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Abstract: 
Here, we introduce UniPath, for representing single-cells using pathway and gene-set enrichment 
scores by transformation of their open-chromatin or expression profiles. Besides being robust to 
variability in drop-out, UniPath also provides consistency and scalability in estimating gene-set 
enrichment scores for every cell. UniPath also enables exploiting pathway continuum and 
dropping known covariate gene-sets for predicting temporal order of single-cells. Analyzing 
mouse cell atlas using pathway enrichment-scores revealed surprising but biologically-meaningful 
co-clustering of cell-types from distant organs and helped in annotating many unlabeled cells. By 
enabling unconventional analysis, UniPath also prooves to be useful in inferring context-specific 
regulation in cancer cells. 
 
  
Introduction        
  
Single-cell RNA sequencing (scRNA-seq) and single-cell open-chromatin profiling help us to 
decipher cellular heterogeneity of activity of coding and non-coding genomic elements[1, 2]. The 
heterogeneity in the activity of genomic sites among single-cells, is being regularly used to 
estimate cellular composition, finding rare cells and understanding the role of genes and 
transcription factors [2, 3]. However, new questions are being asked with an increase in 
throughput of scRNA-seq and single-cell open-chromatin profiling through ATAC-seq (single-cell 
assay for Transposase-Accessible Chromatin using sequencing). One such question is, how can 
we use single-cell transcriptome and epigenome profiles for new applications. Can single-cell 
epigenome and expression profile help in finding lineage potency of a cell? Can single-cell 
heterogeneity be used in choosing more specific target pathways for cancer therapeutics? The 
answers to such questions can be found by representing cell states with more abstract and 
biologically- meaningful terms to utilize heterogeneity among cells. Such as defining cell-state in 
terms of pathway activity scores could help us to have a meaningful perspective about its role 
and dynamic behaviour. However, most often enrichment of pathways is done using differential 
gene expression between two groups of cells and this procedure does not solve the purpose of 
studying heterogeneity of gene-set enrichment at single-cell resolution. Another category of 
methods like SVA[4], RUV[5], scLVM[3] and f-scLVM[6] provide relevance score for known and 
unknown dominating factors for a group of single-cells. Such methods are not meant to provide 
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enrichment and relevance of gene-sets in each single-cell like PAGODA[7]. However, PAGODA 
is not designed to handle scRNA-seq data from a non-heterogeneous collection of cells. The main 
hurdle in finding enriched pathways for each single-cell using scRNA-seq profile has been the 
default dependency on read-count data of genes. The statistical modelling of read-count of a 
genomic site across multiple cells is a non-trivial task, especially for single-cell open-chromatin 
and scRNA-seq profiles due to variability in drop-out rate and sequencing depth among cells[7, 
8]. Moreover, there has been rarely any attempt to estimate pathway enrichment-scores for 
single-cells using their open-chromatin profiles for downstream analysis like classification and 
pseudo-temporal ordering. Hence, there is a need for a uniform method which can transform 
single-cell expression and open-chromatin profiles from both non-heterogeneous and 
heterogeneous samples to gene-set activity scores.  
 
In this study, we have addressed the challenge of representing single-cells in terms of pathways 
and gene-set enrichment-scores estimated using scRNA-seq and open-chromatin profiles in spite 
of cell-to-cell variability in drop-out of genomic regions and sequencing depth. Unlike previously 
proposed methods for scRNA-seq profiles, we do not try to normalise or scale read-count of a 
gene across cells using parametric distributions like Poisson or negative binomial. Scaling read-
count across cells with variable drop-out rate and sequencing depth increases chances of 
artefacts. Therefore, we use a common null model to estimate adjusted pathway enrichment 
scores while handling scRNA-seq profiles. Similarly, while using scATAC-seq profiles, we use the 
approach of highlighting enhancers by dividing read-counts of genomic sites with their global 
accessibility scores. We benchmarked our methods and null models for estimating single-cell 
gene-set enrichment using several published scRNA-seq and scATAC-seq datasets.  
 
Using pathways and gene-set as features for single-cells creates new opportunities and 
challenges which we tried to explore further. Compared to raw read-counts, the pathway scores 
of single-cells are more likely to have less sparsity, noise and technical variation, which we 
exploited for classical procedures like classification and dimension reduction based visualisation. 
Next, we asked whether the temporal ordering of cells can be performed using gene-set 
enrichment scores as features since it can directly highlight the continuum of lineage potency with 
inflexion points defined by the activity of pathways. However, existing methods of temporal 
ordering for single-cell use read-count or gene-expression matrix where there is less flexibility to 
drop known covariate. Therefore, we develop and included a novel pseudo-temporal ordering 
method in UniPath which can use pathway scores and allow dropping gene-sets of known 
covariates. We applied UniPath on a large scRNA-seq data-set of mouse cell atlas (MCA) and 
performed clustering using pathway scores and annotated many unlabeled cells. We also 
explored the possibility of using enrichment and co-occurrence (co-enrichment) of pathways for 
understanding underlying regulation. While analysing scRNA-seq profile of differentiating hESC 
cells using pathway scores, we realized the strength of a new way of comparing different 
populations of cells. Therefore, we performed scRNA-seq for two cell lines of non-small cell lung 
cancer (NSCLC) and tried to understand the difference in their properties using the new way of 
comparison.             
 
 
Results 
 
For transforming scRNA-seq profiles to pathways score we treat each cell separately. Generally, 
in a single-cell, RPKM (read per Kilobase per million) or FPKM (fragment per Kilo per million) 
value of genes have a bimodal distribution, where one of the modes is around zero and other is 
for non-zero expression values (Supplementary Figure S1a).  We used widely and theoretically 
accepted assumption that most of the time, non-zero RPKM and FPKM values within a sample 
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(or cell) follow log-normal distribution[9]. For a single-cell, we convert non-zero FPKM values of 
genes to P-values (right-tailed) using log-normal distribution. We apply Brown’s method to 
combine P-values of genes in a gene-set to reduce the effect of covariation among genes. The 
combined P-value for every gene-set is adjusted using a null background model made using a 
systematic approach (see Method, Figure 1a). The objective of P-value adjustment using null 
model created by Monte-Carlo approach is to highlight cell-type-specific gene-set activity and 
reduce blurring due to background house-keeping function of cells. We call the adjusted P-value 
of a pathway (or gene-set) in a single-cell as its score.  
 
Evaluation of UniPath’s approach of transforming single-cell expression profiles to pathway 
enrichment scores 

 
Due to the lack of gold standard, it is not trivial to assess gene-set enrichment methods for 
heterogeneous bulk samples. However, for single-cell from known cell-lines, the marker gene-set 
for cell-types can be used directly to test methods like UniPath. We used marker gene-sets for 
cell-types to compare our approach with an existing method PAGODA[7] on several data-sets. 
Systematic evaluation using scRNA-seq profiles from 10 studies (see Table S1) revealed that 
most of the time UniPath was better than PAGODA in terms of estimating enrichment of gene-
sets for correct cell-types especially for the non-heterogenous collection of cells (Figure 2a,  
Supplementary Figure S1, Table S1)[10, 11]. The high accuracy of UniPath to highlight correct 
cell types also allows detection of doublets, which we confirmed using three simulated data-sets 
(supplementary Method). In our simulation-based tests, UniPath achieved accuracy of 64-72% 
for detecting doublets, which were substantially better than PAGODA (Supplementary Figure S2). 
Further, we made a collection of gene-sets of non-immune related pathway terms and as spike-
in, we added two known B cell and T cell related pathway gene-sets (see Table S2). With this 
control experiment for both B cell[12] and T cell[13], UniPath revealed the correct respective 
pathway in top 5 enriched terms with substantially better accuracy than PAGODA (Figure 2b). We 
also assessed the consistency of enrichment of pathways by UniPath and PAGODA. We 
analyzed B cells (GM12878) scRNA-seq profile[10] while grouping them each time with different 
cell types. The scores for pathways and gene-sets from PAGODA were not consistent (see Figure 
2c, Supplementary Figure S3) and for every cell the output was dependent on the composition of 
cell type in the data-set. However, UniPath based enrichment scores for a cell remains consistent 
and is not affected by other neighbouring cells (Figure 2c, Supplementary Figure S3). Thus, 
UniPath resolves the issues of highlighting correct gene-sets and relevant pathways with 
consistency for each single-cell irrespective of level of heterogeneity of cell-types in the provided 
scRNA-seq data.    
 
     
Gene-set enrichment with UniPath as an alternative dimension-reduction method for 
single-cell ATAC-seq profile 
  
For the transformation of open chromatin profile of single-cells to pathway enrichment scores, 
UniPath first highlights enhancers by normalizing read-count on peaks using their global 
accessibility scores (Figure 1b) (see Methods). The global accessibility scores have been 
independently calculated using available bulk open-chromatin profiles from many cell types (see 
Methods). The motivation behind normalising read-count of each peak using its global 
accessibility score is to have consistency and avoid adjustment of variability in sequencing depth 
and drop-out rate. For every cell, genomic sites with high normalized read-count are chosen as 
foreground set. Then, for every cell UniPath uses proximal genes of peaks in it’s foreground set 
to estimate statistical significance (P-value) of enrichment gene-sets using Hypergeometric or 
Binomial test. We call the P-value of enrichment of a pathway or gene-set as its score. We 
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performed systematic evaluation using cell-type marker gene-set for both bulk ATAC-seq of 
immune cells[14] and multiple single-cell ATAC-seq profiles[15, 16]. Most of the time UniPath 
highlighted correct cell type among top 5 enriched gene-set for both bulk and single-cell ATAC-
seq profiles (Figure 2d, Supplementary Figures S4 and S5). Making global list of peaks with 
accessibility score is possible due to the availability of bulk open-chromatin profiles for multiple 
species. In the absence of enough publicly available open-chromatin profiles for any species, one 
can also use UniPath by calculating local accessibility score (study-specific normalisation). 
However, local accessibility scores are dependent on composition of cells in the data-set and 
could lead to inconsistency in estimation of enrichment of gene-sets (shown in Figure 2e). Thus, 
UniPath calculates consistent and mostly correct enrichment scores for pathway and gene-sets 
for every cell using its scATAC-seq profile independently.   
 
