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Abstract

Cognitive maps are mental representations of spatial and conceptual relationships in an environment.5

These maps are critical for flexible behavior as they permit us to navigate vicariously, but their underly-

ing representation learning mechanisms are still unknown. To form these abstract maps, hippocampus

has to learn to separate or merge aliased observations appropriately in different contexts in a manner

that enables generalization, efficient planning, and handling of uncertainty. Here we introduce a specific

higher-order graph structure – clone-structured cognitive graph (CSCG) – which forms different clones10

of an observation for different contexts as a representation that addresses these problems. CSCGs can be

learned efficiently using a novel probabilistic sequence model that is inherently robust to uncertainty. We

show that CSCGs can explain a variety cognitive map phenomena such as discovering spatial relations

from an aliased sensory stream, transitive inference between disjoint episodes of experiences, formation

of transferable structural knowledge, and shortcut-finding in novel environments. By learning different15

clones for different contexts, CSCGs explain the emergence of splitter cells and route-specific encod-

ing of place cells observed in maze navigation, and event-specific graded representations observed in

lap-running experiments. Moreover, learning and inference dynamics of CSCGs offer a coherent expla-

nation for a variety of place cell remapping phenomena. By lifting the aliased observations into a hidden

space, CSCGs reveal latent modularity that is then used for hierarchical abstraction and planning. Alto-20
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gether, learning and inference using a CSCG provides a simple unifying framework for understanding

hippocampal function, and could be a pathway for forming relational abstractions in artificial intelli-

gence.

Introduction

Vicarious trial and error [1], the ability to evaluate futures by mental time travel, is a hallmark of in-25

telligence. To do this, agents need to learn mental models, or ‘cognitive maps’ [2, 3], from a stream

of sensory information as they experience the environment around them [4]. Learning these mental ab-

stractions is complicated by the fact that sensory observation is often aliased. Depending on context,

identical events could have different interpretations and dissimilar events could mean the same thing [5].

As such, a computational theory for cognitive maps should: (1) propose mechanisms for how context30

and location specific representations emerge from aliased sensory or cognitive events, and (2) should

describe how the representational structure enables consolidation, knowledge transfer, and flexible and

hierarchical planning. Most attempts at developing such a theory, which include modeling hippocam-

pus as a memory index, a relational memory space, a rapid event memorizer, and systems-level models

of pattern-separation and pattern completion, have not reconciled the diverse functional attributes [6–8]35

of the hippocampus under a common framework. Recent models have attempted to reconcile the rep-

resentational properties of place cells and grid cells using successor representation theory [9–11] and

by assuming that these cells are an efficient representation of a graph [12]. Unfortunately, both these

models fall short in describing how flexible planning can take place after learning the environment and

are unable to explain several key experimental observations such as place cell remapping in spatial and40

non-spatial environments [13, 14] and the fact that some place cells encode routes towards goals [15, 16]

while others encode goal values [17, 18].

A behaving agent often encounters external situations that look instantaneously similar, but require

different action policies based on the context. In these situations, sensory observations should be con-

textualized into different states. In other times, dissimilar looking sensory observations might need to45

be merged on to the same state because those contexts all lead to same outcome. In general, to form
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a flexible model of the world from sequential observations the agent needs to have a representational

structure and a learning algorithm that allows for elastic splitting and merging of contexts as appropriate

[5, 19]. Moreover the representational structure should be such that it allows for dynamic planning, and

handling of uncertainty.50

Here we propose a specific higher-order graph – clone-structured cognitive graph (CSCG) – that

maps observations on to different ‘clones’ of that observation as a representational structure that ad-

dresses these problems. We demonstrate that this structure can be represented as an extension of a prob-

abilistic sequence model, and learned efficiently. CSCGs can explain a variety cognitive map phenomena

such as discovering spatial relations from an aliased sensory stream, transitive inference between disjoint55

episodes of experiences, transferable structural knowledge, and shortcut-finding in novel environments.

CSCG’s ability to create different clones for different contexts explains the emergence of splitter cells

[15], and route-specific encoding [20], which we demonstrate using a variety of experimental settings

common in neurophysiology. In a repeated lap-running task [21], CSCGs learn lap-specific neurons, and

exhibit event-specific responses robust to maze perturbations, similar to to neurophysiological observa-60

tions. CSCGs can also learn to separate multiple environments that share observations, and then retrieve

them based on contextual similarity. Notably, the dynamics of clone-structure learning and inference

gives a coherent explanation for the different activity remapping phenomena observed when rats move

from one environment to another. By lifting the aliased observations into a hidden space, CSCGs reveal

latent modularity that is then used for hierarchical abstraction and planning.65

Clone-structured cognitive graphs as a model of cognitive maps

The central idea behind CSCGs is dynamic Markov coding [22], which is a method for representing

higher-order sequences by splitting, or cloning, observed states. For example, a first order Markov chain

representing the sequence of events A − C − E and B − C − D will assign high probability to the

sequence A − C − D (Fig. 1a). In contrast, dynamic Markov coding makes a higher-order model70

by splitting the state representing event C into multiple copies, one for each incoming connection, and

further specializes their outgoing connections through learning. This state cloning mechanism permits a
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Fig. 1: Clone-structured cognitive graph. (a) Sketch explaining dynamic Markov coding. A first order Markov
chain modeling sequences A-C-E and B-C-D will also assign high probability to the sequence A-C-D. Higher-
order information can be recovered by cloning the state C for different contexts. (b) Cloning structure of dynamic
Markov coding can be represented in an HMM with a structured emission matrix, the cloned HMM. (c) CSCG
extends cloned HMMs by including actions. (d) Neural implementation of cloned HMM. Arrows are axons, and
the lateral connections implement the cloned HMM transition matrix. Neurons in a column are clones of each
other that receive the bottom-up input from the same observation. (e) Inference dynamics in the cloned HMM
neural circuit. Activations that propagate forward are the ones that have contextual (lateral) and observational
(bottom-up) support. (f) Replay within the cloned HMM circuit.
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sparse representation of higher-order dependencies, and has been discovered in various domains [22–25].

With cloning, the same bottom-up sensory input is represented by a multitude of states that are copies

of each other in their selectivity for the sensory input, but specialized for specific temporal contexts,75

enabling the efficient storage of a large number of higher-order and stochastic sequences without de-

structive interference. However, learning dynamic Markov coding is challenging because cloning relies

on a greedy heuristic that results in severe suboptimality — sequences that are interspersed with zeroth-

order or first-order segments will result in an uncontrolled growth of the cloned states. Although [25]

incorporated the cloning idea in a biological learning rule, the lack of a probabilistic model and a coher-80

ent global loss function hampered its ability to discover higher-order sequences, and flexibly represent

contexts. An effective learning approach should split clones to discover higher order states, and flexibly

merge them when that helps generalization.

Our previous work [26] showed that many of the training shortcomings of dynamic Markov coding

can be overcome through cloned hidden Markov models – a sparse restriction of an overcomplete hidden85

Markov model (HMM) [27]. In cloned HMMs, the maximum number of clones per state is allocated up

front, which enforces a capacity bottleneck. Learning using the expectation-maximization (EM) algo-

rithm figures out how to use this capacity appropriately to split or merge different contexts for efficient

use of the clones to represent different contexts. In addition, cloned HMMs represent the cloning mecha-

nism of dynamic Markov coding in a rigorous probabilistic framework that handles noise and uncertainty90

during learning and inference.

Both HMMs and cloned HMMs assume the observed data is generated from a hidden process that

obeys the Markovian property. That is, the conditional probability distribution of future states, given

the present state and all past states, depends only upon the present state and not on any past states. For

HMMs, the joint distribution over the observed and hidden states given by the following equation:95

P (x1, . . . , xN , z1, . . . , zN ) = P (z1)
N−1∏
n=1

P (zn+1|zn)
N∏

n=1

P (xn|zn) (1)

where P (z1) is the initial hidden state distribution, P (zn+1|zn) is the probability of transitioning from

hidden state zn to zn+1, and P (xn|zn) is the probability that observation xn is generated from the hidden
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state zn. We assume there are E distinct observations and H distinct hidden states i.e. xn can take a

value from 1, 2, . . . , E and zn can take a value from 1, 2, . . . ,H .

