMF is to find 

matrices, a skinny matrix 𝑊 and a fat matrix 𝐻𝑇 , that minimize‖𝑋 − 𝑊𝐻𝑇‖
𝐹

2
. We can control the 

number of factors we get out of the model by specifying the rank of 𝑊 and 𝐻. In short, to perform 
cross-validation, we applied a random binary masking matrix 𝑀 during training and test the model 

on the left out data. The optimization then becomes ‖𝑀 ∘ (𝑋 − 𝑊𝐻𝑇)‖
𝐹

2
  , where 70% of the entries 

in 𝑀 are 1 and the remainder are 0. The ∘ operator indicates the elementwise product. 

Performance of the model was then tested by examining ‖(1 − 𝑀) ∘ (𝑋 − 𝑊𝐻𝑇)‖
𝐹

2
. Cross-

validation allows us to find the best number of factors to include in our model, as test error should 
plateau or get worse when the rank of the model exceeds the “true” dimensionality. We performed 
three fold cross-validation for all of our models.  
 
Similarity Fraction 
We define a Similarity Fraction (SF) to quantify the relative distance of a single trial representation 

to either the average �̃� = 0 or �̃� = 1 representation. For whole-trial SF, on each trial, 𝑡, we take 

the 𝑡𝑡ℎ row of 𝐴, 𝛼𝑡. We calculate the cosine similarity between 𝛼𝑡 and the average �̃� = 0 

population representation, 𝛼�̃�=0, given by γ(𝛼𝑡, 𝛼�̃�=0)  =  
𝛼𝑡

𝑇 𝛼�̃�=0

‖𝛼𝑡‖2‖𝛼�̃�=0‖
2

 . Similarly we calculate the 

cosine similarity between 𝛼𝑡 and the average �̃� = 1 population representation, 𝛼�̃�=1, 

𝛾(𝛼𝑡 , 𝛼�̃�=1)  =  
𝛼𝑡

𝑇 𝛼�̃�=1

‖𝛼𝑡‖2‖𝛼�̃�=1‖
2

 . If 𝑡 is a �̃� = 0 or �̃� = 1 trial, it is omitted from the centroid calculation. 

SF is then given by 𝑆𝐹(𝛼𝑡) =  
𝛾(𝛼𝑡,𝛼�̃�=0) 

𝛾(𝛼𝑡,𝛼�̃�=0) +𝛾(𝛼𝑡,𝛼�̃�=1) 
. To calculate SF as a function of position, we 

simply considered only the columns of 𝐴 that correspond to that position bin.  
 
For fitting the MAP estimates onto the SF values, we performed robust linear regression (Huber 
loss function) where the MAP estimate at a given trial’s morph value was the feature and we 
predict the actual SF value for that trial. These regressions were compared to a standard linear 
fit to the SF plots, and a Huber loss sigmoid fit to the data. For all model comparisons, we 
examined Leave-One-Trial-Out residuals.  
 
Hebbian Learning Model of Data 
Our goal for this model was to write down the simplest network with plausible components that 
would replicate our main findings and approximate MAP inference. We posited that this would be 
possible without any explicit optimization and would only require three main components: 1) 
stimulus driven input neurons, 2) Hebbian plasticity on input weights by output neurons and, 3) 
competition between output neurons. For this model we considered a one-dimensional, position 
independent version of the task.  
 

We considered a two layer neural network with a set of stimulus-driven input neurons, 𝑥⃑(𝑆) =

[𝑥1(𝑆), 𝑥2(𝑆), … , 𝑥𝑗(𝑆), … 𝑥𝑀(𝑆)]
𝑇

, a set of output neurons,𝑦⃑ = [𝑦1, 𝑦2, … , 𝑦𝑖 , … 𝑦𝑁]𝑇, and a 

connectivity matrix 𝑊, where 𝑊𝑖𝑗 is the weight from input neuron 𝑗 to output neuron 𝑖. Input 

neurons have radial basis function tuning for the stimulus, 𝑆, 𝑥𝑗(𝑆) = 𝑒𝑥𝑝 [
(𝜇𝑗−𝑆)

2

𝜎2 ] , where 𝜇
𝑗
 is 

the center of the radial basis function for neuron 𝑗. These basis functions were chosen to tile the 

stimulus axis across the population, 𝑥⃑. 𝜎2 is the width of the radial basis function and is a fixed 
value across all input neurons. For Fig3i-m & Extended Data Fig 7d-h, M = 100, N = 100, and 