Handling drop-out and batch effect  
 
Most often in single-cell scRNA-seq profile, there is heterogeneity in drop-out rate among cells. 
Such drop-out of genes could be random or systematic. The systematic drop-out rate often occurs 
due to differences in sequencing depth or RNA degradation level (frozen vs fresh) among different 
batches of samples. We tested whether UniPath is robust to systematic drop-out variability among 
cells. We simulated systematic drop-out rate using scRNA-seq data from 2 different studies[17, 
18]  (Figure 3a) ( see Methods). We found that applying PCA on raw read-count lead to artefactual 
cluster formation due to systematic drop-out. Whereas, using UniPath based pathway scores, 
similar cells remained in same cluster irrespective of the non-random pattern in drop-out rate 
(Figure 3a,  Supplementary Figure S6a). Besides being robust to systematic drop-out,  UniPath 
allows correction for batch effect before calculating the adjusted p-value for enrichment of 
pathways (see methods and Supplementary Figure S6b). The framework of UniPath avoids 
normalisation artefact due to sequencing depth and drop-out rate, therefore, it could be used for 
efficient classification of single-cell. During hierarchical-clustering, UniPath based gene-set 
scores provided comparable or higher clustering-purity than raw FPKM based results[10] ( Figure 
3b,  Supplementary Figure S6c-d). Clustering using pathway scores of imputed scATAC-seq 
profiles also resulted in high clustering purity (Figure 3c). The high accuracy in clustering with 
gene-set enrichment scores, prooves that defining cell-states in terms of pathway activity can be 
a reliable method for classifying single-cell epigenome and transcriptome data-sets.  
 
 
Pseudo-temporal ordering using pathway enrichment scores and visualization of 
continuum of lineage potency and pathway co-occurrence 
 
Pathway-scores based representation can provide new similarity measures among cells as well 
as help in avoiding few covariates like cell-cycle phase, tissue-microenvironment or culture 
conditions. However, current methods for temporal ordering [19] of cells are designed to handle 
FPKM and read-counts of genes and they are also not meant for visualisation of the continuum 
of pathway scores on temporally-ordered cells. Hence, we extended UniPath with a novel method 
for the pseudo-temporal ordering of single-cells which can utilize pathway scores based 
representations. For temporal ordering, we apply two levels of shrinking of distances between 
cells based on their pre-classification and continuum among their classes before finding a 
minimum spanning tree (MST). To find a continuum between different classes we use KNN based 
approach after initial classification so that correct temporal ordering among clusters of cells can 
be determined (see methods). Using published scRNA-seq and scATAC-seq profiles, we found 
that UniPath is indeed able to predict approximately correct order of cells using pathway scores 
derived from scATAC-seq and scRNA-seq profiles (see Figure 4 and Supplementary Figure S7).   
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We further used UniPath for temporal ordering of scRNA-seq profile of Human embryonic stem 
cells (hESC) and their differentiated states collected at time points of 0, 12, 36 , 72 and 96 hours 
during differentiation towards definitive endoderm (DE) (Figure 4)[17]. Using other tools (monocle, 
TSCAN, DiffusionMap, CellTree)[18, 20-22] for pseudo-temporal ordering with gene-expression 
(Transcript per million, TPM) matrix (Figure 4a), resulted in predicting wrong order of cells for 
same data-set. However with UniPath when we dropped gene-set associated with cell cycle, we 
achieved correct order of cells. We found that score of gene-set for cell cycle (S phase is shown 
here) is higher at 0 and 12 hours, possibly due to high level of proliferation (Figure 4c). The S 
phase gene-set score kept decreasing as the cells differentiated towards endoderm ( Figure 4c). 
However at 36 hour we find two batches of cells such that one batch of cells had much lower level 
of cell cycle (S phase here) gene-set than other. Such batches of cells hint about possible impact 
of cell cycle as a covariate during prediction of temporal order. Besides handling known 
covariates, UniPath can also be used to visualise continuum of lineage potency and concurrence 
of two pathways on pseudo-temporally ordered tree. As shown in Figure 4d the endodermal 
lineage gene-set score increases as the cells differentiate towards endoderm (see methods). 
Such as Wnt/beta-catenin and BMP pathway scores seem to have mild co-enrichment at 0 and 
12 hours. As cells differentiated towards mesendodermal stage at 24 and 36 hours, BMP 
signalling pathway seems to be getting more enriched compared to WNT/beta-catenin. 
Importance of BMP till mesendoderm stage had been shown before [23]. After 36 hours 
enrichment level of WNT/beta-catenin is slightly higher however its co-occurrence with BMP 
shows a slow increase towards of end of temporally ordered tree (Figure 4d). UniPath also 
enables analysis of co-occurrence pattern and detection of clusters of pathways which can be 
used to infer context-specific regulation (Supplementary Figures8, Supplementary Figure S9). 
Overall, UniPath tends to be beneficial for predicting correct temporal order of cells and making 
inference about stage-specific co-occurrence of pathways during differentiation of cells.   
 
 
Enabling analysis of large atlas scale scRNA-seq data-set using pathway enrichment 
scores 
 
The consistency due to use of global null models by UniPath provides horizontal scalability in 
calculating scores for pathways for single-cells. Even with single CPU the computation time 
needed by UniPath is much less than PAGODA on same number of cells (Figure 5a). The 
horizontal scalability, speed and consistency of UniPath allowed us to transform expression 
profiles of more than 61000 single-cells from mouse cell atlas (MCA) dataset[24], by dividing them 
into smaller groups of cells. Such step of the division of data-set and transformation to pathway 
scores with other similar tools (PAGODA) would provide inconsistent results, as explained and 
demonstrated above. We selected 49507 cells which have more than 800 genes with non-zero 
FPKM value. Further, t-SNE [25] based dimension reduction of pathway scores and subsequent 
application of dbscan[26] (Additional file 1), revealed a correct grouping of most of the cells 
according to their tissue (Figure 5b, Supplementary Figure S10a). As expected, some cells did 
not group with their source tissue cluster, but they formed a separate class. Such as immune cells 
from different organs grouped together in cluster 13,14,15 (see Figure 5b, Additional file1 ).  
 
Surprisingly, co-clustering of few non-immune cells from different tissues revealed convergence 
which has been rarely reported before by single-cell analysis but is supported by earlier scientific 
studies. Such as in our analysis, cluster 40 has Afp+ fetal liver hepatocytes as well as Afp+ 
placental endodermal cells which were reported to belong to different classes in the original study 
of MCA (Additional file 2 and 3). Cluster 40 also has a few Fabp1+ hepatocytes. It has been 
shown previously that placenta-derived multipotent cells (PDMCs) with the expression of Afp (see 
Figure 6a) gene, has endodermal features and can differentiate easily towards hepatocytes like 
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cells[27]. We compared both types of cells (Afp+ placental endodermal cells and Afp+ fetal liver 
hepatocyte) in cluster 40 with other cells in MCA. Among top 50 pathways more enriched in Afp+ 
placental endodermal cells (from cluster 40) 22 were also present in 50 most differentially 
upregulated pathway in hepatocytes cells of cluster 40. These common 22 pathways (44% 
overlap) were mostly related to lipid metabolism (see Table S3). However, there was certainly a 
difference between hepatocytes and Afp+ placental endodermal cells of cluster 40, which is also 
visible in t-SNE based visualization (Figure 6a).  
 
Another example of convergence is cluster 3 which has virgin mammary gland luminal-epithelial 
cells (including alveoli cells) and glandular epithelial cells from uterus. An interesting example of 
convergence is cluster 52 which has Col10a1+ and Cmnd+ bonemarrow mesenchyme stromal, 
pre-osteoblast and chondrocytes cells (Additional file 2). It is also well-known that bonemarrow 
mesenchyme stromal (also known as mesenchymal stem cells [28]) has high potency to transform 
to pre-osteoblast and chondrocytes cell state[29]. In contrast to such a result, Cxcl1+ MSC from 
in vitro culture grouped with trophoblast stem cells in cluster 21. It is to be noticed that the cell 
types from different organs, converging in a major cluster, did not overlap completely with each 
other but formed their own sub-cluster within their major class (Figure 6a). However, the 
convergence to a major class shows a reduction of covariates due to underlying tissue 
microenvironment in gene-set scores, which caused cells with similar state to group together. 
Overall UniPath, provided a new dimension to classify cells and revealed that even though an 
organ has a specific type of cells for its functioning, it also has some cells with regulatory state 
similar to cell-types from other parts of the body.   
 
Revealing new minor classes using pathway scores and annotation of unlabeled cells  

 
When analysis is done using FPKM or read-count of a large number of genes, feature selection 
could be required for proper clustering. However, currently, there is no optimal solution for 
selecting genes to highlight all relevant classes. Feature extraction in terms of pathway scores 
can help to reduce noise, sparsity and effect of few covariates. Thus, pathway scores can help to 
highlight clusters of cells which could not be detected by using raw read-counts. Such as, analysis 
using pathway scores of brain cells in MCA data-set, resulted in the detection of a new cluster 
among oligodendrocyte-precursor cells. Oligodendrocyte precursor cells belonging to the new 
small cluster had a higher expression for Tuba1a, Sirt2, Cd9, Plp1 and Bcas1 (Figure 6b). These 
genes are involved in the differentiation of oligodendrocyte-precursor towards mature 
oligodendrocytes[30-33]. On the same trend we found two new clusters of “unknown” cells from 
bladder in MCA data-set (Figure 6c). We could annotate cells in one of the newly detected clusters 
in bladder as Cd74_high dendritic cells.  
 