In contrast to HMMs, in the cloned HMMs, many hidden states map deterministically to the same100

observation (Fig. 1b). The set of hidden states that map to a given observation are referred to as the

clones of that observation. We use C(j) to refer to the set of clones of observation j. The probability of

a sequence in a cloned HMM is obtained by marginalizing over the hidden states as follows:

P (x1, . . . , xN ) =
∑

z1,...,zN

P (z1)
N−1∏
n=1

P (zn+1|zn)
N∏

n=1

P (xn|zn)

=
∑

z1∈C(x1)

. . .
∑

zN∈C(xN )

P (z1)
N−1∏
n=1

P (zn+1|zn), (2)

where the simplification is a result of P (xn = j|zn = i) = 0 for all i /∈ C(j) (and 1 otherwise).

Moreover, since each hidden state is associated with a single observation, EM-based learning is signifi-105

cantly more efficient in cloned HMMs, allowing it to handle very large state spaces compared to standard

HMMs [26]. See Methods for more details.

A hallmark of our model is the ability to handle noise and uncertainty via message-passing inference

[28], and smoothing. Notably, just a forward and backward sweep of messages through the transition

matrix P (zn+1|zn) is adequate for exact inference, and uncertainty about observations is handled through110

‘soft-evidence’ messages. Smoothing [29] is a mechanism for incorporating robustness to noise and

limited data in probabilistic models. In cloned HMMs, smoothing is accomplished by adding very small

probability to some transitions that were unobserved in training. See Methods for more details.

Neurobiological circuit

Like HMMs [30], cloned HMM can be readily instantiated as a neuronal circuit whose mechanistic115

interpretation provides additional insights on the advantages of the cloned representation. Each clone

corresponds to a neuron, and the ‘lateral’ connections between these neurons form the cloned HMM

transition matrix P (zn+1|zn). For example, the circuit in Fig. 1d shows how neurons can be connected

in the cloned HMM to represent the following stored sequences A → B → (C,D) → E → A (green),
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B → A→ B (light brown), B → C → D (dark brown), and A→ C → E (purple).120

The transition matrix can also be treated as a directed graph, with the neurons forming the nodes

of the graph and the axonal branches forming the directed edges. The set of neurons that are clones

of each other receive the same ‘bottom-up’ input (blue arrows) from the observation. The output of a

clone-neuron is a weighted sum of its lateral inputs, multiplied by the bottom-up input, corresponding to

the forward-pass message in HMM inference [30].125

The evidence at any particular time instant can be uncertain (‘soft evidence’), manifesting as graded

activation over the population of observation neurons. For a particular observation, the direct bottom-up

connections from the observation to all its clones activate the the different sequences that observation

is part of, and these activations are then modulated based on the specific contextual support each clone

receives on its lateral connections. The population of clone neurons represent the probability of different130

contexts that are active at any time in proportion to their probability. Fig. 1e shows how these activities

propagate for a noisy input sequence A → (B,E) → (A,D) → E from t = 0 to t = 3 corresponding

to a true sequence A → B → D → E. The activations are represented in different shades of red,

with lighter shades indicating weaker activations. At every time instant, the activated lateral inputs are

highlighted, and these correspond to the clones active in the previous time step. By correctly integrating135

the context and noisy input, the clone activations of the cloned HMM filter out the noise to represent the

true input sequence. Fig. 1f shows how sequences can be ’replayed’ (sampled) from the circuit.

Queries like marginal or MAP inference can be implemented in neural circuits as forward and back-

ward sweeps similar to the visualizations in Fig 1, analogous to the neural implementation of message-

passing inference explored in earlier works [28, 30, 31]. The EM algorithm used for learning is well140

approximated by the neurobiological mechanism of spike-timing-dependent-plasticity (STDP) [32].

CSCG: Action-augmented cloned HMM

CSCG extends cloned HMMs to include actions of an agent. An agent’s experience is a stream of

sensation-action pairs (x1, a1), (x2, a2) . . . (xN−1, aN−1), (xN ,−) where xn ∈ Z∗ are the agent’s sen-

sory observations and an ∈ Z∗ are the actions reported by the agent’s proprioception.145

The observed actions are simply non-negative integers with unknown semantics (i.e., the agent ob-
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serves a1 = 0 happened, but does not know that the action means ‘move north in the room’). In CSCG,

the action is a function of the current hidden state and the future hidden state is a function of both the

current hidden state and the action taken. The graphical model for this CSCG is depicted in Fig. 1d.

Mathematically, the joint observation-action density is:150

P (x1, . . . , xN , a1, . . . , aN−1) =
∑

z1∈C(x1)

. . .
∑

zn∈C(xn)

P (z1)

N−1∏
n=1

P (zn+1, an|zn). (3)

Our action-augmented model allows for the agent to learn which actions are feasible in a given state,

compared to action-conditioned formulations [33] that only predict future observations from actions.

Planning within a CSCG

Planning is treated as inference [34] and achieved using biologically plausible message-passing algo-

rithms [28]. The goal can be specified as either a desired observation or as a specific clone of that155

observation. Planning is then accomplished by clamping the current clone and the target, and inferring

the intermediate sequence of observations and actions required to reach these observations. It is easy to

determine how far into the future we have to set our goal by running a forward pass through the graphical

model and determining the feasibility of the goal at each step. The backward pass will then return the

required sequence of actions. Importantly, because the graphical model is inherently probabilistic, it can160

handle noisy observations and actions with uncertain outcomes.

Results

We performed several experiments to test the ability of CSCGs to model cognitive maps. We specifi-

cally tested for known functional characteristics such as learning spatial maps from random walks un-

der aliased and disjoint sensory experiences, transferable structural knowledge, finding shortcuts, and165

supporting hierarchical planning and physiological findings such as remapping of place cells, and route-

specific encoding.
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Fig. 2: Spatial representations emerge from aliased sequential random-walk observations without
Euclidean assumptions (a) A random walk a room with only four unique observations (colors) will
produce a sequence which is severely aliased as reflected in the first-order Markov chain. (b) In contrast,
transition graph learned by CSCG on random walks in (a) recovers the spatial layout. Nodes in this
graph are the clones, and the observation they connect to are indicated by the color of the node. (c)
Room with a uniform interior produces aliased sequences highly correlated in time. (d) Transition graph
learned by CSCG on random walks in (c). Nodes are clones, and their observations are indicated by
the node color. (e) An agent experiences two different, but overlapping rooms in disjoint sequential
episodes. The overlap region also repeats in the first room, acting as a confounder. (f) As reflected in
the transition graph, CSCG performs transitive inference to stitch together the disjoint experience into
a coherent global map, and correctly positions the confounder. (g-h) Activation of clones over time as
the agent takes the trajectories X (black), Y (purple), and X again in the maze shown in (g). During the
first traversal of X, the clones corresponding to the overlap and the confounding patch are active because
the agent started within the overlap and stayed within. Stepping out of the overlap immediately resolves
ambiguity, which is reflected in the clone activity during the traversal Y, and also during the second
traversal of X. See also Supplementary Video 1.
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Emergence of spatial maps from aliased sequential observations

From purely sequential random-walk observations that do not uniquely identify locations in space,

CSCGs can learn the underlying spatial map, a capability that is similar to people and animals. Fig.170

2a shows a 2D room with the sensory observations associated with each location. The room has 48

unique locations, but only 4 unique sensory inputs (represented as colors), and an agent taking a random

walk observes a sequence of these sensory inputs. A first-order sequence model would severely under-fit,

and pure memorization of sequences will not learn the structure of the room because the same sequence

hardly ever repeats. In contrast, a CSCG discovered the underlying 2D graph of the room perfectly (Fig.175

2b). As the number of unique randomly placed observations increases, learning becomes easier (see

Supplementary Results).

Remarkably, CSCGs learn the spatial topology even when most of the observations are aliased like

those from a large empty room where distinct observations are produced only near the walls as shown

in Fig. 2c. The combination of high correlation between observations, and severe aliasing makes this a180

challenging learning problem. Despite this, the CSCG is able to perfectly learn the topology of the 6× 8

room (Fig. 2d). This capability degrades as the room gets larger, but the degradation is graceful. For

example, the periphery of a 9 × 11 room is well modeled, but the CSCG is unable to distinguish a few

locations in the middle (see Supplementary Results).

Transitive inference: disjoint experiences can be stitched together into a coherent whole185

Transitive inference, the ability to infer the relationships between items or events that were not experi-

enced at the same time, is attributed to cognitive maps [7]. Examples include realizing A > C from

knowing A > B and B > C, or inferring a new way to navigate a city from landmarks and their relative

positions experienced on different trips [35].