𝜎2 = .15. 
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We accomplished competition between output neurons using a K-Winners-Take-All approach. On 

any given stimulus presentation 𝑦𝑖 = 𝑚𝑎𝑥 {𝑐𝑦𝐾𝑊𝑇𝐴(𝑧(𝑆)) ∘ 𝑧(𝑆) + 𝜎𝑦, 0}  where 𝑧(𝑆) = 𝑊𝑥⃑(𝑆 +

𝜎𝑆),  𝐾𝑊𝑇𝐴(∙) is a vector-valued function that applies the K-Winners-Take-All threshold and 

outputs a binary vector choosing the K winners, 𝑐𝑦 is a constant, and 𝜎𝑦 is additive noise. 𝜎𝑠 is a 

stimulus noise term. For Fig 3i-m & Extended Data Fig 7d-h, K=40 (approximately the same 
fraction of place cells observed in the real data), 𝑐𝑦 = .01, 𝜎𝑦~2 ∗ 𝑁(0,1), 𝜎𝑆~.05 ∗ 𝑁(0,1) 

 

Weights were largely updated according a basic Hebbian learning rule, 𝛥𝑊𝑖𝑗 = 𝜂𝑥𝑗𝑦𝑖 , where 𝜂 is 

a constant. However, we also required that weights cannot be negative, that weights cannot go 

beyond a max value, 𝑊𝑚𝑎𝑥, and that weights decay at some constant rate, 𝜏. This yielded the 

following update equation 𝑊𝑖𝑗 ≔ 𝑚𝑖𝑛 {𝑚𝑎𝑥{𝑊𝑖𝑗 + 𝛥𝑊𝑖𝑗 − 𝜏, 0} , 𝑊𝑚𝑎𝑥}. For Fig 3i-m & Extended 

Data Fig 7d-h, 𝜂 = .15, 𝜎𝑤~.1 ∗ 𝑁(0,1), 𝜏 = .005, 𝑊𝑚𝑎𝑥 = 10. 
 
For each instantiation of the model, we initialize 𝑊  with random small weights (𝑊𝑖𝑗~U(0,.1)) and 

training stimuli are chosen according to either the Rare Morph prior or the Frequent Morph prior 

(n=1,000 training stimuli). After training, 𝑊 is frozen and we test the models response to the full 
range of stimuli.  
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Extended Data Figures 

 
 