In spite of tremendous effort by Han et al. [24] they could not annotate all cells in their MCA 
dataset, hence among 49507 cells, 5590 cells had annotation as “unknown”. We could find cell-
type for 2188 cell with “unknown” label, using a two-pronged approach enabled by UniPath (see 
Figure 6d, supplementary methods, Additional file 4). Our approach is two-pronged as it utilizes 
UniPath scores for cell-type marker-set as well as the result of sub-clustering (supplementary 
method). When we used the same approach on 200 randomly picked cells with labels, we 
achieved a false detection rate (see Figure 6d) of less than 8% even for low-confidence 
annotation.  
 
  Application in inferring context specific regulation in cancer cells 
 
We further explored how UniPath can be utilised for studying context-specific regulation in 
cancer cells which is often required for precision oncology. Recently Wang et al. [34] showed a 
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difference in metabolic profile among two types of NSCLC cell lines, non-adherent 
tumorspheres (TS) grown in serum-free culture conditions and adherent (Adh) cells cultured in 
serum-containing medium. They have demonstrated high tumorigenic potential of non-adherent 
TS cells in comparison to adherent ones using mouse xenograft models. We performed single-
cell expression profiling of 80 TS and 82 Adh cells. We asked whether we can utilise the 
difference among TS and Adh cells in highlighting signalling pathways associated with 
tumorigenicity in lung cancer. After applying UniPath, the differential enrichment analysis using 
Wilkoxon Rank sum test revealed GPCR ligand binding gene-set (Figure 7a, Supplementary 
Figure S11a), IL23 pathway, cytochrome_P450_drug_metabolism and 
prolactin_receptor_signalling as having higher enrichment in TS cells (based on median fold 
change and Wilkoxon P-value < 0.01, Figure 7a) (Additional File 5). Distribution in TS and Adh 
cells and gradient of some pathways are shown in Supplementary Figure S11. GPCR and IL23 
signalling are known to be associated with plasticity and proliferation of NSCLC[35-37]. 
Cytochrome P450 is also involved in promoting tumour development [38]. 
 
 We further used an approach, rarely used for scRNA-seq. We performed co-occurrence and 
differential co-occurrence analysis for pathway and gene-set pairs. Wnt pathway had highest 
correlation with stemness gene-set in TS cells. However, in Adh cells Wnt was not among top 
correlated pathways with stemness gene-set. We found that Wnt/beta-catenin pathways had a 
significantly higher correlation with TGF-beta pathway in TS in comparison to Adh cells ( P-
value < 0.005, Jaccard index=0, see Table S4). Even though TGF-beta pathway itself did not 
have a significant difference in enrichment among TS and Adh cells (Supplementary Figure 
S11a). Both Wnt/beta-catenin and TGF-beta are known to promote state of epithelial to 
mesenchymal (EMT) state in cancer cells which is associated with high tumorigenicity [39]. 

Moreover, it has been previously shown that simultaneous over-activation of Wnt/beta-
catenin and TGF-beta signalling promotes tumorigenicity and chemo-resistance in NSCLC 

cells [40]. Using hierarchical clustering of 31 chosen pathways, we found that TGF-beta, 
Wnt/beta-catenin and PDGFRB pathways co-clustered together in TS cells whereas in Adh cell 
WNT/beta-catenin pathway grouped with ERBB1 and PI3K1 signalling. The difference in co-
occurrence pattern of Wnt/beta-catenin pathway in TS and Adh cells (Figure 7 b-c) and prior 
knowledge about the effect of their co-stimulation with TGF-beta in NSCLC hints about a 
possible cause of higher tumorogenicity in TS cells.     
 
 Wang et al. [34] also reported that glycolytic intermediates are more enriched in Adh cells. Our 
analysis revealed that among non-metabolic gene-sets, sonic hedgehog (SHH) pathway had the 
highest level of differential co-occurrence  (P-value < 0.005, Jaccard index=0) with glycolysis 
gene-set (Figure 7d). SHH and glycolysis pathway had a correlation of 0.63 in Adh cell 
compared to -0.02 in TS cells (Figure 7e). SHH pathway has been shown to be promoting 
glycolysis in multiple types of cancer[41]. In our hierarchical clustering result (Figure 7b), SHH 
pathway also seems to group with cell-cycle related gene-set which hints about its involvement 
in regulation of proliferation in Adh cells. Previously SHH pathway has been associated with 
proliferation and drug-resistance in NSCLC[42]. However, our analysis reveals that it’s role is 
context-specific and it could have a more dominating role in Adh like NSCLC cells compared to 
TS cells. Similarly, many more such differences could be revealed among Adh and TS cells. 
However, our analysis here, is meant to show that UniPath can help in building relevant 
hypothesis and help researchers in designing follow-up study of context-specific regulation in 
cancer cells.  
 
Discussion 
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Exploiting single-cell heterogeneity using pathways and gene-set enrichment can give rise to 
multiple new applications. However, it needs an estimation of consistent enrichment scores for 
gene-set. UniPath fills the gap between the demand for consistent gene-set enrichment scores 
for a multitude of applications and availability of single-cell transcriptome and open-chromatin 
profiles. The novel approach of processing each cell separately using global null model provides 
unprecedented consistency and scalability to UniPath for calculating gene-set enrichment. 
UniPath is robust to systematic drop-out as well as it can handle batch effect in scRNA-seq 
profiles. For both scRNA-seq and scATAC-seq profiles, there is similarity in the downstream 
process after the transformation to gene-set enrichment score. Thus, UniPath provides a uniform 
platform for analyzing both single-cell transcriptome and open-chromatin profiles with the new 
dimension of pathway enrichment scores. Especially, for scATAC-seq profile, we have shown for 
the first time that transformation to pathway enrichment scores does not reduce the purity of 
classification of cells. UniPath also provides an alternative solution to transform more than one 
scATAC-seq read-count matrices to same feature space, despite differences in their peak list. In 
addition, we have shown how UniPath can help to use pathway scores for temporal ordering and 
displaying co-enrichment pattern among them.  
 
Due to its horizontal scalability and consistency, UniPath helped in analysis of large MCA scRNA-
seq data-set (> 49000 cells). Classification of MCA data-set using pathway scores revealed few 
clusters in which one of its member cell-type could be easily differentiated to other. Such as cluster 
40 having Afp+ placental endodermal cells and fetal liver hepatocyte[27] and cluster 52 with 
bonemarrow mesenchyme stromal, pre-osteoblast and chondrocytes cells[29]. It could be the 
result of new regulatory distance defined by pathway scores and suppression of covariate due to 
tissue micro-environment. Such results hint that, biologist could use UniPath to find convergence 
and feasibility of convertibility between different cell-types.    
 
There is vast literature on the non-trivial problem of analysing patterns of enrichment and co-
occurrence of pathways using bulk expression profiles[43-45]. Exploiting heterogeneity among 
single-cells with UniPath can easily leverage such analysis. UniPath can be used to elucidate 
three kinds of differences between two populations of single cells. First one is differential 
enrichment of pathways which is quite regularly used. The other two possibilities with UniPath 
which have been rarely explored with single-cell scRNA-seq and scATAC-seq are analysis of 
modules (clusters) of pathways and enumeration of differential co-occurrence between two 
pathways. Such as, it revealed increase in enrichment of Nodal signaling with differentiation of 
hESC towards DE and patterns of it’s co-occurrence with other pathways (SMAD2, Wnt/beta-
catenin) which are corroborative with existing literature (see  supplementary Methods, 
Supplementary Figure S8). Similarly, UniPath allowed us to study pathway co-occurrence in two 
types of NSCLC and differential co-occurrences of few pathway pairs (TGF-beta and Wnt/beta-
catenin; SHH and glycolysis) which had literature support. Hence, besides improving classical 
procedure like classification and cell-type detection UniPath also open avenues for new analysis 
procedures for scRNA-seq and scATAC-seq profile.  
 
 
Methods 
 
Calculating Enrichment of gene-sets for scATAC-seq profiles 
Multiple kinds of regulatory sites like promoters, enhancers and insulators have higher chromatin 
accessibility than background genomic regions. Most of these regulatory sites like insulators and 
active promoters tend to have high chromatin accessibility in the majority of cell types. However, 
to estimate differences among single-cells using open chromatin profiles, sites with cell-type-
specific activity like enhancers could be more useful. Moreover, the profile of enhancers provides 
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a more clear perspective about active pathways in a cell. Therefore, UniPath first normalizes the 
tag count of scATAC-seq profiles of each cell to highlight enhancers. It has two methods for 
normalization to highlight enhancers. In the default first method, normalization is done using 
precalculated global accessibility score of genomic sites. For multiple organisms like human, 
mouse and Drosophila, bulk sample chromatin accessibility is available for many tissues and cell 
types. A union list of open-chromatin sites was made for human hg19 version genome and the 
accessibility score of union list of site was calculated. For example, for Human hg19 genome, we 
combined DNAse-seq and ATACseq peaks from ENCODE and IHEC consortiums[46], to achieve 
more than 1 million sites and calculated accessibility scores of combined peak list (see 
supplementary methods). The accessibility score is calculated for a site as the proportion of cell 
types or samples in which it was detected as open-chromatin peak. 
For tagcount pij of a peak i in a single-cell j, the normalisation is done as 
 
  𝑡𝑖𝑗 = 𝑝𝑖𝑗 / (𝑎𝑖 + 𝜖)                                                      (1) 

 

where ϵ stands for a pseudo-count and 𝑎𝑖 is the global accessibility score for peak 𝑖. Thus, the 
first method of highlighting enhancers using global accessibility score does not need any inter-
cell tag-count normalisation. Using the first method also makes it possible to have uniform 
transformation of scATAC-seq read-count matrix from different scientific groups without re-
calculating tag-counts using the aligned DNA fragments (bam or sam files) on a common peak-
list. 
The second method can be used while analysing groups of cells with high heterogeneity among 
each other. In second method the quantile-normalisation of read-counts of cells is performed 
followed by the division of read-count of every genomic site by its mean read-count across all the 
cells. The second method needs heterogeneity among cells in order to be more effective. 
 