We tested CSCGs on a challenging problem designed to probe multiple aspects of transitive inference190

and found that it can stitch together disjoint episodes of sequential experience into a coherent whole. The

experimental setting consisted of overlapping rooms (Fig. 2e), each with aliased observations like in the

previous experiment. Moreover, the first room had an additional portion which was identical to the
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overlapping section between the two rooms. This design allows to test whether an agent that experiences

only first room or second room exclusively and sequentially, can correctly figure out the relationship195

between the rooms and their overlaps. The combination of a large state-space, aliased observations,

nested relationships, and two-dimensional transitivity makes the problem setting significantly harder

than previous attempts [36]. We collected two independent sequences of action-observation pairs on

each room by performing two separate random walks, and trained a single CSCG on both sequences. The

result of training is visualized in Fig. 2f. The learned transition matrix (shown as a graph) has stitched200

together the compatible region of both rooms, creating a single, larger spatial map that is consistent with

both sequences while reusing clones when possible. The confounding additional patch in the first room

remains correctly unmerged, and in the right relative position in the first room, despite looking identical

to the overlapping region.

Discovering the correct latent global map enables CSCG to make transitive generalizations. Although205

the agent has never experienced a path taking it from regions that are exclusive to Room 1 to regions

exclusive to Room 2, it can use the learned map to vicariously navigate between any two positions in

the combined space. Just like in the earlier experiment, the learning is purely relational: no assumptions

about Euclidean geometry or 2D or 3D maps are made in the model.

Interestingly, plotting the activation of clones over time reveals that when the agent first traverses210

the overlapping region (trajectory X in Fig. 2g), clones corresponding to both the overlap region and the

identical confounding region are active (Fig. 2h), indicating that the agent is uncertain of its position in

the maze. This also suggests that the the agent’s belief in the cognitive map is split between the two pos-

sible realities (see Supplementary Video 1) because the overlap region and the confounding region are

exactly the same without additional context. Stepping out of the overlap region gives the agent adequate215

context to resolve ambiguity. Subsequently, as the agent explores the confounding region (trajectory

Y in Fig. 2g), clones corresponding to this region become more active, and the clones corresponding

to the overlap region are no longer active. When the agent returns to the overlap region to follow the

same sequence (trajectory X) it originally followed, the clone activities reflect that the agent is no longer

confused between the overlap region and the confounding region.220
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Fig. 3: Learned transition graphs form a reusable schema to explore similar environments. (a-c) A
CSCG trained on one room (a) and partial observations in a second, previously unseen room, utilizes the
learned structure of the room to rapidly find both the shortest path to the origin (b) and navigate around
obstacles (c). (d) Visualization of message propagation during planning and replanning. Messages
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and the agent discovers the obstacle only when the action sequence is executed and a planned action
fails (red arrow). This initiates a re-planning from the new location, and the new plan routes around the
obstacle. (e-f) The transition matrix (graph) learned in one room can be used as a re-usable structure to
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Learned graphs form a reusable structure to explore similar environments

The generic spatial structure learned in one room can be utilized as a schema [37] for exploring, planning,

and finding shortcuts in a novel room, much like the capabilities of hippocampus based navigation [38].
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To test this, we first trained the CSCG on Room 1 based on aliased observations from a random walk.

As before, CSCG learned the graph of the room perfectly. Next, we placed the agent in Room 2 which225

is unfamiliar (Fig. 3a). We kept the transition matrix of the CSCG fixed, and re-initialized the emission

matrix to random values. As the agent walks in the new room, the emission matrix is updated with the

EM algorithm. Even without visiting all the locations in the new room, the CSCG is able to make shortcut

travels between visited locations through locations that have never been visited (Fig. 3b). After a short

traversal along the periphery as shown in Fig. 3a, we queried to find the shortest path from the end state230

to the start state. The CSCG returned the correct sequence of actions, even though it obviously cannot

predict the observations along the path. Interestingly, Viterbi decoding [39] reveals the same hidden

states that you would get if you Viterbi decoded the same path in Room 1. Querying the CSCG on the

shortest path from the bottom left corner of the room to the start position, reveals the path indicated by

the blue arrows in Fig. 3b. This solution is the Djikstra’s shortest path through the graph obtained from235

Room 1. Furthermore, if we ‘block’ the path we get another solution that is also optimal in terms of

Djikstra’s algorithm (Fig. 3c). Even with partial knowledge of a novel room, an agent can vicariously

evaluate the number and types of actions to be taken to reach a destination by reusing CSCG’s transition

graph from a familiar room.

When the transition matrix from the old room is reused, the new room is learned very quickly even240

when the agent explores using a random walk: the new room is learned fully when all the locations in

the room are visited at least once (Fig. 3d-f). The plots show the proportion of the room explored and

the average accuracy of predicting the next symbol as a function of the number of random-walk steps.

Representation of paths and temporal order

CSCGs learn paths and represent temporal order when the observed statistics demand it, for example245

when the observations correspond to an animal repeatedly traveling prototypical routes. For example,

consider the T-maze shown in Fig. 4a, which is traversed in a figure-of-eight pattern either from the

right (blue path) or the left (red path). As a result, the two paths share the same segment. Interestingly,

CSCG learns separate clones for this shared segment (Fig. 4b) and similar to the observations in [15],

the activity of clones in this overlapping segment will indicate whether the rat is going to turn left or250
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Fig. 4: Learning temporal order and paths. In all experiments, CSCG learned the optimal model for
prediction, and the learned circuits matched neurobiological observations. (a) Modified T maze from [15]
with an overlapping segment between the blue and red paths. (b) CSCG learns separate clones for the two
routes passing through the overlapping segment. Similar to the observations in [15], the activity of clones
in this overlapping segment will indicate whether the rat is going to turn left or right. (c) Activity of the
clones for the right trial, and the left trial. Distinct neurons are active in the overlapping segment for
left-turn trials vs right-turn trials although the observations in the overlapping segment are identical for
both trials. Note that clones are not limited to one time step. CSCG learning is able to propagate clones
backward into multiple time steps to unravel long overlapping paths. (d) Overlapping odor sequences
from [40] (e) Full circuit learned by the CSCG shows that it has learned distinct paths in the overlap,
as in [40]. f) A complex maze in which the agent takes two stochastic paths indicated in magenta and
green. Observations in the maze are marked by numbers and, as before, the same observation can be
sensed in many parts of the maze. The green and magenta paths overlap in up to seven locations in the
middle segment (observations 4-5-11-12-13-5-17). The stochasticity of the paths and the long overlaps
make this a challenging learning problem. In contrast to mazes in (a) and (d), the two paths in this maze
lead to the same destination as in [20] (g) Transition graph learned by the CSCG shows that 2 different
chains are learned for the 2 routes in (f), similar to the observation that place cells encode routes, not
destinations [20]. (h) Paths replayed from the CSCG after it was trained on sequences from (f). As they
pass through the overlapping segment, the green and magenta routes maintain the history of where they
originated.

right (Fig. 4c). It is important to note that the ability of CSCGs to learn flexible higher-order sequences

is independent of the modality [4]. In particular, the inputs can correspond to spatial observations,

odors, sequences of characters, or observations from any other phenomenon [26]. CSCG will learn an
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approximation of the graph underlying the generative process, in close correspondence with the role for

cognitive maps envisaged by [2]. We illustrate in Fig. 4e the CSCG learned for a maze with a shared255

path shown in Fig. 4d.

Neurophysiological experiments have shown the emergence of ‘splitter cells’ in the hippocampus

[15]. These cells represent paths to a goal rather than physical locations and emerge as rats repeatedly

traverse the same sequential routes as opposed to taking random walks [20]. Fig. 4f shows a maze in

which the agent can traverse two different routes (indicated by the magenta and green lines) to reach260

the same destination. Both these routes have regions in which the exact path that the agent follows is

stochastic, as denoted by the arrows that indicate the possible movements from each cell. Observations in

the maze are marked by numbers and, as before, the same observation can be sensed in many parts of the

maze. Additionally, the two routes intersect and share a common segment. CSCGs trained on these paths

are able to represent both routes by using different clones for each of the routes, analogous to the route265

dependency exhibited by place cells in similar experiments. We observe that disjoint subsets of clones

will activate when traversing each of the routes. Fig. 4g shows that when conditioning on the starting

state, sampling in the learned CSCG will always produce paths that are consistent with the two routes. By

visualizing the graph defined by the CSCG transition matrix, we see that the two routes are represented

with two different chains (Fig. 4g). With a first-order model, when the shared segment is reached, all270

context about the previous segments will be lost and the model will make incorrect predictions about the

future path. CSCGs, on the other hand, are able to capture the history of the path and therefore properly

model the routes and their distinct start states.

