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Abstract

Gene clustering is a widely-used technique that has enabled computational prediction of
unknown gene functions within a species. However, it remains a challenge to refine gene function
prediction by leveraging evolutionarily conserved genes in another species. This challenge calls
for a new computational algorithm to identify gene co-clusters in two species, so that genes in
each co-cluster exhibit similar expression levels in each species and strong conservation between
the species. Here we develop the bipartite tight spectral clustering (BiTSC) algorithm, which
identifies gene co-clusters in two species based on gene orthology information and gene expression
data. BiTSC novelly implements a formulation that encodes gene orthology as a bipartite
network and gene expression data as node covariates. This formulation allows BiTSC to adopt
and combine the advantages of multiple unsupervised learning techniques: kernel enhancement,
bipartite spectral clustering, consensus clustering, tight clustering, and hierarchical clustering.
As a result, BiTSC is a flexible and robust algorithm capable of identifying informative gene
co-clusters without forcing all genes into co-clusters. Another advantage of BiTSC is that
it does not rely on any distributional assumptions. Beyond cross-species gene co-clustering,
BiTSC also has wide applications as a general algorithm for identifying tight node co-clusters
in any bipartite network with node covariates. We demonstrate the accuracy and robustness
of BiTSC through comprehensive simulation studies. In a real data example, we use BiTSC
to identify conserved gene co-clusters of D. melanogaster and C. elegans, and we perform a
series of downstream analysis to both validate BiTSC and verify the biological significance of
the identified co-clusters.

1 Introduction

In computational biology, a long-standing problem is how to predict functions of the majority of
genes that have not been well understood. This prediction task requires borrowing functional infor-
mation from other genes with similar expression patterns in the same species or orthologous genes
in other species. Within a species, how to identify genes with similar expression patterns across
multiple conditions is a clustering problem, and researchers have successfully employed clustering
methods to infer unknown gene functions (Lee et al., 2004; Ruan et al., 2010). Specifically, func-
tions of less well-understood genes are inferred from known functions of other genes in the same
cluster. The rationale is that genes in one cluster are likely to encode proteins in the same complex
or participate in a common metabolic pathway and thus share similar biological functions (Stuart
et al., 2003). In the last two decades, gene clustering for functional prediction has been empowered
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by the availability of abundant microarray and RNA-seq data (Bergmann et al., 2003; Mortazavi
et al., 2008; Wang et al., 2009; Le et al., 2010a; Söllner et al., 2017). Cross-species analysis is
another approach to infer gene functions by borrowing functional information of orthologous genes
in other species, under the assumption that orthologous genes are likely to share similar functions
(Fujibuchi et al., 2000; Le et al., 2010b; Dede and Oğul, 2013; Kristiansson et al., 2013; Sudmant
et al., 2015; Chen et al., 2016). Although computational prediction of orthologous genes remains
an ongoing challenge, gene orthology information with increasing accuracy is readily available in
public databases such as TreeFam (Schreiber et al., 2013) and PANTHER (Mi et al., 2018). Hence,
it is reasonable to combine gene expression data with gene orthology information to increase the
accuracy of predicting unknown gene functions.

Given two species, the computational task is to identify conserved gene co-clusters, where each
co-cluster corresponds to two gene clusters, one per species. The goal is to make each co-cluster
enriched with orthologous gene pairs and ensure that its genes exhibit similar expression patterns
in each species. Among existing methods for this task, the earlier methods (Teichmann and Babu,
2002; van Noort et al., 2003; Snel et al., 2004) took a two-step approach: in step 1, genes are
clustered in each species based on gene expression data; in step 2, the gene clusters from the two
species are paired into co-clusters based on gene orthology information. This two-step approach
has a major drawback: there is no guarantee that gene clusters found in step 1 can be paired into
meaningful co-clusters in step 2. The reason is that step 1 performs separate gene clustering in
the two species without accounting for gene orthology, and as a result, any two gene clusters from
different species may share few orthologs and should not be paired into a co-cluster. More recent
methods abandoned this two-step approach. For example, SCSC (Cai et al., 2010) is a probabilisitic
model-based clustering method, which assumes that each orthologous gene pair has expression
levels generated from a bivariate Gaussian mixture model, whose each component consists of two
independent univariate Gaussian distributions. This strong distributional assumption does not
hold for gene expression data measured by RNA-seq experiments. OrthoClust (Yan et al., 2014)
is a network-based gene co-clustering method, which constructs a unipartite gene network with
nodes as genes in two species. Edges are established based on gene co-expression relationships to
connect genes of the same species, or gene orthology relationships to connect genes from different
species. OrthoClust identifies gene clusters from this network using a modularity maximization
approach, which cannot guarantee that each identified cluster contains genes from both species.
There are also two open questions regarding the use of OrthoClust in practice: (1) how to define
within-species edges based on gene co-expression and (2) how to balance the relative weights of
within-species edges and between-species edges in clustering. Another method MVBC (Sun et al.,
2016) took a joint matrix factorization approach, which requires that genes in two species are in
one-to-one ortholog pairs. This notable limitation prevents MVBC from considering the majority
of genes that do not have known orthologs or have more than one orthologs in the other species.
MVBC is also limited by its required input of verified gene expression patterns, which are, however,
often unavailable for many gene expression datasets.