 For every cell, the peaks having high normalised tag-count are selected and used as set of 
positives (foreground) and the set of all peaks is used as background. Usually, we use a threshold 
of 1.25 above global accessibility score for choosing foreground peak, but it could vary depending 
on stringency needed. The chosen peaks in the positive set are highly likely to be enhancers and 
regulatory sites with cell-type-specific activity. Then for every peak most proximal gene within 
1Mbp is found and peaks which do not have any gene within 1Mbp is dropped. To decide the 
most effective statistical test we used two different ways to calculate the significance of 
enrichment of pathways and benchmarked them by applying them using known set of markers 
(gene-sets) for different cell types. The statistical methods we use are binomial and 
hypergeometric tests. With binomial test, to calculate statistical significance (P-value) for a gene-
set m whose genes appear proximal to km out of n peaks in foreground set, we use the formula 
below  

∑ (𝑛
𝑖
)𝑝𝑚

𝑖  ( 1 − 𝑝𝑚)𝑛−𝑖  𝑛
𝑖=𝑘𝑚

                                                (2) 

Here pm represents the probability of genes from the gene-set m to appear as proximal to peaks 
in the background list. With hypergeometric test the calculation of statistical significance (P-value) 
is 
done using the formula 

∑
(

𝐾𝑚
𝑖

)(
𝑁−𝐾𝑚

𝑛−𝑖
)

(𝑁
𝑛

)

min (𝑛,𝐾𝑚)
𝑖=𝑘𝑚

                                                      (3) 

Where Km is the number of times genes of gene-set m appear as proximal to peaks in the 
background, and N is total number of peaks in the background set. As above km represents the 
number of times out of n foreground peaks, the proximal genes are from gene-set m. 
 
Normalisation free Gene-set enrichment for single-cell expression 
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For estimating the significance of enrichment of pathway (gene-set) using scRNA-seq, we use 
FPKM of genes and treat every cell independently from each other. Thus unlike other published 
methods, we avoid creating artefacts which can happen due to the unresolved issue of estimating 
the distribution of tag-count of a gene across multiple samples(or cells for normalisation. As 
scaling and normalisation across different cells can create artefacts due to a variable level of 
noise and gene drop-out rate among them. Rather we use the widely accepted fact that within a 
sample (cell) non-zero FPKM (or RPKM) values of genes follow approximately log-normal 
distribution (see Supplementary Figure S1a). We validated assumption (see Supplementary 
Figure S1a) for genes with non-zero FPKM values on data-sets from multiple studies and 
modelled log(FPKM) distribution as bimodal such that one mode corresponds to genes with zero 
FPKM and other mode correspond to normal distribution. Thus probability distribution function 
(pdf) for log(FPKM) value x in a cell can be written as 
 

𝑓(𝑥) = 𝑝0𝐼(𝑥 = 0) + (1 − 𝑝0)𝑁(𝑥;  𝜇, 𝜎)                                                      (4) 
 
Where N(x; µ, σ ) represent Gaussian pdf for genes with non-zero FPKM and I(x = 0) is the 
indicator function, whereas p0 represents a fraction of genes with zero FPKM. The variables µ 
and σ represents the mean and standard deviation respectively in the logarithmic domain for non-
zero FPKMs. Thus, for every cell we use its own value of µ and σ to convert the non-zero FPKM 
value of gene in to P-value (right-tailed) assuming Gaussian distribution. Then we combine p-
values of genes belonging to a gene-set using Brown’s method[47]. Brown’s method is meant to 
combine p-values which have a dependence upon each other. Using Brown’s method the 
combined p-value for a gene-set with k genes with non-zero FPKM can be given by 
       𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 1.0 − Փ2𝑓(𝜓/𝑐)                                                         (5) 

Where 𝜓 = −2 ∑ log 𝑃𝑖
𝑘
𝑖=1  such that 𝑃𝑖 is p-value of log(FPKM) of gene i in a sample/cell and  Փ2𝑓 

is the cumulative distribution function for the chi-square distribution 𝜒2𝑓
2 . Here 𝑓 is the scaled 

degree of distribution and is calculated as 𝑓 =  𝐸[𝜓]2/𝑣𝑎𝑟[𝜓] [47]. The value of 𝑐 in equation (5) 
is calculated as      
𝑐 =  𝑣𝑎𝑟[ 𝜓]/2𝐸[𝜓], such that 𝐸[𝜓] = 2𝑘  and 𝑣𝑎𝑟[𝜓] = 4𝑘 +2 ∑ 𝑐𝑜𝑣((𝑖<𝑗) − 2 log 𝑃𝑖  , −2 log 𝑃𝑗). 

 
This procedure leads to the calculation of combined P-value for each gene-set in every cell. In 
order to have robust estimate not affected by just 1 or 2 genes we use a threshold of minimum 5 
genes with non-zero FPKM to calculate combined p-value for a gene-set. However, combined p-
values could also have many unwanted effects from house-keeping genes, promiscuously 
enriched gene-set and multiple hypothesis testing. Hence, we corrected the p-values with a 
permutation-based test using a null model.  
In order to make null model we first randomly chose cells from multiple studies so that we can 
have equal representation of multiple cell-type. Then we performed hierarchical clustering of 
chosen cells using genes selected using a criterion of coefficient-of-variation[48]. Using dynamic 
cutting of the hierarchical tree, we achieved clusters (or classes) of cells. We made 1000 pairs of 
cells such that in a pair the cells belonged to different classes. For each pair, we took average 
expression value for all gene. Thus, the null model consisted of 1000 expression vectors (false 
cells), each being average of gene-expression profiles of two cells. For every false-cell vector in 
null model, the combined p-values of gene-sets were calculated using the method mention above. 
Thus, for every pathway (gene-set) we achieved 1000 p-values corresponding to the number of 
false-cells in null model. For a pathway (gene-set) to calculate adjusted P-value in target cell we 
take the proportion of cells in null model which had lower combined P-value than the target cell. 
 
UniPath’s approach of temporal ordering of cells using pathway scores 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/864389doi: bioRxiv preprint 

https://doi.org/10.1101/864389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Nearly all the methods developed so far for temporal ordering of single-cells use gene-expression 
or read-count data. Hence to utilize the continuity in pathway activity among cells and to get better 
insight using single-cell profiles, we developed novel temporal ordering method which can work 
efficiently using the pathway scores of single-cells. Our method first performs hierarchical 
clustering of cells before finding the order among the clusters of cells, followed by distance 
weighting and learning minimum spanning tree. As illustrated by Zhicheng and Hongkai, applying 
mimimum spanning tree detection directly on raw distances among cells like monocle-1 [18] can 
lead to false connection between cells due to noise or other bias[21]. However, following Zhicheng 
and Hongkai’s method it is not feasible to get true ordering at single-cell resolution. Hence, we 
developed an approach, such that after initial classification of cells using pathway scores, we 
shrink (or weight) distances among every cell pair based on their belonging-ness to same class 
and using neighbourhood index among their classes. To calculate neighbourhood index among 
classes we first find top k nearest neighbour for every cell. Then for every class we count the 
number of times its cells have top k neighbours in other classes. For example, if cells in class A 
has total M neighbours in others classes out of which mb cells are from a class B then we calculate 
neighbourhood index of A with B (A ->B) as mb/M. We shrink the distances between the cells in 
class A and class B by mb/M. After two stages of shrinkage of distances among cells, we use 
shrinked-distance matrix to find minimum spanning tree. We plot the minimum spanning tree 
using the netbiov R library[49]. The minimum spanning tree drawn using our approach has fewer 
chances to be influenced by noise as the distances among cells are shrunk using consensus 
information. 
 
Test for pathway score accuracy and consistency of UniPath 
 
Even though we tested UniPath and PAGODA using cell-type markers, we also used spike-in 
method for measuring accuracy for pathway scores. For this, first we collected gene-sets for non-
immune pathways. In this collection, we also added 2 gene-set specific to B cells and 2 pathways 
for T cells. Both PAGODA and UniPath were used with collected gene-set on FPKM of B cells 
and T cells. UniPath and PAGODA were evaluated based on the presence of relevant pathway 
among top 5 gene-sets in their output.  
 
Simulating systematic drop-out 
There could be many reasons of zero read-count for genes in scRNA-seq data-set. Those 
reasons include true biological cause, random and systematic drop-out. Variability due to uniform 
random drop-out can be handled by dimension reduction methods like PCA and t-SNE. However, 
systematic drop-out often leads to errors during dimension reduction and classification. Therefore, 
we simulated systematic drop-out to evaluate UniPath. To create systematic drop-out for 
evaluation, we first randomly chose some genes. We dropped the FPKM values of chosen genes 
from randomly selected cell; in other words, we made the FPKM values of chosen genes to zero. 
The case of systematic drop-out is actually different from most of the technical batch effect. 
 
Differential co-occurrence analysis: 
We use permutation to estimate the significance of difference of pathway co-occurrence among 
two groups of cells. For a pathway pair, we first calculate the difference between spearman 
correlation values of their enrichment scores (adjusted P-value) in two groups of cells. We call it 
as true difference. We perform random-shuffling of group-labels of cells and calculate difference 
in spearman-correlation of enrichment scores among two shuffled groups. Thus for a pair of 
pathways we make a collection of set of false difference in correlations using shuffled groups. 
The p-value is calculated as fraction of false differences which are greater than true difference in 
term of absolute value. Notice that, here, we use spearman correlation of adjusted P-value 
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(pathway score), not just the combined p-value of gene-sets. Using adjusted P-value increases 
robustness as it becomes rank based scores which helps in filtering out effect due to only 1 or 2 
genes. Thus if two pathways are correlated using their adjusted P-value, the correlation has less 
chance to be affected by only 1 or 2 genes or outliers. Even though random permutation-based 
significance test reduces possible covariates, we have ignored differential co-occurrence among 
gene-sets which have high Jaccard index for overlap of genes. For hESC cells differentiating 
towards DE, we performed differential co-occurrence analysis for every time point of 
differentiation. Such as for differential co-occurrence analysis for time point of 12 hours, we 
compared them with cells not belonging to 12 hours.  
 