Learning higher-order sequences in a CSCG can also explain recently discovered phenomena like

chunking cells and event-specific representations (ESR) [21], place cell activations that signal a combi-275

nation of the location and lap-number for different laps around the same maze. Fig. 5a shows a setting

similar to the experiment in [21] where a rat runs four laps in a looping rectangular track before receiv-

ing a reward. A CSCG exposed to the same sequence learned to distinguish the laps and to predict the

reward at the end of the 4th lap. Planning for achieving the reward recovered the correct sequence of

actions, which we then executed to record the activations of the clones in different laps. Visualizing280
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the propagation of beliefs of each clone, either conditioned on the observation or the action, produces a

sequence-like activation pattern where one clone is active for each sensory observation, and as such the

different laps around the maze are encoded by different clones (Fig. 5b). Similar the neurons in the hip-

pocampus, whose firing rates are shown in Fig. 5c [21], clones show graded activity across laps. A clone

is maximally active for an observation when it occurs in its specific lap, but shows weak activations when285

that observation is encountered in other laps, a signature of ESR. This occurs naturally in the CSCG due

to smoothing and the dynamics of inference, visualized in Fig. 5e. Sun and colleagues reported that de-

spite extending the maze, neurons in the hippocampus still respond uniquely to each lap. We mimicked

this experiment by elongating our maze in one dimension, by introducing repeated, or aliased, sensory

observations (Fig. 5d). Again, as with the smaller maze, we observed that clones were uniquely active290

on each lap and parsed each lap as a separate contextual event (Fig. 5d). In this particular example, the

cognitive map for this maze is a chain of observations (see Fig. 5e) which split each lap into distinct

contextual events. In doing so, the agent is able to identify which lap it is in based on identical local

observations. Robustness of ESR to maze elongations can also be explained by inference in a smoothed

CSCG – a repeated observation is explained as noise in the previous time step, and re-planning from the295

current observation recovers the correct sequence of actions.

Learning multiple maps and explaining remapping

Remapping is the phenomenon where hippocampal place cell activity reorganizes in response to a change

in the physical environment. Remapping, which can either be global or partial [19, 41–44], depends on

how the hippocampus can segregate, store, and retrieve maps for multiple environments that might be300

similar or dissimilar [13, 41].

Similar to the hippocampus [19], CSCGs can learn to separate multiple maps from highly similar

environmental inputs, represent those maps simultaneously in memory, and then use contextual similarity

to retrieve the appropriate map to drive behavior. In Fig. 6a, we show 5 different 5 × 5 rooms that

all share the same 25 observations, but arranged differently in space. We learn a single CSCG from305

sequences of random walks in each of these mazes where the walks switched between different rooms

at irregular intervals, without providing any supervision about the maze identity or time of switching.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2020. ; https://doi.org/10.1101/864421doi: bioRxiv preprint 

https://doi.org/10.1101/864421
http://creativecommons.org/licenses/by-nc-nd/4.0/


121121121121121121121121
observation

121121121121121121121121

....................

Lap 1

Lap 2

observation

.... .... ....

....

timestepstimesteps

log probability

Conditioned on observation Conditioned on action

Lap 4Lap 3Lap 2Lap 1 Lap 4Lap 3Lap 2Lap 1

Conditioned on observation 

timesteps timesteps

Conditioned on action

Lap 4Lap 3Lap 2Lap 1Lap 4Lap 3Lap 2Lap 1

a

b

c

d

e

Lap 4 (rewarded)

12
11
10 9 8 7

6
5
4321

Lap 2

12
11
10 9 8 7

6
5
4321

Lap 1

gs
12
11
10 9 8 7

6
5
4321

...

7
6
5
4

8

3
12
11
10 9 9 8

3221

12
11
10 9 8 7

6
5
4321

Fig. 5: Lap-neurons and event-specific representations (a) A CSCG was trained on observations from
four laps around a square maze similar to [21]. It learned to predict the laps perfectly, including the
reward at the end of the 4th lap, and planning to get the reward returned the correct sequence of actions.
(b) Clone activations for the 4 different laps. Rows correspond to neurons (clones). The activations
show that there are different clones that are maximally active for different laps, but the other clones are
partially active at their corresponding locations, similar to the neurophysiological observations in [21]
regarding event-specific-representations. (c) Place cell traces from [21], included with permission. (d)
The event-specific representations persist even when the maze is elongated. The CSCG is not trained on
the elongated maze. (e) Visualization of the circuit learned by the CSCG including the transition graph,
connections from the observations, and activation sequences. The CSCG learned one clone per lap for
each position. Smoothing in the CSCG explains why other clones of other laps are partially active. See
text for details.
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Fig. 6: Remapping. Sets consisting of five different rooms (a) & mazes (b) mazes are used to study
activity remapping. In set (a) the 5 rooms share 25 different observations arranged randomly, and in set
(b) the 5 mazes share 6 observations arranged in geometrical shapes. Row (i): inferred room/maze belief.
Rows (ii)-(iv) Clone activity traces for a random walk of 50 steps each in rooms (mazes) 1 to 5 under
different conditions (partially trained, fully trained, and more uncertainty). All traces are based on the
same random walk and use the same clone ordering. Fully trained CSCG produces global remapping, and
partially trained CSCG produces partial remapping. Adding more uncertainty to a fully trained CSCG
produces rate remapping.
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Although all observations are shared between the mazes, the CSCG learns to form different clones for

the different rooms. Figure Fig. 6ai plots the agent’s belief about which map it is in as it goes through a

50-step random walk sequence in each room from the first to the last, showing that the maze identity is310

represented in the population response, despite the ambiguous instantaneous observations.

We conducted a series of experiments to evaluate how the similarity between mazes, predictability

within each maze, the amount of learning, and the amount of noise and uncertainty affect the degree

of reorganization of neural responses. These experiments used two sets of environments — mazes and

rooms. Rooms are the 5x5 rooms described earlier (Fig. 6a), mazes consist of 5 different shapes (Fig.315

6b) composed of 6 distinct observations (4 different corners, and vertical or horizontal arms). The mazes

have better within-maze predictability compared to the rooms because of the lower-branching factor of

the random walk, and mazes are more similar to each other compared to the similarity between different

rooms. For each of these sets, we trained a CSCG, and evaluated how remapping changed with the

amount of training, and uncertainty (see Fig. 6a i-iv and Fig. 6b i-iv).320

Our results suggest that global remapping, partial remapping, and rate remapping can be explained

using CSCGs: they are manifestations of learning and inference dynamics using a cloned structure when

multiple maps are represented in the same model. We were able to reproduce different remapping ef-

fects by varying the amount of training and uncertainty. The rows (ii) to (iv) in Fig. 6a-b show the

neural responses of two CSCGs that learned to represent the corresponding rooms and mazes. All the325

neural traces in a column correspond to the same random walk where the agent takes 50 steps in each

room/maze, from the first to the last. When the CSCG is fully trained until the EM algorithm converges,

the neural responses from the different mazes overlap the least, producing an effect similar to global

remapping (Fig. 6aiii and biii) [41] . If the CSCGs are partially trained, the clones only partially sep-

arate – while many remain exclusive to particular mazes or rooms, a large number are also active in330

multiple mazes/rooms (Fig. 6aii and bii), corresponding to the effect of partial remapping [13, 42]. In a

fully trained model, more smoothing, or soft-evidence that reflects uncertainty, creates neural responses

similar to rate remapping [13, 44](Fig. 6aiv and biv): all the neurons that fire in the fully trained case

still fire in this case, but with a lowered rate of firing. This occurs because uncertainty and smoothing
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causes more sharing of the evidence among clones that represent the same observation.335

The similarity between the rooms (mazes), and the amount of predictability within each room (maze),

also affects the dynamics of remapping. This can be observed by comparing the traces for the rooms with

that of the mazes in Fig. 6a, b. In Fig. 6bi, the beliefs within each maze are more stable compared to

those in the rooms due to the stricter temporal contexts in the mazes [19]. Fluid temporal contexts

in rooms produce more progressive deformation of beliefs [45]. The structural similarity between the340

different mazes results in a longer transient period right after entering a new maze resulting in non-

instantaneous switching of beliefs [45]. This is also reflected in Fig. 6bii-iv, where clones in multiple

mazes are active at the point of switching (green bars).

Taken together, our experiments demonstrate the conditions and mechanisms that determine how the

hippocampal network may abruptly switch between pre-established representations or progressively drift345

from one representation to the other, producing a variety of remapping effects.