Extended Data Figure 1 Licking behavior and number of cells recorded per session. a, Single trial lick rate as a function of 
position is shown for an example Frequent Morph session (F5, session 8; n= 120 trials). Left-Each row indicates the smoothed 
lick rate across positions for a single trial. The color of the rows indicate the morph value (colormap in Fig 1a). The grey shaded 
region indicates possible reward locations. Trials are shown in the order in which they occurred during the experiment. Right- 
Trials are sorted by the location of the reward cue. The color code also indicates increasing reward distance from the start of 
the track (green to yellow). Black trials are those in which the reward cue was omitted. b, Same as (a) for an example Rare 
Morph session (R3, session 8; n=120 trials). c, Across session mean lick rate (licks/sec) as a function of position (see [f-g] for 
number of sessions and color code) is plotted as a separated line for each mouse (R1-R4 & F1-F5; mean ± SEM). The color 
scheme for each mouse is the same as in the rest of the manuscript. Vertical shaded region indicates possible reward location 
as in (a-b). d, The same data as (c) is normalized by the animal’s overall mean lick rate. e, Normalized mean lick rates were 
combined across Rare and Frequent Morph animals. Trials were then binned by reward location (50 cm bins) and plotted as a 
function of position (across animal mean ± SEM). Color code is the same as (a-b). f, The number of cells identified per session is 
plotted for each Rare Morph animal individually. Each mouse shown as a different color. g, Same as (f) for all Frequent Morph 
animals. 
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Extended Data Figure 2 Empirical and idealized priors over morph values a, The probability of a morph value occurring across 
all sessions (1-N) is shown for each Rare Morph animal as a normalized histogram. Animal color scheme as in Extended Data Fig 
1f. The idealized prior (see methods) used for MAP estimates is shown in bold. b, Same as (a) for all Frequent Morph animals. 
Animal color scheme as in Extended Data Fig 1g.  
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Extended Data Figure 3 Analysis of place cells with place fields in both S = 0 and S = 1 environments. a, Fraction of cells 
classified as place cells in the S = 0 trials (magenta), S = 1 trials (cyan), and both S = 0 and S = 1 trials (intersection of previous 
two sets of cells; navy). The number of cells expected to be classified as place cells in both environments if cells were chosen 
randomly with replacement is also shown (grey). b, For cells that were classified as place cells in both S = 0 and S = 1 trials (n = 
3,239 cells) in Rare Morph animals, we plot the location of peak activity for S = 0 trials against the location of peak activity for S 
= 1 trials. Remapping appears largely random except for populations coding for the beginning and end of the track and reward 
locations. Marginal histograms are shown for occupancy of position bins in the S = 0 trials (bottom) and S = 1 trials (right). 
Shaded regions indicate possible reward locations. c, Same as (b) for all Frequent Morph animals (n = 1,040 cells). d, Same as 
Fig 1h but only cells that had place fields in both S=0 and S=1 trials are plotted (n = 3,239 cells). e, Same as Fig 1j but only cells 
that had place fields in both S = 0 and S = 1 trials are plotted (n = 1,040 cells). 
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Extended Data Figure 4 Higher rank NMF models and error analysis (related to Fig 2a-e). a, Training and test reconstruction 
error for NMF models binned by morph value and combined across all Rare Morph sessions (related to Fig 2c, see methods for 
details, 3 folds of cross-validation). b, Trial x trial similarity matrix factors from the best rank 3 NMF model for Rare Morph cells. 
This yields a qualitatively similar result as Fig 2c with an additional factor for the level of off-diagonal similarity in each cell. c, 
Same as (a) for all Frequent Morph sessions (related to Fig 2e). d. Same as (b) for best rank 3 NMF model for Frequent Morph 
cells. The first two factors show a gradual transition from one representation to the other. Factor 3 appears to isolate off 
diagonal similarity as in the Rare Morph rank 3 model.   
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Extended Data Figure 5 Example session trial by trial similarity matrices. For each animal, (Left- Rare Morph, Right- Frequent 
Morph) we show two example session trial by trial similarity matrices, as in Fig 2f & h. Each matrix is sorted by ascending morph 
value. We show the earliest session not shown elsewhere in the manuscript and the last imaging session.  
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Extended Data Figure 6 Comparison of regressions onto Similarity Fraction (SF) vs Morph data (related to Fig 3f-g). a, SF is 
plotted as a function of morph, S, for all Rare Morph sessions (8-N, colors indicate animal) as in Fig 3f. The cross-validated 
prediction from a linear regression (black), a sigmoid fit (red), and a linear regression of the Frequent Morph MAP estimate 
(navy) are shown. b, Same as (a) for all Frequent Morph sessions. Instead of the Frequent Morph MAP estimate, the Rare 
Morph MAP estimate regression (brown) is shown.  
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Extended Data Figure 7 Motivation for network model and additional characterization of model behavior. a, Schematic of single 
cell version of model. A single output cell receives morph-tuned inputs. All other details of the model are the same as the multi-
output cell version. In addition, since there is only one output cell, there is no “Winner-Take-All” mechanism. b, The single cell 
model can learn the prior over morph values from which the stimuli are drawn. For a model trained with the Rare Morph prior, 
the weights (𝑤𝑖) onto the output cell are plotted as a function of the peak selectivity of the input cells (blue). For comparison, 
the prior distribution from which the stimuli were drawn is plotted as well (black). c, Same as (b) for a Frequent Morph trained 
single cell model. d, Schematic of the multiple output cell model (replica of Fig 3I). The single cell model can learn the prior over 
presented stimuli, but the output is not particularly useful for inferring the stimulus. By adding competition between the output 