 
Single-cell expression profiling for non-small lung cancer cells 

The source and culture condition for Tumour sphere (TS) and Adherant cells(Adh) are  
mentioned in Wang et al. [34]. Tumour sphere (TS) line derived from lung cancer patient 
were maintained in medium with DMEM/F12 (US Biomedical),  4mg/ml Bovine Serum 
Albumin (Sigma), Non-essential amino acids, sodium pyruvate (Life Technologies) and 
20ng/ml Epidermal Growth Factor, 4 ng/ml bovine Fibroblast Growth Factor and Insulin –
Transferrin Selenium (Sigma). 
 Tumour sphere derived adherent (Adh) cells were grown in the same media as above, 
without EGF, bFGF, ITS and BSA.  For Adh cells, media was supplemented with 10% fetal 
bovine serum.  
                
 
RNA extraction, library construction, sequencing for NSCLC cells 

NSCLC single-cells in suspension were dissociated using trypsin and loaded into C1 96 well-

integrated microfluidic chip (IFC) as per manufactures guidelines. The single-cells were 

captured in C1 96 (large size) IFC using Fluidigm-C1 system. The captured single-cells were 

imaged using auto imaging fluorescent microscope to identify the viable single-cells and to 

omit the doublets. The reverse transcription and cDNA pre-amplification reagents were 

prepared using SMART-seq2 protocol and loaded into the IFC. Later reverse transcription and 

cDNA amplification were processed using SMART-seq2 script automatically in C1-Fluidigm 

machine. After harvesting cDNA from C1 chip, the samples were quantified using picogreen 

assay and normalized to the range 0.2-0.3ng/μL. The quality of the cDNA product was verified 

using high sensitivity DNA assay in Agilent bio-analyzer machine.  The harvested single-cell 

cDNA was barcoded in 96 well plate using Nextera XT Library Prep kit (Illumina). Uniquely 

barcoded libraries from single-cells pooled together and sequenced using a HiSeq-Hi-output-

2500 sequencer (Illumina). 
 

Implementation and data availability 
UniPath is implemented using R and is available at  https://reggenlab.github.io/UniPathWeb/ 
As well as at https://github.com/reggenlab/UniPath 
The FPKM data for single-cell RNA-seq for lung cancer cells is available with UniPath package.  
The raw sequences are being uploaded to BioSample database. The raw sequences contain 
genomic identity information of cancer patients, hence they can be accessed only with permission.  
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Figure Caption 
 
 
Figure 1: Outline of UniPath (a) Schematic workflow of UniPath for scRNA-seq data. UniPath 
works by transforming scRNA-seq gene expression profiles to P-values combined using 
Brown's method for each gene-set. The combined P-values are adjusted by using a null model 
to estimate final pathway score. The null models are made systematically to avoid redundancy. 
(b) Schematic workflow of UniPath for scATAC-seq data. UniPath transforms open chromatin 
profiles to pathway enrichment scores for gene-sets by highlighting enhancers and using their 
proximal genes for Hypergeometric or Binomial test. To highlight enhancers, UniPath 
normalizes read-count at a peak by its global accessibility score.   
 
Figure 2:  Evaluation of UniPath using scRNA-seq and scATACseq profiles. (a) Accuracy of 
highlighting relevant gene-set among top enriched terms. The terms here are cell-types and 
gene-sets are set of marker genes for cell-types. For evaluation of UniPath and PAGODA the 
results for scRNA-seq profiles of Epithelial cells and Astrocytes, as shown here. The evaluation 
was performed using both homogeneous and non-homogeneous data-sets (Table S1). More 
such examples are shown in Supplementary Figure S1. (b) Accuracy of results of pathway 
enrichment by UniPath and PAGODA for B cell and T cell scRNA-seq profiles. For systematic 
evaluation, two pathways relevant to T cell and other two gene-set for B cells were spiked-in 
into the list of gene-set related non-immune functions. (c) Consistency of UniPath pathway 
scores when B cells are grouped with epithelial or T cells in comparison to PAGODA. Gene-set 
enrichment scores provided by PAGODA change when the same cell is grouped with other 
cells. While UniPath’s output remains consistent. (d) Evaluation of UniPath for highlighting 
correct gene-sets among top enriched term for single-cell ATAC-seq profile. For this purpose 
marker gene-sets for cell-type were used by UniPath on scATAC-seq profile of B cell 
(GM12878) and Monocyte. Here UniPath used global accessibility scores to highlight 
enhancers. (e) Consistency of UniPath based pathway enrichment score calculation using 
scATAC-seq.  Here hematopoietic progenitor cells are grouped with B cells or monocytes. 
UniPath’s approach of highlighting enhancers by using global accessibility score gives more 
consistent result than mean based normalisation (local accessibility score). While doing 
normalisation of scATAC-seq profile using local accessibility score, the enrichment-scores of 
pathways are highly dependent upon composition of neighbouring cells. 
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Figure 3: Reduction of artifact by Unipath and clustering using pathway scores (a) 
Principal component analysis (PCA) based visualization of Embryonic stem cells combined with 
Myoblast. Here PCA was done using scRNA-seq based gene expression. Simulation of 
systematic dropout of 10% genes in few embryonic stem cells lead to the formation of a 
separate group of ESCs when PCA based visualisation of gene-FPKM. However, PCA using 
pathway score from UniPath lead to grouping of all ESCs in same cluster irrespective of 
systematic dropout. (b) Clustering purity of scRNA-seq based gene expression without and with 
transformation to pathway scores for dataset published by Li et al.[10]. (c) Clustering purity of 
scATAC-seq profiles transformed into pathway space. Scatter plot  of tSNE results for cells from 
two scATAC-seq datasets (Cusanovish et al. [50] and Buenrostro et al.[15]) are shown here.   
 
 
Figure 4: Pseudotemporal ordering using gene set enrichment scores and visualisation of 
potency and pathway co-occurrences. The dataset used here, consisted of cells collected at 
different time points (0,12, 24, 36, 72 and 96 hours) of differentiation of human embryonic cells 
(hESC, 0 hours) towards definitive endoderm (DE) [17] (96 hours). (a) Imperfect prediction of 
temporal order using gene-expression by other tools.  Monocle mixed 0 hours (hESCs) and 96 
DE hours cells, Diffusion map also mixed 0 hour cells with 72 hours. TSCAN  could not find a 
proper order in sequence of 0, 12, 24, 36, 72 and 96 hours , cellTree also could not find a 
proper temporal order among cells (b) Predicted temporal order of cells of differentiating human 
embryonic stem cells towards definitive endoderm. The order predicted is exactly according to 
true time-points of cells. (c) The enrichment score of gene-set for S phase in cells at different 
time point of differentiation. (d) The trend of endoderm lineage potency and co-occurrence of 
pathways at single-cell resolution on temporally ordered tree.   
 
 
Figure 5: Execution time of UnPath and analysis atlas scale single-cell RNA-seq data-set  
(a) Comparison of the execution time of UniPath with PAGODA and PCA with varying number 
of cells. (b) Scatter plot of t-SNE results for 49507 cells of mouse cell atlas (MCA) data-set [24] 
represented using pathway. The transformation of MCA data-set to pathway enrichment scores 
was possible due to consistency and scalability provided by UniPath. The clusters detected 
using the shown tSNE result for MCA data-set are shown in Supplementary Figure S10a. 
 
 
Figure 6: Analysis of single-cell RNA-seq profile of Mouse cell Atlas (MCA) (a) t-SNE 
scatter plot of cells co-clustering in cluster number 40. AFP high placenta endodermal cells and 
Afp+ hepatocytes do not overlap, but they lie closer to each other in t-SNE based plot. (b) t-SNE 
results of scRNA-seq profile from brain showing two clusters of oligodendrocyte precursor cells 
along with their enriched genes. These two clusters of cells were labeled as a single cell-type in 
the original study by Han et al. [24] (c) t-SNE based scatter plot for bladder cells in MCA data-
set represented in terms of pathway enrichment scores. Two clusters of cells labeled as 
“unknown” were visible. Cells in one of the two clusters were identified as  cd74_high_dendritic 
cells.  (d) Pie chart showing confidence level for cell-type annotation on MCA data. Total 2188 
cells with “unknown” label could be annotated with the help of UniPath. False detection rates for 
different confidence level are also shown for the same procedure when same procedure was 
applied to 200 randomly chosen but labeled cells.  
 
 
Figure 7: Differences in enrichment and co-occurrence of pathways in two types of cells 
of non-small cell lung cancer (NSCLC). a) A global view of differential enrichment of 
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pathways using volcano plot. The x-axis shows log fold-change of median enrichment scores of 
gene-sets in tumorosphere (TS) and Adherent cells (Adh). P-values were calculated using the 
Wilcoxon rank-sum test. Few pathways which showed significant difference in enrichment 
between TS and Adh cells are shown here. (b) Heatmaps of correlation between pathways are 
shown with their hierarchical cluster in TS and Adh lung cancer cells. (c)Correlation values of 
WNT signaling pathway with gene-set of stemness in TS and Adh cells are shown as bar plot. 
The other bar-plot shows co-occurrence of WNT/beta-catenin with TGF-beta signaling pathways 
in Adh and TS cell lines. WNT/beta-catenin and TGF-beta had significant differential 
cooccurrence among TS and Adh. (P-value < 0.005) (d) Volcano plot showing differential co-
occurrence of pathways with gene-set for Glycolysis_Gluconeogenesis among TS and Adh 
cells. Sonic Hedgehog (SHH) pathway and glycolysis gene-set had significant differential co-
occurrence among TS and Adh cells.  (e)  Spearman correlation of scores of 
Gycolysis_Gluconegenesis pathway with sonic hedgehog pathway (SHH) pathway in TS and 
Adh cells. The P-value of differential co-occurrence is also shown.  
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UniPath’s Workflow of scRNA-seq Data

b
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UniPath’s Workflow of scATAC-seq Data
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Supplementary Information 
 