Community detection and hierarchical planning

Humans represent plans hierarchically [46]. Vicarious evaluations involve simulating paths to a goal,

and hierarchical computations make these simulations tractable by reducing the search space [47]. To

enable hierarchical planning, the learning mechanism should be able to recover the underlying hierarchy350

from sequentially observed data.

By learning a cloned transition graph, CSCG lifts observations into hidden space, enabling discovery

of graph modularity that might not be apparent in the observation. Community detection algorithms [48],

can then partition the graph to form hierarchical abstractions [6] useful for planning and inference. Like

planning, and inference in CSCGs, community detection can also be implemented using message-passing355

algorithms [49] that make them biologically plausible [28].

We tested CSCGs for their ability to learn hierarchical graphs by simulating the movement of an

agent in two mazes. The first maze is a modular graph with three communities where the observations

are not unique to a node (Fig. 7a), in contrast to earlier studies using this graph [6, 9] where observations

directly identified the nodes. Due the degeneracy of observations, community detection or MDS on the360

SR matrix fails to reveal the hidden communities (Fig. 7b). In contrast, community detection on CSCGs
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Fig. 7: CSCGs enable hierarchical abstraction and planning. The cloned graph of the CSCG lifts the
observations into a hidden space, allowing for discovery of modularity that is not apparent in the visible
observations. (a) The modular graph from [6], modified to have aliased observations. Observations at
each node are indicated by the numbers, and many different nodes produce the same observation. (b)
MDS or community detection on the SR matrix of random walks in (a) does not reveal the modularity of
the graph. (c) Community detection on the CSCG transition matrix successfully recovers the modularity
of graph in (a), recovering three communities. (d) A maze that has an embedded 3-level hierarchy.
Sensory observations are aliased both within rooms and across rooms. The black pixels denote ‘bridges’
between the rooms. CSCG is trained on random walks from this maze. Community detection on the
learned CSCG transition matrix revealed a first level of organization into rooms (e), and another level
of community detection revealed hyper rooms (f), resulting in a 3-level hierarchical graph reflecting the
nested structure of the maze. Planning a path (black arrows) between two rooms (denoted as (S)tart
(filled black dot) and (F)inish (open black dot) in (d)) was achieved by finding the shortest path between
hyper-rooms to navigate, next finding the shortest path between rooms, and lastly finding the shortest path
within the rooms in this reduced search space. (g) Visualization of planning message propagation in the
one-level graph. Messages propagate in the whole maze, indicating a wide search area. (h) Visualization
of hierarchical planning. Routes are first identified on the highest level, which then becomes sub-goals at
the lower level. The red colored nodes indicate the sequence of sub-goals, and their intensities reflect the
ordering of the subgoals. Compared to (g), hierarchical planning requires less messages to be propagated
so it is faster.
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trained from random walks readily reveal the correct community structure. The second maze, shown in

Fig. 7d, has a total of sixteen rooms arranged as a 4×4 grid. Each room has aliased observations, and are

connected by corridors (black squares). The aliasing is global: instantaneous observations do not identify

the room, corridor, or location within a room. Additionally, the maze is structured in such a way that365

there are four hyper-rooms making this maze a three-level hierarchy. As in the earlier examples, training

a CSCG on random walk sequences learned a perfect model of the maze. We then used community

detection to cluster the transition matrix of the CSCG (Fig. 7e). This clustering revealed a hierarchical

grouping of the clones (Fig. 7f), and a connectivity graph between the discovered communities. The

communities respected room boundaries: although some rooms were split into two or three communities,370

no community straddled rooms. Applying community detection once again on this graph revealed the

four hyper-rooms (Fig. 7f) which were the highest level of the hierarchy. To navigate to a particular

final destination F from a starting location S using this map, the agent first has to identify in which

of these four rooms the goal is located, then plan a route in the community graph between the source

community and the destination community (Fig. 7h). In doing so, the search-space in the lower level375

graph is significantly reduced, making planning in the hierarchical CSCG-learned graph more efficient

than planning directly in the original graph. We implemented this form of hierarchical planning and

found that we were always able to recover an efficient path between randomly selected start and end

position (See Supplementary Methods for more details).

Learning higher-order graphs that encode temporal contexts appropriately is crucial for the extraction380

of the hierarchy using community detection algorithms. Approaches that learn first-order connectivity on

the observations, for example successor representations on observations [10], will not be able to form the

right representations because the observations are typically severely aliased (see Supplementary Fig.

3).

Discussion385

Current theories of how cognitive maps are learned from sensory inputs and how they are used for plan-

ning have not been able to reconcile the vast body of experimental evidence. In this paper we pursued
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the strong hypothesis that hippocampus performs a singular algorithm that learns a sequential, rela-

tional, content-agnostic structure, and demonstrated evidence for its validity [4]. Through a series of

experiments, we demonstrated how the CSCG is able to store, abstract, and access sequential sensory390

experience [4, 50]. Realizing this core idea required several interrelated advancements: (1) a learning

mechanism to extract higher-order graphs from sequential observations, (2) a storage and representa-

tional structure that supports transitivity, (3) efficient context-sensitive and probabilistic retrieval, (4) and

learning of hierarchies that support efficient planning – techniques we developed in this paper. As a

model CSCG spans multiple levels of the Marr hierarchy. The computational specification is based on395

probabilistic models and optimal inference, and its algorithmic realization utilized neuroscience insights

[24]. Moreover, the graphical model and the algorithmic realizations of its learning and inference readily

translate to a neurobiological implementation that offers mechanistic explanations for all the experimen-

tal phenomena we considered.

CSCGs differ substantially from the Tolman-Eichenbaum Machine (TEM) [33, 51], a recent model400

on structure learning for hippocampal circuits. CSCGs can solve the tasks considered by TEM plus oth-

ers as demonstrated in this work. For instance, unlike TEM, CSCGs can plan to achieve arbitrary goals

selected at test time (see Fig. 3b-c) and natively handle erroneous or ambiguous observations (see Re-

trieval and Remapping in the supplementary material). CSCGs also allow for efficient exact inference,

which enables sophisticated queries to be answered quickly and exactly. In contrast, the representational405

complexity of TEM only allows for approximate inference, and requires a higher computational effort.

For instance, the problem in Fig. 5a uses 4 laps of 12 steps each, and is solved in seconds on a single

CPU core, whereas for an equivalent problem to be solvable with TEM, it needs to be simplified to 3 laps

of 4 steps each. CSCGs are natively probabilistic and handles uncertainty and noise, whereas current

TEM realizations do not. Most importantly, the abilitiy of CSCGs to lift observations into a latent graph410

that reveals modularity offers it a powerful advantage over TEM by enabling the formation of abstraction

hierarchies, see Fig. 7.

A commonly used theory for hippocampal function is the successor representation framework [9, 10,

52] which represents the current state of an agent by aggregating distributions over its future locations
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for a given policy. However, this places several limits on the representation. First, due to temporal415

aggregation, ordering in time is lost. Additionally, successor representations do not allow separate access

to the current location and future locations, and mix the order of future locations [53]. In contrast, CSCGs

provide separate access to the present and the predicted future and preserves ordering, a property vital

for effective planning. Second, successor representations are a function of the policy. It is emphasized

[9] that the value function can be easily recomputed when the reward changes, without recomputing420

the successor representation. However, what really needs to change when the reward changes is the

policy, which in turn, requires the successor representation to the recomputed. Since CSCGs capture the

dynamics of the world, they can update the policy on the fly. The observation of grid cell-like properties

in the eigenvectors of the successor representations could be a property of all methods that employ a

transition matrix (see Supplementary Results), and we suspect that this property in itself might not have425

any behavioral relevance. Finally, although the successor representation can be used to find communities,

it requires the world to be fully observable without latent states. In contrast, CSCGs have the ability to

split aliased observations into different contexts to discover latent graphs and communities.

CSCGs have intriguing connections to schema networks [54]. Like schema networks, CSCGs encode

relational knowledge. Creating different clones for different temporal contexts is similar to the idea of430

synthetic items used to address state aliasing [55]. We intend to explore these connections in future

work. Schema cells have been observed in the hippocampus [37], and CSCGs might be able to explain

their emergence and properties. In addition, since sequence learning takes place in many other brain

areas, for example the parietal cortex [56] and the orbito-frontal cortex [57], a natural extension of

this work would involve learning higher order conceptual relationships and applying them to cognitive435

flexibility. The present work can be further extended by combining it with the active inference frame

work [58] which provides a guiding principle for combining exploration and exploitation. Using active

inference, at the beginning of learning, an agent will be driven by exploration because its world model

is very uncertain, and will slowly increase the amount of exploitation as its knowledge of the world

increases. Although active inference has been so far used in far simpler models that would not be able440

to solve the experiments presented in the current work, CSCG’s probabilistic formulation is compatible
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with representing the certainty of the model using hierarchical priors over model parameters, offering an

avenue for future research.