cells, we can distribute this prior across cells and readout the posterior from the activity of the population. Adding the “Winner-
Take-All” mechanism forces the network to represent the most likely stimulus, and thus approximate MAP inference. e, The 
weight matrix, 𝑊, of a Rare Morph trained model. The input neuron index, 𝑖, is indicated by the columns (sorted by peak morph 
selectivity), and the output neuron index, 𝑗, is indicated by the rows of the matrix (sorted by magnitude of peak input weight). 
The heat indicates the value of the weight. Weights are largely selective for either lower morph values or higher morph values. 
Output cells inherit this behavior and remap discretely like the cells from Rare Morph animals. f, Same as (e) for a Frequent 
Morph trained model. Similar to the real data, cells show more gradual changes in selectivity across morph values. g, Difference 
in average trial by trial similarity matrices for Rare Morph trained models and Frequent Morph trained models (similar to Fig 2j). 
h, Histogram of SF values for the Rare Morph trained (brown) and Frequent Morph trained (navy) models (similar to Fig 3h). 
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Extended Data Figure 8 Additional examples of early vs late context discrimination (related to Figure 4). a, Left: Trial by trial 
similarity matrices for session 3 (first session in which the mouse experiences intermediate morph values) from an example 
mouse in the Rare Morph condition (mouse R3). Right: session 8 for the same mouse. b, Left: SF of each trial plotted as a 
function of the morph value (S). Dots are color coded for session number, with red points indicating data from session 3 and 
varying shades of grey to blue indicate data from sessions 8-N. Right: Marginal histogram of SF values for each session. Color 
coded as in the left panel. C) Cumulative histogram of SF values for the sessions shown in (b; same as Fig 4a-c). e-f, Same as Fig 
4a-c for animal R4. g-i, Same as Fig 4g-i for animal F3. j-l Same as Fig 4g-i for animal F4. m-o Same as Fig 4g-i for animal F5. 
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Extended Data Figure 9 Rare Morph MAP estimation remains qualitatively stable despite cumulative experience with 
intermediate morph trials. a, Rare Morph prior for early sessions (1-7). Colors indicate individual animals as in Extended Data 
Fig 1f. b, Rare Morph prior late sessions only (8-N). c, Cumulative number of intermediate morph trials (S =.25 to .75) over 
sessions for each Rare Morph animal. A small vertical jitter was added to make all curves visible. d, Idealized Rare Morph prior 
for late sessions only (8-N, black) and log correction for this prior (red; similar to Fig 1e). e, Log-corrected MAP estimate of the 
morph value, log SMAP, as a function of the true morph value, S. 
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Extended Data Figure 10 Requiring Frequent Morph animals to behaviorally categorize morph values does not change neural 
context discrimination. a, Stimulus design, as in Fig 1a, for Frequent Morph trained animals that had to behaviorally categorize 
morph values (Frequent Morph with Decision, n = 4 animals, FD1 - FD4). A side view of a subset of VR tracks with different 
morph values (S) are shown. Vertical location indicates approximate morph value for the track shown (color bar to the right of 
tracks). For trials where S ≤ .5, animals had to lick within a 65 cm region surrounding the third tower (polka dot tower, magenta 
highlighted region). For trials where S > .5, animals had to lick within a 65 cm region surrounding the fourth tower (hatched 
pattern tower, cyan highlighted region). For one animal (FD1), we added punishments for licking in the incorrect reward zone 
after session 3. If the animal licked in the incorrect reward zone, it was instantly teleported to a dark hallway for 10 seconds 
before being able to begin the next trial. b, Left: Lick rate as a function of position for each trial as in Extended Data Fig 1a-b for 
an example session (FD1, session 13, n = 120 trials). Red dots indicate error trials in which the mouse licked in the incorrect 
reward zone and was given a timeout. Color indicates morph value of the trial. Shaded regions indicate reward zones as in (a). 
Right: Trials are sorted by increasing morph value. Most errors are made near S = .5, and appear to be due to inability to 
withhold licking for the last few cm of the reward zone instead of licking in anticipation of the wrong reward zone. c, For mice 
that did not receive timeouts for incorrect licks (n = 3, FD2-4), we plot the across mouse average normalized lick rate 
(normalization as in Extended Data Fig 1) as a function of position (across mouse mean ± SEM) for binned morph values (S = 0, 
.25, .5, .75, 1).  Shaded regions indicate reward zones. We can see that anticipatory licking behavior is largely categorical with 
the exception of trials the reward transition (S = .5). d. Left: Trial by trial cosine similarity matrix sorted by increasing morph 
value for an example session from the mouse that experience timeouts (F1, session 13; 120 trials, 1451 cells). Right: Projection 
of single trials onto the principal two eigenvectors of the similarity matrix. Color indicates morph value. Black dots indicate 
error trials. Error trials are shifted in the horizontal axis, but this is due to zero-padding the population vector for spatial bins 
after the teleportation. e, Similarity Fraction (SF) as a function of position for each trial for the same example session as in (d). 
SF has a larger magnitude near reward zones. This may be due to context invariant reward coding cells that shift their position 
of firing across the contexts (see Extended Data Fig 3). f, Same as (d) for an example session from an animal that did not receive 
timeouts for incorrect licks (F4, session 12; 100 trials, 924 cells). g, Same as (e) for the example session shown in (f). h, Left: SF 
as a function of morph value, S, for all late sessions (8-N) from animals FD1-FD4 as in Fig 3f-g (n = 2,762 trials). Each color 
indicates a different mouse. Right: Marginal histogram of SF values for each mouse. i, Histogram of SF values for the three 
different experimental cohorts (Rare Morph-brown, Frequent Morph-navy, Frequent Morph with Decision-purple).  
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