Supplementary Methods 
 
Analysis of enrichment and cooccurrence pattern of of pathways in differentiating human 

embryonic stem cells  

There is a big body of literature related to problem of studying level of enrichment and co-activity 

of signalling pathways using bulk gene-expression profile for differentiating stem cells. We found 

that, due to it’s consistency, UniPath could provide a reliable solution to such problem by utilising 

heterogeneity among cells. Therefore, we analysed the pattern of gene-set scores of cells at 

different time of differentiation toward DE starting from hESC stage ( Chu et al., 2016)[1]. We 

investigated correlation pattern for all possible pairs of pathways at different time points of 

differentiation. We manually searched and found literature support for few cooccurrence patterns 

observed. Such as, Nodal signalling is known to act via smad2/smad3 for differentiation towards 

mesendodermal lineage. It can be seen in supplementary Figure S8b that correlation of 

smad2/smad3 and Nodal signaling gene-set scores, was more at 12 and 24 hours then it 

decreased at the start of 36 hours which is consistent with existing literature[2-4]. Another 

example is about known synergistic effect of Nodal and Wnt signalling required for induction of 

mesendoderm and differentiation towards endoderm[5]. In our analysis also, correlation between 

Wnt and Nodal pathway score increases as differentiation proceeds towards definitive endoderm 

till 96 hours (supplementary Figure S8b). We also performed differential cooccurrence analysis 

for pathways at 6 time points of differentiation (supplementary Figure S9b). One of the example 

to be mentioned here is of mTOR and FGF signalling. FGF induces activation of mTOR and 

mTOR is involved in suppressing endodermal related activities. It could be seen in supplementary 

Figure S9b, that differential co-occurrence of FGF and mTOR pathway is significant at 0 and 12 

hours, which is consistent with the literature that mTOR maintains ESCs pluripotency[6]. Another 

example is of BMP and Nodal signalling which have highest correlation at 36 hours before cells 

gain pure endodermal features. Wu et al.[7] have shown that combination of BMP and Nodal is 

involved in determining early embryonic stem cell lineages.The increase in enrichment score of 

Nodal signalling pathway[7] with differentiation towards endoderm is just as reported previously 

by several groups. The decrease in co-enrichment between BMP and Nodal signalling at 72 and 

90 hours is according the finding reported by Kyel et al.[8] that BMP inhibits differentiation of 

primitive streak cells towards definitive endoderm. The co-occurrence analysis results supported 

by previous literature hint that systematic analysis with UniPath can reveal useful insight about 

dependencies among pathways as cells progress from one state to other.  

 
 
Batch effect correction in UniPath 
 
The framework of UniPath can reduce some amount of batch effect due to technical variations. 
However, beyond certain limit, the batch effect needs to be corrected. UniPath performs batch 
effect correction on combined P-values for pathways before adjusting them using null model. For 
batch correction of combined p-values, it uses standard Limma package[9]. It adjusts batch-
corrected combined p-values further to achieve adjusted P-values. To demonstrate batch effect 
correction task (supplementary Figure S6b), we used scRNAseq datasets of mouse embryonic 
stem cell lines processed using various protocols by  Ziegenhain et al. (GEO ID: GSE75790)[10]. 
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We combined mESC dataset with scRNAseq profiles of hematopoietic stem cells from another 
study (GEO ID: GSE71794)[11] and used UniPath with batch correction mode. 
 
Gene-sets used for pathway transformation 
 
For transformation of gene expression data into pathway scores we have used two gene-set 
marker files from msigdb. First one is Cannonical gene set containing 1329 pathways and other 
one is GO biological process consisting of 4436 pathways. 
(http://software.broadinstitute.org/gsea/msigdb/collections.jsp#H) 
 
Evaluation of UniPath using cell-type markers  
 
We evaluated UniPath for accuracy of finding enrichment of known genuine gene-sets. For this 
purpose we used marker gene-sets for cell-types. We tested accuracy of UniPath using 
scRNAseq, scATACseq and bulk ATAC-seq data using appropriate cell marker gene-set. We 
curated cell makers from CellMarker[12] database and BioGPS[13]. Thus our list had more than 
460 cell-type gene-sets. In case of scRNA-seq, both homogeneous and heterogeneous 
datasets[14-23] were used and percentage of cells with correct cell types among top 5 enriched 
terms was estimated. For scRNA-seq profiles UniPath was compared with PAGODA. In most of 
the cases UniPath was able highlight correct gene-set among top 5 enriched terms (Fig. 2a, 
supplementary Figure S1b-k). Details of study IDs along with cell types used for this evaluation 
are also provided in supplementary table S1. 
 
For evaluating performance on scATACseq profile of K562 cells (from study GSE65360[24]) the 
set of positive gene-set included marker of Granulocyte, Leukemia-chronic Myelogenous K562, 
CD71-EarlyErythroid. We used 3 cell-type marker-set as K562 cell possess[21] properties of 
granulocytes and erythrocytes[25]. Other cell types used from same study were B cells. Other 
data-sets were also used for evaluating performance for bulk ATAC-seq profile as well as 
scATAC-seq (GEO ID: GSE68103[26] , GSE96769[27], GSE74912[28] bulk ATAC-seq).  
 

Clustering purity estimation 

Given true classes of samples as W = [ w1, w2, …, wk ] and predicted clusters as C = [ c1, c2, .., 

cm ] the clustering purity is calculated as  

𝑝𝑢𝑟𝑖𝑡𝑦(𝑊, 𝐶) =  
1

𝑁
∑ max

𝑗
(𝑤𝑘 ∩ 𝑐𝑗)

𝑘

𝑗=1

 

Parameters used for running PAGODA 

In order to evaluate UniPath performance in detecting correct cell type and correctly enriched 

gene sets, we compared it with PAGODA using same marker-gene sets and pre-defined pathway 

gene sets (Fig. 2a). Data was pre-processed using clean.counts and then error models for each 

cell were fitted using one core with min.count.threshold of 2 and non-failed measurements per 

gene of at least 5 and value of k to be ¼ of number of cells in the data. It was followed by 

normalization of variance with the maximum adjusted variance of 5 and trim value of 3 divided by 

number of columns of the data. The function PAGODA.subtract.aspect was used as guided in the 

manual of PAGODA. Then we computed weighted first principle components scores for each 
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gene set. Using UnIPath and PAGODA enrichment scores, we computed the accuracy of cell type 

and pathway detection in top 5 enriched terms.  

Doublet simulation and evaluation of UnIPath 
 
UnIPath can help in detecting doublet cells in scRNA-seq data based on cell markers, given that 
we know possible cell-type coming together as doublet.  We took 100 cells from each study id: 
Macrophages and Natural killer cells from study with GEO ID:GSE115978, microglial and 
endothelial cells from GEO ID: GSE67835 and B and T cells from GEO ID:GSE81861. 
Simulations on all the three studies were performed by taking average of each of the cell pairs. 
Accuracy for doublet detection was computed by counting number of times appropriate gene sets 
enriched for each of the cell pair together in top 5 terms. 
 
 

Evaluation of Consistency of UnIPath 
 
To ensure consistency of UnIPath pathway scores, we used  profile published by Li et al. (GEO 
ID: GSE81861). First, we grouped B cells with T cells and estimated pathway enrichment using 
UnIPath and PAGODA and then we grouped B cells with epithelial cells and repeated the pathway 
score calculation (supplementary Figure S3) . For Fig. 2c, pathway scores of same  B cell when 
grouped with T and epithelial cell were plotted. Pathway score calculated using UniPath were 
consistent. On the other hand, when this task was performed on same B-cell using PAGODA and 
plotted against each other, scores were quite varying. Similar task was performed using epithelial 
cells and changing its grouping partner, constant results were obtained with UniPath.  
 
Parameters used for imputation and t-SNE of scATAC-seq 
 
For evaluating clustering purity using pathway score, scATAC-seq (GEO ID: GSE65360) dataset 

were imputed using DrImpute. Imputed datasets were transformed into pathway space using 

UniPath. Singular value decomposition of pathway score matrix was performed. First 10 singular 

vectors were passed to Rtsne function from Rtnse R package with perplexity of 1000.  

Data  used for pseudo-temporal ordering  

Chu et al ( GEO ID: GSE75748 ) 

The second dataset is time course differentiation data of human embryonic stem cells (HESCs) 

towards definitive endoderm (DE) [1](Fig. 4, Supplementary Figure S8-S9). The original study 

pin-pointed molecular mechanisms involved in formation of definitive endoderm. They have 

created a single cell trajectory tracing pluripotent state from mesendoderm to DE along with 

monitoring gene expression patterns in every stage. In our study we have analyzed scRNA-seq 

time course data having 758 cells. After transformation of data into pathway space and removal 

of pathways having ‘cycle’ word in term-names, we used temporal ordering function of UniPath. 

The parameter of number of clusters as set as 6, as there are 6 time points for the data-set.  The 

parameter for number nearest neighbors was set as 4 (k=4). We also curated markers for 

ectoderm, mesendoderm, endoderm and mesoderm 

(https://www.bdbiosciences.com/documents/BD_Stem_Cell_Resource_poster.pdf), 

https://www.rndsystems.com/research-area/early-endodermal-lineage-markers. Using these markers 

-sets fo early developmental stages, UniPath facilitates viewing of lineage potency on the pseudo-

temporally ordered tree (Fig. 4d). 
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Olfactory epithelium data ( GEO ID: GSE95601) 

Other dataset (supplementary S7a) we have used, is olfactory epithelium data for tracing 

trajectory of horizontal basal stem cells (HBCs) into different lineages[29]. This dataset consisted 

of 616 cells which were transformed into pathway scores and single cell trajectory was created 

using 13 clusters and k nearest neighbor 4. For pseudo-temporal ordering original data labels 

were used. In pathway space also we obtained neuronal and sustentacular lineages from HBCS 

via intermediate stages.  