In concordance with [50], CSCGs represent sequences of content-free pointers: each pointer can

be referring to a conjunction of sensory events from different modalities. The output from grid cells,445

path integration signals, is treated as just another sensory modality. Grid cell outputs provide a periodic

tiling of uniform space, which is advantageous for learning and navigating maps when other sensory

cues are absent. Similarly, encoding snapshots from a graphical model for vision [59] as the input to this

sequencer might enable the learning of visuo-spatial concepts and visual routines [60], and model the

bi-directional influence hippocampus has on the visual cortex [61]. We believe these ideas are promising450

paths for future exploration. Although beyond the scope of the current work, hippocampal replay [62]

is a phenomenon that could potentially be explained using CSCGs. Our related work [63] has shown

that an algorithm that rapidly memorizes and gradually generalizes is possible for learning a CSCG

representation. Learning from rest time replay of sequences can help such an algorithm consolidate and

generalize better. Inference time replay might be explained as the searching of trajectories to multiple455

goals and their vicarious evaluation.

Elucidating how cognitive maps are represented in the hippocampus, how they are acquired from a

stream of experiences, and how to utilize them for prediction and planning is not only crucial to under-

stand the inner workings of the brain, but also offers key insights into developing agents with artificial

general intelligence. The CSCG model, which we introduce in this paper, provides a plausible answer460

to each of these questions. We expect this model to be beneficial in both neuroscience and artificial

intelligence as a way to produce explicit representations that are easy to interpret and manipulate from

multimodal sequential data.
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Methods

Expectation-Maximization learning of cloned HMMs645

The standard algorithm to train HMMs is the expectation-maximization (EM) algorithm [71] which in

this is context is known as the Baum-Welch algorithm. cloned HMM equations require a few simple

modifications with respect the HMM equations: the sparsity of the emission matrix can be exploited

to only use small blocks of the transition matrix both in the E and M steps and the actions, if present,

should be grouped with the next hidden state (see Fig. 1c), to remove the loops and create a chain that is650

amenable to exact inference.

Learning a cloned HMM requires optimizing the vector of prior probabilities π: πu = P (z1 = u)

and the transition matrix T : Tuv = P (zn+1 = v|zn = u). To this end, we assume the hidden states are

indexed such that all the clones of the first emission appear first, all the clones of the second emission

appear next, etc. Let E be the total number of emitted symbols. The transition matrix T can then655

be broken down into smaller submatrices T (i, j), i, j ∈ 1 . . . E. The submatrix T (i, j) contains the

transition probabilities P (zn+1|zn) for zn ∈ C(i) and zn+1 ∈ C(j) (where C(i) and C(j) respectively

correspond to the hidden states (clones) of emissions i and j).

The standard Baum-Welch equations can then be expressed in a simpler form in the case of cloned

HMM. The E-step recursively computes the forward and backward probabilities and then updates the660

posterior probabilities. The M-step updates the transition matrix via row normalization.

E-Step

α(1) = π(x1) α(n+ 1)> = α(n)>T (xn, xn+1)

β(N) = 1(xN ) β(n) = T (xn, xn+1)β(n+ 1)

ξij(n) =
α(n) ◦ T (i, j) ◦ β(n+ 1)>

α(n)>T (i, j)β(n+ 1)

γ(n) =
α(n) ◦ β(n)
α(n)>β(n)

.

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2020. ; https://doi.org/10.1101/864421doi: bioRxiv preprint 

https://doi.org/10.1101/864421
http://creativecommons.org/licenses/by-nc-nd/4.0/


M-Step

π(x1) = γ(1)

T (i, j) =
( N∑

n=1

ξij(n)
)
�
( E∑

j=1

N∑
n=1

ξij(n)
)
.

where ◦ and � denote the element-wise product and division, respectively (with broadcasting where

needed). All vectors are M × 1 column vectors, where M is the number of clones per emission. We use

a constant number of clones per emission for simplicity here, but the number of clones can be selected

independently per emission.665

Computational savings. For a standard HMM with H hidden states, the computational cost for run-

ning one EM step on a sequence of lengthN isO(H2N) and the required memory isO(H2+HN) (for

the transition matrix and forward-backward messages). In contrast, a cloned HMM exploits the sparse

emission matrix: with M clones per emission, the computational cost is O(M2N) and the memory re-

quirement is O(H2 +MN), in the worst case. Also, there will be additional savings for every pair of670

symbols that never appear consecutively in the training sequence (since the corresponding submatrix of

the transition matrix does not need to be stored). Memory requirements can be improved further by using

the online version of EM described in the Supplementary Materials.

Since H = ME, where E is the total number of symbols, an increase in alphabet size will increase

the computation cost of HMMs, but will not affect the cost of cloned HMMs.675

Intuitively, the computation advantage of cloned HMMs over HMMs comes from the sparse emission

matrix structure. The sparsity pattern allows cloned HMMs to only consider a smaller submatrix of the

transition matrix when performing training updates and inference, while HMMs must consider the entire

transition matrix.

CSCG: Action-augmented cloned HMM680

CSCGs are an extension of cloned HMMs in which an action happens at every timestep (conditional on

the current hidden state) and the hidden state of the next timestep depends not only on the current hidden
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state, but also on the current action. The probability density function is given by eq. (3), and reproduced

here for convenience

P (x1, . . . , xN , a1, . . . , aN−1) =
∑

z1∈C(x1)

. . .
∑

zn∈C(xn)

P (z1)

N−1∏
n=1

P (zn+1, an|zn),

and the standard cloned HMM can be recovered by integrating out the actions. All the previous con-

siderations about cloned HMMs apply to CSCGs and the EM equations for learning them are also very

similar:

E-Step:

α(1) = π(x1) α(n+ 1)> = α(n)>T (xn, an, xn+1)

β(N) = 1(xN ) β(n) = T (xn, an, xn+1)β(n+ 1)

ξikj(n) =
α(n) ◦ T (i, an, j) ◦ β(n+ 1)>

α(n)>T (i, an, j)β(n+ 1)

γ(n) =
α(n) ◦ β(n)
α(n)>β(n)

.

M-Step:

π(x1) = γ(1)

T (i, k, j) =

N∑
n=1

ξikj(n)�
Na∑
k=1

E∑
j=1

N∑
n=1

ξikj(n).

whereNa is the number of actions and T (i, k, j) = P (zn+1, an = k|zn) for zn ∈ C(i) and zn+1 ∈ C(j),

i.e., a portion of the action-augmented transition matrix.685

Smoothing

We have observed that convergence can be improved by using a small pseudocount κ. A pseudocount

is simply a small constant that is added to the accumulated counts statistic matrix
∑N

n=1 ξikj(n) and

ensures that any transition under any action has non-zero probability. This ensures that at test time the

model does not have zero probability for any observations stream. When the pseudocount is only used to690

improve convergence, one can run EM a second time with no pseudocount, warmstarting from the result
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of the EM with pseudocount. To use the pseudocount, we only need to change our transition matrix

update to be T (i, k, j) = (κ +
∑N

n=1 ξikj(n)) �
∑Na

k=1

∑E
j=1(κ +

∑N
n=1 ξikj(n)). The pseudocount

can be interpreted as the hyperparameter of a Laplacian prior that is set on the transition matrix, and EM

as solving MAP inference for such hyperparameter. As any prior, the pseudocount has a regularization695

effect that helps generalization when the amount of training data is small in comparison with the capacity

of the model.

It might seem at first as if adding a pseudocount would destroy the block-sparse property of the

transition and therefore some of the aforementioned computational advantages of the CSCG. However,

it is easy to see that the resulting transition matrix can still be expressed as the sum of a block-sparse700

matrix (with the same sparsity pattern as before) and a rank-1 matrix (which is not stored explicitly,

but as the two vectors whose outer product produce it). By doing this, the pseudocount can be used

without increasing the computational complexity or the storage requirements of any of our algorithms

(EM learning, inference, etc).

Inference705

Since the resulting model (with the action an and hidden state zn+1 collapsed in a single variable) forms

a chain, inference on it using belief propagation (BP) is exact. When no evidence is available for a given

variable, BP will simply integrate it out, so we can for instance train a model with actions and then, at

test time, use it even if no actions are available. We can still ask the model which observation is the

most likely in the next timestep, or even several timesteps ahead, and BP will produce the exact answer710

by analytically integrating over all possible past and future actions, and even over the unseen future

observations when necessary.