 

Other datasets used for pseudo-temporal ordering 

We further determined temporal order of cells for data-sets by Trapnell et al. (GEO ID 

:GSE52529)[30]. Single cell trajectory from human skeletal muscle myoblasts to mature 

myoblasts were created using pathway scores (supplementary Figure S7). In other dataset (GEO 

ID: GSE52583)[31], mouse lung development trajectory was created using pathway scores 

(supplementary Figure S7). Another differentiation dataset from study by deng et al. (GEO 

ID:GSE45719)[32] was used for constructing preimplantation trajectory. For our analysis we have 

used 286 cells from this study and transformed them into pathway space and reconstructed 

developmental lineage from zygote to late-blast. We have used 10 clusters and K=5 nearest 

neighbors to shrink distance matrix to obtain a lineage tree labelled with original cell stage 

(supplementary Figure S7). 

 

Pseudo-temporal ordering for scATAC-seq data 

For tracing lineage of cardiac progenitor cells, scATAC-seq data published by Jia et al. ( ENA  ID: 

PRJEB23303) [33] was transformed into pathway space using global accessibility score. Single-

cell lineage was constructing using 5 clusters and K=4 nearest neighbors (supplementary Figure 

S7e). 

 

Parameters for temporal ordering 
 
For pseudo temporal ordering, UniPath requires user to specify number of K nearest neighbor 
and number of classes. 

Parameters for temporal ordering for different methods 

Cell tree was ran with maptpx method and K.topics of 4 and log scale true. Monocle was ran using 
expression family of tobit and DDRtree with genes above threshold of 0.1 and getting expressed in at least 
10 cells. TSCAN and Diffusion maps were run with their default settings.  

 

 

Mouse single cell atlas analysis (GSE108097) 

Mouse cell atlas data was transformed into pathway space using UniPath. Final data for down-

stream analysis consisted of 49507 cells which had more than 800 genes with non-zero FPKM 
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value. First 50 principle components of pathway score matrix for 49507 cells, were passed to 

Rtsne function with perplexity of 1000 and maximum iterations of 1000. Using the output from 

Rtsne, we performed dbscan based clustering using the option of minimum points=50 for 

annotation of unlabeled cells. Clustering resulted in classification of 2518 as noise. Among 

remaining cells, 5590 were labelled as unknown in MCA dataset. Based sub-clusters 

information and UniPath’s cell marker based cell detection we tried to annotate cells with 

“Unknown” label. We used three different kinds of marker files to annotate 2188 cells.  Our 

annotation had 3 different confidence level. High confidence category included cells annotated 

using sub-clustering as well as by one of the marker files coming in top 5. On the other hand, 

medium confidence category involved cells which were detected in top 5 in any one of the two 

of the three marker files. Lastly low medium category cells were either coming as noise or were 

annotated by either one of the approach i.e. subclustering or marker based. We couldn’t 

annotate remaining 3402 cells and tagged them in zero confidence category. 

 

Source of lung cancer tumour cells and approvals 

We have already mentioned that tumours sphere cells were provided by Wang et al. As 
mentioned in the manuscript published by Wang et al.,[34] we used a previosly characterized 
LC32 cells derived from resected primary non-small-cell lung cancer (NSCLC) adenocarcinoma 
samples. Their lab-grown version as  non-adherent tumorspheres in serum-free medium is 
called as TS32.  As mention in Wang et al., relevant ethical regulations pertaining to the IRB 
have been followed. The participating patient diagnosed with non-small-cell adenocarcinoma  
has signed written informed consent before surgical resection or biopsy.  
 

Processing single-cell RNA-seq data of lung cancer cells 

The raw read in FASTQ files achieved from sequencer were aligned to the human genome 
(hg19 assembly) using Tophat.  Cuffdiff was applied to calculate FPKM using the aligned 
reads.   

 

 

 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/864389doi: bioRxiv preprint 

https://doi.org/10.1101/864389
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Tables:  

Table S1. Study ids and cell types used for cell detection along with the protocol used for 

processing of the data. 

Study id Cell type 

Heterogenous 
or 
Homogenous 
dataset 

Total No. of 
target cells  

Total 
No. 
of 
cells 

Protocol 

GSE64016 ESC Homogeneous 460 460 
Fluidigm C1 
platform. 

GSE71858 ESC Homogeneous 45 45 
FRISCR and 
TritonX-100 
Lysis  

GSE73727 Beta cell Heterogeneous 12 72 
Single-cell 
RNA-seq 

GSE44618 B cell Homogeneous 62 62 SMART-seq  

GSE98638 T cell Homogeneous 198 5063 
Smart-seq2 
and Tang2010 
protocol 

GSE36552 ESC Heterogeneous 34 123 

Single cell 
RNA-seq 
technique 
(Tang 
protocol) 

Zheng et. al zB cell  Homogeneous 128 128 
10x genomics 

GSE63818 
Primordial 
germ cell 

Heterogeneous 242 327 

Single cell 
RNA-seq 
technique 
(Tang 
protocol) 
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GSE81861 
B cell, T cell 
,Macrophage, 
Epithelial cell 

Heterogeneous 

B cell: 18 
T cell: 11 
Macrophage:10 
Epithelial cell:160 

213 
Fluidigm based 
single cell RNA-
seq protocol  

GSE67835 

Endothelial, 
Microglial 
cells, 
Astrocytes 

Heterogeneous 

Endothelia:20 
Microglial:15 
Astrocytes:62 

461 

Single cell 
RNA-seq for 
Fluidigm C1 
protocol 

 

Table S2.  The pathways which were added as spike-in with other gene-set of non-immune 

function for evaluatating performance of UniPath (in Fig. 2b) 

Cell Type Pathway Terms 

T cell 
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY, 
ST_T_CELL_SIGNAL_TRANSDUCTION 

B cell  
ST_B_CELL_ANTIGEN_RECEPTOR, 
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 
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Table S3.  Common terms among top 50 differential pathways (compared to all MCA cells) for 

AFP+ hepatocytes and AFP-high placental endodermal cells from cluster 40 of scMCA data 

(GSE108097).  

  Pathways 

1 GO_DIGESTION 

2 GO_PHOSPHATIDYLCHOLINE_METABOLIC_PROCESS 

3 GO_LIPOPROTEIN_METABOLIC_PROCESS 

4 GO_PHOSPHATIDYLCHOLINE_BIOSYNTHETIC_PROCESS 

5 
GO_NEGATIVE_REGULATION_OF_PRODUCTION_OF_MOLECULAR_MEDIATOR_OF_IMM
UNE_RESPONSE 

6 GO_RETINOL_METABOLIC_PROCESS 

7 GO_PROTEIN_LIPID_COMPLEX_ASSEMBLY 

8 GO_CHOLESTEROL_EFFLUX 

9 GO_MACROMOLECULAR_COMPLEX_REMODELING 

10 GO_PLASMA_LIPOPROTEIN_PARTICLE_CLEARANCE 

11 GO_CELLULAR_HORMONE_METABOLIC_PROCESS 

12 GO_REGULATION_OF_INTERLEUKIN_8_PRODUCTION 

13 GO_NEGATIVE_REGULATION_OF_LIPASE_ACTIVITY 

14 GO_REGULATION_OF_LIPASE_ACTIVITY 

15 GO_NEUTRAL_LIPID_CATABOLIC_PROCESS 

16 GO_PROTEIN_LIPID_COMPLEX_SUBUNIT_ORGANIZATION 

17 GO_REGULATION_OF_LIPID_TRANSPORT 

18 GO_DIGESTIVE_SYSTEM_PROCESS 

19 GO_NEGATIVE_REGULATION_OF_CYTOKINE_SECRETION 

20 GO_POSITIVE_REGULATION_OF_LIPID_CATABOLIC_PROCESS 

21 GO_TRIGLYCERIDE_CATABOLIC_PROCESS 

22 GO_REGULATION_OF_STEROL_TRANSPORT 

 

Table S4. Differential cooccurrence of few pathways in NSCLC data along with their correlation 

value, statistical significance of coenrichement (P-value), difference of the pathways in TS and 

Adh cells. Jaccard index represneting overlap of genes among the pathways are also shown in 

the table. 

 Coenriched pathways Correlation  
P-value 

Difference (TS - 
Adh) 

Jaccard 
Index 

ST_WNT_BETA_CATENIN_PATHWAY-
KEGG_TGF_BETA_SIGNALING_PATHWAY 0.3097043 0.009 0.4347173 0 

ST_WNT_BETA_CATENIN_PATHWAY-
KEGG_NOTCH_SIGNALING_PATHWAY 0.1527704 0.513 -0.1061958 

0.01265
823 

BIOCARTA_SHH_PATHWAY-
KEGG_GLYCOLYSIS_GLUCONEOGENESIS -0.1935556 0 

-0.8306809 
0 
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Additional file 1. This .xlsx file contains 64 sheets representing 64 clusters along with the cells 

belonging to each cluster of single-cells from mouse cell atlas (GSE108097). 

Additional file 2. Wilcoxon Rank sum test based differential pathways between AFP+ placental 

endodermal cells of subcluster 40 of mouse single cell atlas dataset (GSE108097) and rest of the 

cells. 

Additional file 3. Wilcoxon Rank sum test based differential pathways between AFP+ fetal liver 

hepatocyte of subcluster 40 of mouse single cell atlas dataset (GSE108097) and rest of the cells. 

Additional file 4. This file contains ell type annotations of Unknown and Known cells (for FDR) 

of mouse single cell atlas dataset (GSE108097). 