The same model can be used to generate sequences (e.g., to generate plausible observations and

actions that would correspond to wandering in a previously learned room) simply by applying ancestral

sampling [70] to the conditionals that describe the model after learning (i.e., the transition and emission715

matrices).

A consequence of the above for spatial data is that an agent roaming the world can infer where in an

environment it is located (zn) and then predict which actions are feasible at that location, which is useful
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for navigation. One can even condition on a future location to discover which set of actions can take you

there, and which observations you are expected to see on the way there, see e.g. Figs. 3b&c. This is720

essentially planning as inference [34].

All of this flexible querying is performed by running a single algorithm (BP) on the same model

(without retraining) and only changing the selection of which evidence is available and which proba-

bilistic predictions are requested.

Experimental details725

Emergence of spatial maps from aliased sequential observations

For this experiment we collected a stream of 50000 action-observations pairs. We learned a CSCG with

20 clones (a total of 360 states) with pseudocount 2 · 10−3 and ran EM for 1000 iterations. This gets

a result that is very close to the global minimum: when Viterbi decoded, only 48 distinct states are in

use, which is the theoretical optimum on a 6× 8 grid. Viterbi training [39] is used to refine the previous730

solution.

Transitive inference: disjoint experiences can be stitched together into a coherent whole

Fig. 2e showcases the CSCG’s ability to stitch together two disjoint room experiences when the rooms

overlap. For this experiment, we randomly generate two square rooms of size 8 × 6 with 15 different

observations each. We make both rooms share a 3× 3 patch in their corners as shown in Fig. 2e.735

We sample a random walk of length 10000 of action-observation pairs on each room, always avoiding

to take actions that would make the random walk move outside of the room. We use 20 clones, which

is enough to fully recover both rooms separately, and use a pseudocount of 10−2. We run EM (on

both sequences simultaneously, as two independent observations of the same CSCG) for a maximum of

100 iterations. After EM convergence, we additionally use Viterbi decoding (with no pseudocount) to740

remove unused clones. The learned CSCG is visualized in Fig. 2f, showing that the two rooms that were

experienced separately have been stitched together. Predictive performance on the stitching of the two

rooms is perfect (indicating that learning succeeded) after a few observations required for the agent to

locate itself. Notice that there is another patch in the first room that is identical to the merged patches,
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but was not merged. The model is using the sequential information to effectively identify patches that745

can be merged while respecting the observational data and context, and not simply looking for locally

identical patches to merge.

Learned spatial maps form a reusable structure to explore similar environments

For this experiment, we train on a 6×8 room using 10000 action-observation pairs. We call this Room 1,

see Fig. 3a. There are only 20 unique symbols in the room, some of which are repeated. The pseudocount750

is set to 10−2 and we use 20 clones (in this case, only 7 clones are strictly required to memorize the

room). The regularizing pressure of the pseudocount effectively removes redundant clones. Training is

done using EM for a maximum of a 100 iterations. This results in an almost perfect discovery of the

underlying graph. Then we set the pseudocount to 0 and continue the training using Viterbi training [39].

This results in perfect discovery of the underlying graph with no duplicate clones. Predictions become755

perfect after a few initial observations required to know where in the room we are.

When we try to partially learn Room 2 with a few samples from its periphery (see Fig. 3a), we create

a new CSCG with the transition matrix that we learned from Room 1 and keep it fixed. The emission

matrix is initialized uniformly and learned using EM. The whole data for learning the emission matrix

are only the 20 action-observation pairs seen in Fig. 3a. At that point, we fix the model and query it for760

a return path plan, both with and without blockers in the path. The results are displayed in Fig. 3b and

Fig. 3c.

In Fig. 3e-g we showcase the increase in data efficiency when we transfer the learned topology to a

new room with different observations.First we ignore the results from training on Room 1 and train on a

new room, Room 2, from scratch following the same procedure outlined above. We train on the first N765

action-observation pairs and predict for the rest. We average (geometrically) the probability of getting

the next observation right for the last 8000 samples of the 10000 available. This results in the graph in

Fig. 3e, where N is shown in the horizontal axis. Then we repeat the same procedure, but instead of

training from scratch from a random transition matrix with fixed emissions, we fix the transition matrix

that we got from training in Room 1 and we learn the emission matrix, which is initialized to uniform.770

EM for the emission matrix converges in a few iterations. Once all nodes have been observed (when
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the red curve achieves 1.0), this procedure converges to perfect predictions in one or two EM iterations.

This results in the graph in Fig. 3f, where again the horizontal axis shows N , the number of training

action-observation pairs.

Representation of paths and temporal order775

To learn the CSCG on the maze in Fig. 4f, we sample 5000 paths along each of the stochastic routes

that are shown. The number in each cell indicates the observation received at that cell, and the arrows

indicate possible transitions. We consider both sequences as independently generated by the model,

and run EM to optimize the probability of both simultaneously. We allocate 20 clones for each other

observation. By inspecting the sum-product forward messages of belief propagation at each step as the780

rat navigates the two routes, we can see the distributions over clones. We observe they are over disjoint

subsets of the clones. To generate the paths from the CSCG shown in Fig. 4g (producing only paths

that are consistent with the route), we sample an observation from the normalized messages from hidden

state to observation during forward message passing. Finally, to extract the communities and generate

the visualization in Fig. 4g, we run the InfoMap algorithm [69] on the graph defined by CSCG transition785

matrix.

In Fig. 5, we replicate the experiments of Sun and colleagues [21] as follows. First, we learned a

CSCG with 20 clones per observation on a sequence of observations sampled from four laps around the

maze shown in Fig. 5d. The start and end positions were unique observations. Training was terminated

when perfect learning of the underlying graph was achieved. Community detection (explained below)790

revealed that each sensory observation was encoded by a unique clone, akin to the chunking cells found

by Sun and colleagues.

Retrieval and Remapping

We generate random walks (random actions out of up, right, down, left) of length 10000 in each of 5

mazes. For Fig. 6a the mazes are 5x5 rooms where the observations are assigned to cells by a random795

permutation of the values 1 to 25, inclusive. For Fig. 6b, the structure of the mazes is shown and the

observations are indicated by the color of the cells. We constructed these mazes such that have many
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shared observations, but each has some distinct structure that differentiates it from the others.

For each of the experiments, we learn a CSCG on these random walk sequences. After learning,

we sum the forward messages of sum-product belief propagation in each maze to get a distribution over800

hidden states for each maze. Now on a test sequence, we can use the forward messages and these

clone distributions per maze to infer the probability of being in each maze at each time step. In each of

subfigure of Fig. 6, we shows these predictions as well as the distribution over clones over time.

Learning a CSCG in these maze environments can also enable error correction of noisy/corrupted

observations. To correct errors in a corrupted observation sequence we modify the emission matrix to805

generate a random symbol with a small probability, thus modeling errors. Then we perform sum-product

message passing on sequences with errors and find the most likely a posteriori value for each symbol. In

our case, we only perform a forward pass, which provides an online estimation (based only on past data)

of the MAP solution. We will use a corruption probability of 20% in our experiments, uniform over the

incorrect symbols. For the 5x5 rooms, this procedure was able to correct 50 of the 55 corrupted symbols810

while not corrupting any of the uncorrupted symbols. For the mazes, this procedure was able to correct

46 of the 54 corrupted symbols while, again, not corrupting any of the uncorrupted symbols.

Community detection and hierarchical planning

In all figures, custom Python scripts were used to convert the transition matrix of the CSCG into a

directed graph. This graph was then visualized using built-in functions in python-igraph (https:815

//igraph.org/python/). Similarly, community detection was performed using igraph’s built-in

infomap function.

In the hierarchical planning experiments shown in Fig. 7, we first generated each room by drawing

a random integer between 1 and 12 with repetitions to serve as observations. The rooms were then

connected via bridges (observation 13, colored black) and were tiled to form a maze as shown in Fig. 7d.820

Next, we trained a CSCG with 40 clones per observation using 1000 random restarts as described above.

The learned CSCG achieved perfect prediction accuracy, suggesting perfect learning of the underlying

graph. Community detection on the learned CSCG was performed using igraph. To form the top-level

graph shown in Fig. 7e, we collapsed each distinct community into a single node. These communities
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roughly corresponded to each of the rooms in the maze. In some cases, certain rooms were partitioned825

into multiple communities. Next, we ran community detection on this graph to retrieve the hyper-rooms.