Adiitional file 5. Wilcoxon Rank sum test based differential pathways between NSCLC  and  

NSCLC Adherent(Adh) cells. 
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Figure S1. Comprehensive evaluation of UniPath for single-cell RNAseq for highlighting correct terms in top enriched results. The terms here are cell-types and gene-sets of 

terms are set of marker genes for corresponding cell-type.  (a) Density plot for non-zero FPKM in a cell using single cell RNA seq data (GSE52529). (b) Embryonic stem cell 

(ESC) percentage detected in homogeneous dataset hESC scRNAseq (Fluidigm C1 platform). The bars show percentage of cells with correct cell-type among top enriched 

terms. ‘count1’ shows percent of cells with correct cell-type as the first enriched term. Similarly count5 shows percentage of cells with correct cell-type among top-5 enriched 

terms.  (c) Accuracy for cell-type detection in homogeneous dataset of ESC processed using FRISCR and TritonX-100 Lysis. (d) correct cell-type detection percentage for 

heterogeneous dataset of Beta Cell (e) correct cell-type detection percentage for homogeneous dataset of B-cell (Smart-seq protocol.) (f) percentage of correct detection in 

homogeneous scRNAseq dataset of T-cell (Smartseq2 and Tang et al., 2010 protocol). (g).  For heterogeneous dataset of Embryonic stem  cell (Tang protocol). (h) correct 

detection in homogeneous dataset of B-cell (i) Primordial germ cell ; heterogeneous  dataset (Tang protocol). (j) Cell type detection for heterogeneous dataset  of B-cell, T-

cell and macrophages (fluidigm based scRNA-seq protocol). (k) Detection of cell-types from scRNAseq profiles of Endothelial and Microglial cell processed using fluidigm C1 

based protocol.
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Figure S2: Evaluation of UniPath for detection of doublet. 100 cells from each of the study with GEO ID: GSE115978, GSE67835 and GSE81861, were used for

simulating doublets by averaging two cells together. Macrophage and Natural killer cells doublets were detected with 69% accuracy, Microglial and endothelial

cells doublets were detected with 72% and T and B cells doublets were detected with 64% accuracy. Whereas for PAGODA the accuracy of detection of doublet is

lower than UniPath.
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Figure S3: Test of Consistency of UniPath and PAGODA for enrichment of pathways in epithelial cell when it is grouped with B cells or T cells. The data-set used

here was adapted from study with GEO ID: GSE81861. Output of UniPath for a cell is consistent and is not affected by the type of neighboring cells. Whereas for

PAGODA the estimate of dispersion (equivalent to enrichment) for pathway is dependent upon composition of cell-type in the data-set.

-l
o
g
2
(P

-v
a
lu

e
s
) 
 E

p
it
h
e
li
a
l 

c
e
ll
 g

ro
u
p
e
d
 w

it
h
 B

 c
e
ll

-log2(P-values) Epithelial cell grouped with T cell
-log2(P-values) Epithelial cell grouped with T cell

UniPath PAGODA

Scores of Epithelial cells calculated by UniPath and PAGODA when grouped with B and T cells respectively

Figure S3
-l

o
g
2
(P

-v
a
lu

e
s
) 
 E

p
it
h
e
li
a
l 

c
e
ll
 g

ro
u
p
e
d
 w

it
h
 B

 c
e
ll

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/864389doi: bioRxiv preprint 

https://doi.org/10.1101/864389
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

20

40

60

80

100

Count1 Count2 Count3 Count4 Count5

Natural killer cell detection

Hypergeometric test (global accessibilty scores)

Binomial test (global accessibility scores)

0

20

40

60

80

100

Count1 Count2 Count3 Count4 Count5

CD4+ T cell detection

Hypergeometric test (global accessibilty
scores)

Binomial test (global accessibility scores)

0

10

20

30

40

50

Count1 Count2 Count3 Count4 Count5

CD8+ T cell detection

Hypergeometric test (global accessibilty scores)

Binomial test (global accessibility scores)

0

20

40

60

80

100

Count1 Count2 Count3 Count4 Count5

Monocyte cell detection

Hypergeometric test with global accessibilty scores

Binomial test with global accessibility scores

Figure S4: Evaluation of accuracy of UniPath for estimating gene-set enrichment using open-chromatin profile of bulk sample of cell lines.

The gene-sets of marker for cell-types are used here for benchmarking. Shown here is percentage of cells with correct cell-type gene-set

among top enriched terms. ‘count1’ shows percent of cells with correct cell-type as the first enriched term. Similarly, count3 shows

percentage of cells with correct cell-type among top-3 enriched terms. The bulk ATAC-seq were adapted from study with (GEO ID:

GSE74912). Enrichment score for Natural killer cell, CD4+ T cell, CD8+ T cell, Monocyte and Erythroblast cells were calculated by UniPath

using hypergeometric and binomial test. For every cell-type results are shown for both situation, when enhancers were enriched using

division global accessibility scores.
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Figure S5: Accuracy of UniPath for enrichment of correct gene-set in top results for single cell open-chromatin profile. Evaluation of accuracy is

done using marker gene-set for cell-types while applying UniPath on scATAC-seq profiles. (a) K562 cell detection using hypergeometric test and

binomial test using enhancer highlighted using global accessibility scores ( data set GEO ID: GSE65360). (b) percentage of Correct cell-type
detection using scATAC-seq of B-cell (GEO ID: GSE68103).
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Figure S6. Batch correction by UniPath and clustering purity using pathway scores (a) Combined human ESCs from a study (GSE75748) and Myoblast from

another study (GSE52529). Few ESCs were subjected to systematic drop-out of 10% and 30%. Principal component analysis (PCA) based dimension

reduction and visualization using gene expression shows two separate clusters of human ESC. However UniPath is robust to systematic variability in drop-out

rate of 20% and 30%. In PCA based dimension-reduction of pathway scores by UniPath, all the hESC cells come together in one group. (b) PCA based

visualization of batch effect in mouse embryonic stem cell lines processed using various protocols (GSE75790) combined with Hematopoietic stem cells from

study GSE71794 in gene expression space. Batch effect removal in gene expression space using Limma. Batch effect removal done in pathway space using

Limma shows mixing of ESCs to some extent and separation of HSCs. (c) Heatmaps showing comparable clustering purity in gene expression and pathway

space for various cells types from study GSE67835. (d) Heatmaps showing comparable clustering purity in gene expression and pathway space for various

cells types from study GSE75748.
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GSE52529

Figure S7:  UniPath’s results for pseudo-temporal ordering of cell using their pathway score. (a) Pseudo-temporal ordering for tracing differentiation trajectory of 

Horizontal basal cell (HBC) to neuronal and sustentacular cell lineages (GEO ID: GSE95601) (b) Pseudo-temporal ordering using pathway scores derived from 

scRNA-seq profiles of early developmental cells starting from zygote to late blastocyst ( data from Deng et al. data , GEO ID: GSE45719). (c) Pseudo-temporal 

ordering showing mouse lung developmental stages (GEO ID: GSE52583). (d) Pseudo-temporal ordering showing myoblast cell differentiation at different time 

points (Trapnell et al, 2014, GEO ID: GSE52529).  (e) Pseudo temporal ordering in pathway score derived from scATAC-seq profile of cardiac progenitor data (Jia et 

al., ENA ID: PRJEB23303). 
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Figure S8.  Enrichment and co-occurence of pathways during differentiation towards endoderm (a) Violin plot of enrichment 

score of pathways at different time point of differentiation. As expected, NODAL signaling pathways had higher score at 72 and 

96 hours compared to 0 and 12 hours. Whereas BMP, TGF-beta and FGFR1 signaling pathway scores had bimodal distribution 

at 36 and 72 hours indicating the heterogeneity in regulation at same time point. (b) Spearman correlation between score of 

Nodal signalling and other pathways at different time points. Nodal signaling is known to act via smad2/smad3 for differentiation 

towards mesendodermal lineage (Fei et al. 2010). Here Nodal and smad2 signalling have highest correlation at 24 hours, then it 

decreased at the start of 36 hours which is consistent with existing literature (Fei, et al, 2010). Similarly Nodal and BMP has 

highest correlation at 36 hours after which it decreases. BMP is known to support differentiation towards mesendodermal
lineage. Decrease in cooccurrence between BMP and nodal signaling at 72 and 90 hours is according the finding reported by Kyle et al. 
(2013) that high level of BMP inhibits differentiation of primitive streak cells towards definitive endoderm.  Correlation between Wnt and 

Nodal  signalling pathway scores increased as differentiation proceeded towards definitive endoderm till 96 hours and such trend 

support previous reports (Chabra, et al, 2018). 
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Figure S9:  Analysis of change in pathway modules and co-occurences in differentiating human embryonic stem cells data (Chu et al,  

GEO ID: GSE75748) at different time points (0 hours,12 hours, 24 hours, 36 hours and 72 hours. (a) Heatmap of 

correlation between pathways at 6 time of differentiation for differentiating hESC. It shows how modules of pathways 

change at different time point of differentiation. It can be noticed that Nodal signaling pathways did not co-occur with TGF-

beta and BMP pathways at 0 hour. However at 12 hr, 24 hr and 36 hr Nodal, TGF-beta and BMP pathways co-occurred 

together.  (b) Differential correlation (co-occurrence/co-enrichment) of pathways, top pathways are selected from each 

time point and represented by dot-plot. Color of dots represents difference among pathways and size of dot represent P-

values.  Some of the co-occurrence patterns have been reported previously. Such as FGF induces activation of mTOR and 

mTOR is involved in involved ESCs pluripotency and suppression of mesoderm and endodermal related activities (Zhou et 

al., 2009). It can be seen that differential co-occurence of FGF and mTOR pathway is significant at 0 and 12 hours.
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Figure S10: Pathway scores can be used successfully to distinguish each cell-type as distinct group. Scatter plot of t-SNE based dimension reduction using 

pathway scores of single-cells from different organs from mouse cell atlas (Han et al., GEO ID: GSE108097).  (a) Scatter plot of t-SNE based dimension reduction 

of pathway score profile of mouse cell atlas (MCA). The major cluster numbers are also shown (b) t-SNE for cells from Uterus. (c) t-SNE for placenta cells. (d) t-

SNE of kidney cell.  (e) t-SNE of lung cell.
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Figure S11: Visualization of distribution and gradient of enrichment score of pathways in non-small cell lung cancer (NSCLC) 

cells (a) Violin plot of enrichment scores for 4 pathways in Adh and TS cells of NSCLC. NOTCH, GPCR and SMAD signalling 

showed a significant difference (P-value < 0.01) in enrichment scores in TS and Adh cells. Whereas TGF-beta signalling 

pathway scores remained similar in both cell lines. (b) Pseudo-temporal ordering of lung cancer cells. The gradient of pathway 

scores for three different pathways/gene-sets are also shown.  
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