To compute the shortest trajectory between two locations on the maze, we first computed the shortest

path in the highest-level graph using Dijkstra’s algorithm, implemented in networkx (https://

networkx.github.io/). This returned the sequence of hyper-rooms and rooms to be visited in

order to reach the goal from a start point. Next, we pruned the community graph to include only clones830

corresponding to these rooms and then found the shortest path in this reduced graph, which gave the

exact sequence of observations from the start position to the goal (denoted by the black arrow in Fig. 7d.

This hierarchical approach was consistently better than searching for the shortest path on the full maze

itself with an average 25% fewer steps (n = 10 mazes). To determine to what extent the partitioning of

the CSCG transition matrix into communities helped planning, we formed surrogate communities which835

no longer respected room boundaries. This resulted in a planned trajectory with an average 35% more

steps than the hierarchical plan.

It is important to note that hierarchical planning is significantly more efficient. A representative

example of the reduction in complexity can be given as follows. Assume that we have V communities, E

inter-community edges and M nodes inside each community. Further, assume that the nodes inside each840

community are fully connected, and between any two communities, there is at most one edge. Then with

hierarchical planning the complexity of running Djikstra’s algorithm is O(E + V log V +Nt(M(M −

1)/2 +M logM)), where Nt is the number of top-level nodes to traverse in the second planning stage.

In contrast, on the full graph, the complexity is O(E +MV logMV + V (M(M − 1)/2)). From these

equations it is easy to see that hierarchical planning is more efficient because Nt ≤ V in all graphs.845

Adaptive and online EM variant of CSCGs

Although the sequences in the experiments of this work are not too large, we might want to be able deal

with cases in which there is a very long incoming stream of observations, so long that we cannot even

store it in its entirety. In order to handle this case, we can simply extend the previous EM algorithms to

make them online.850

The adaptive, online version of the EM algorithm in the Methods section is obtained by splitting the
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sequence in B batches b = 1 . . . B and performing EM steps on each batch successively. This allows

the model to adapt to changes in the statistics if those happen over time. The statistics ξij(n) of batch b

are now computed from the E-step over that batch, using the transition matrix T (b−1) from the previous

batch. After processing batch b, we store our running statistic in A(b) as:

A
(b)
ij = (1− λ)

b∑
k=1

λb−k
∑

n∈batch(k)

ξij(n)

and then compute the transition matrix T (b) as

T (b)(i, j) = A
(b)
ij �

E∑
j=1

A
(b)
ij

where 0 < λ < 1 is a memory parameter and n ∈ batch(k) refers to the time steps contained in batch

k. For λ → 1, T (b)(i, j) coincides with the transition matrix from the Methods section. For smaller

values of λ, the expected counts are weighed using an exponential window,1 thus giving more weight to

the more recent counts.

To learn from arbitrarily long sequences, we consider an online formulation and express A(b)
ij recur-

sively:

A
(b)
ij = λA

(b−1)
ij + (1− λ)

∑
n∈batch(b)

ξij(n),

so that the expected counts of the last observed batch are incorporated into the running statistics.855

Data and code availability

All python scripts used to simulate and analyze the model will be deposited on GitHub.

1Normalization of the exponential window is unnecessary, since it will cancel when computing T (b)(i, j).
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Supplementary Results

b

dc

a

Supplementary Fig. 1: The effect of varying room size and the number of unique observations in each
room. (a) Larger empty rooms result in increased bps. (b) Imperfect graph learned from a large empty
room. (c) Fewer unique observations result in increased bps. (d) Fewer unique observations make
learning harder.

Learning spatial representations

In order to learn the spatial representation of a room with a CSCG, we let an agent roam in a room and860

receive a stream of local visual cues paired with the executed actions. Note that there are two factors

that complicate learning: on the one hand, the visual cues do not need to be unique to each location in

the room. In fact, in an empty room, every location in the room away from the walls and the corners

looks the same (see Fig. 2c). On the other hand, even though the agent’s proprioception lets it know
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the identifier of the executed action, there is no meaning associated to it. I.e., every time that the agent865

moves west, it knows it is doing the same thing, but it does not have any prior knowledge of what that

thing is.

In the case of empty rooms, most of the observations received by the agent are the same (the empty

observation, as it wanders through empty space) and it is hard for the agent to locate itself in the room,

since only the walls and corners provide context. We have experimented with CSCGs learning in empty870

rooms of different sizes. We use 50000 steps2 in a room of size (4+d)× (6+d), where d is a parameter

controlling the room size. For rooms of size 6× 8 and below, EM learning recovers exactly the structure

of the room. For larger sizes, it starts to make some mistakes in its understanding of the room, slightly

decreasing its predictive ability as the room grows, see Supplementary Fig. 1a. Supplementary Fig.

1b shows the learned transition matrix in graph form for a room of size 9× 11. The graph looks almost875

perfect, but if we follow the path between observations ‘1’ and ‘3’, we should traverse seven observations

of type ‘7’, whereas there are only six. The CSCG has merged two physical locations in the room (that

have a large neighborhood of identical sensory cues) into the same perceived location.

Learning the structure of a room would be trivial if each observation was unique to a single room

location. In that case, a CSCG with only one clone would learn the correct solution in one EM step.880

We experiment with different numbers of unique symbols randomly placed in a room. Supplementary

Fig. 1c shows that in a room of size 6 × 8 (depicted in Fig. 2a) the performance degrades as the

number of unique symbols decreases, with recovery being exact only when the number of unique symbols

is 4 or more. The number of EM iterations required for convergence3 is also affected, as shown in

Supplementary Fig. 1d.885

Successor representation of the CSCG transition matrix

The CSCG model contains all the information about the sequence generating process, so it can be com-

bined with an external policy to yield the successor representation associated to that policy. The successor
2Other parameters for this experiment are the number of clones used (70, which is theoretically enough to exactly recover

even the largest room), a pseudocount of 2 · 10−3 used in the EM procedure and a maximum number of EM iterations of 1000.
3The parameters for this experiment are: 10000 recorded steps, a CSCG with 30 clones (enough for exact recovery for all

the numbers of unique symbols tested), a pseudocount of 10−2 in the EM procedure and a maximum number of EM iterations
of 1000.
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ba

Supplementary Fig. 2: Successor representation and eigenvectors derived from the transition matrix of
a CSCG. The CSCG was trained with data collected from a random walk in a rectangular room. (a)
Successor Representations in 6x8 room. (b) Eigenvectors of Successor Representation.

Successor representation cba

Room 16Room 15Room 14Room 13

Room 12Room 11Room 10Room 9

Room 8Room 7Room 6Room 5

Room 4Room 3Room 2Room 1

Hyper-Room 1

S

F

Supplementary Fig. 3: Successor representation for the hierarchical maze experiment. (a) Same maze
as shown in Fig. 7d. (b) Successor Representation matrix and MDS. (c) Graph derived from Successor
Representation Matrix.

representation[9, 82] loses precise temporal information and, as a result, contains strictly less information

than the CSCG. Additionally, unlike the CSCG, the successor representation assumes full observability890

of the state, so it cannot be derived from partial or aliased observations.

We take the CSCG learned from the aliased 6×8 room in Fig. 2a and generate the SR from the CSCG
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transition matrix. Then we identify which clones correspond to which spatial locations by observing

which clones activate in each location during inference. In Supplementary Fig. 2a we visualize the SR

for each hidden state. We also compute the eigenvectors of the matrix containing the SR of each state.895

We visualize these eigenvectors in Supplementary Fig. 2b and we also observe various grid patters of

different scales, similarly to [9].
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Supplementary Video 1 The left panel shows the physical location of the agent and the local visual

cue (color) available to it, whereas the right panel shows the inferred position in the agent’s cognitive

map (which has been learned from data). The agent only observes the current color (and not even its900

own actions). There are two patches (marked in black) that have identical colors, so at the beginning of

exploration, the agent’s belief in the cognitive map (right) is split between the two possible realities. As

soon as the agent exits the duplicated patch, it can figure out its precise location and track it properly

from that point on, as shown by the lack of ambiguity in the cognitive map when the agent returns to the

repeated patch.905

Supplementary Video 2 Inferred cognitive map over EM iterations. The CSCG transition matrix is

updated after each EM iteration, and the current state of the model is displayed as a cognitive map. To do

this, the training data is decoded as a sequence of clones using Viterbi, and the resulting clone transitions

are represented in a graph. The layout of the graph is obtained automatically using python-igraph.
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