Here we propose bipartite tight spectral clustering (BiTSC), a novel cross-species gene co-
clustering algorithm, to overcome the above-mentioned disadvantages of the existing methods.
BiTSC for the first time implements a bipartite-network formulation to tackle the computational
task: it encodes gene orthology as a bipartite network and gene expression data as node covari-
ates. This formulation was first mentioned in Razaee et al. (2019) but not implemented. BiTSC
implements this formulation to simultaneously leverage gene orthology and gene expression data
to identify tight gene co-clusters, each of which contains similar gene expression patterns in each
species and rich gene ortholog pairs between species. To achieve this goal, BiTSC adopts and com-
bines the advantages of multiple unsupervised learning techniques, including kernel enhancement
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(Razaee, 2017), bipartite spectral clustering (Dhillon, 2001), consensus clustering (Monti et al.,
2003), tight clustering (Tseng and Wong, 2005), and hierarchical clustering (Johnson, 1967). As a
result, BiTSC has three main advantages. First, BiTSC is the first gene co-clustering method that
does not force every gene into a co-cluster; in other words, it only identifies tight gene co-clusters
and allows for unclustered genes. This is advantageous because some genes have individualized
functions (Ohno, 1970; Tatusov et al., 1997; Koonin, 2005) and thus should not be assigned into
any co-cluster. BiTSC is also flexible in allowing users to adjust the tightness of its identified gene
co-clusters. Second, BiTSC is able to consider all the genes in two species, including those genes
that do not have orthologs in the other species. Third, BiTSC takes an algorithmic approach that
does not rely on any distributional assumptions, making it a robust method. Moreover, we want
to emphasize that BiTSC is not only a bioinformatics method but also a general algorithm for
network analysis. It can be used to identify tight node co-clusters in a bipartite network with node
covariates.

2 Methods

2.1 Bipartite network formulation of gene co-clustering

BiTSC formulates the cross-species gene co-clustering problem as a community detection problem
in a bipartite network with node covariates. A bipartite network contains two sides of nodes, and
edges only exist between nodes on different sides, not between nodes on the same side. Nodes are
associated with covariate vectors, also known as node attributes. In bipartite network analysis, the
community detection task is to divide nodes into co-clusters based on edges and node covariates,
so that nodes in one co-cluster have dense edge connections and similar node covariates on both
sides (Razaee et al., 2019). In its formulation, BiTSC encodes genes of two species as nodes of two
sides in a bipartite network, where an edge indicates that the two genes it connects are orthologous;
BiTSC encodes each gene’s expression levels as its node covariates, with the requirement that all
genes in one species have expression measurements in the same set of biological samples. For the
rest of the Methods section, the terms “nodes” and “genes” are used interchangeably, so are “sides”
and “species”, as well as “node covariates” and “gene expression levels.”

In mathematical notations, there are m and n nodes on side 1 and 2, respectively. Edges are
represented by a binary bi-adjacency matrix A = (aij)m×n, where aij = 1 indicates that there is
an edge between node i on side 1 and node j on side 2, i.e., gene i from species 1 and gene j from
species 2 are orthologous. Node covariates are encoded in two matrices, X1 and X2, which have
dimensions m×p1 and n×p2 respectively, i.e., species 1 and 2 have gene expression levels measured
in p1 and p2 biological samples respectively. The i-th row of X1 is denoted as xT1i, and similarly for
X2. Note that all vectors are column vectors unless otherwise stated.

2.2 The BiTSC algorithm

BiTSC is a general algorithm that identifies tight node clusters from a bipartite network with
node covariates. Table 1 summarizes the input data, input parameters, and output of BiTSC.
Figure 1 illustrates the idea of BiTSC, and Supplementary Figure S1 shows the detailed workflow.
In the context of cross-species gene co-clustering, BiTSC inputs A, which contains gene orthology
information, and X1 and X2, which denote gene expression data in species 1 and 2. BiTSC outputs
tight gene co-clusters such that genes within each co-cluster are rich in orthologs and share similar
gene expression levels across multiple biological samples in each species. A unique advantage of
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BiTSC is that it does not force all genes into co-clusters but allows certain genes, which have few
orthologs or outlying gene expression levels, to stay unclustered.

Input: bipartite network 
with node covariates

BiTSC
Node in Co-cluster 1

Node in Co-cluster 2

Unclustered node

 Output: identified co-clusters

Node

Edge

Covariate vector

Covariate vector

Figure 1: Diagram illustrating the input and output of BiTSC. The identified tight node co-clusters
satisfy that, within any co-cluster, nodes on the same side share similar covariates, and nodes from
different sides are densely connected. In the context of gene co-clustering, within any co-cluster,
genes from the same species share similar gene expression levels across multiple conditions, and
genes from different species are rich in orthologs.

As an overview, BiTSC is an ensemble algorithm that takes multiple parallel runs. In each
run, BiTSC first identifies initial node co-clusters in a randomly subsampled bipartite sub-network;
next, it assigns the unsampled nodes to these initial co-clusters based on node covariates. Then
BiTSC aggregates the sets of node co-clusters resulted from these multiple runs into a consensus
matrix, from which it identifies tight node co-clusters by hierarchical clustering. This subsampling-
and-aggregation idea was inspired by consensus clustering (Monti et al., 2003) and tight clustering
(Tseng and Wong, 2005).

BiTSC has four input parameters (Table 1): H, the number of runs; ρ ∈ (0, 1), the proportion
of nodes to subsample in each run; K0, the number of node co-clusters in each run; α ∈ (0, 1),
the tightness parameter used to find tight node co-clusters in the last step. In the h-th run,
h = 1, . . . ,H, BiTSC has the following four steps.

1. Subsampling. BiTSC randomly samples without replacement m̃ = bρmc nodes on side 1 and
ñ = bρnc nodes on side 2, where the floor function bxc gives the largest integer less than or
equal to x. We denote the subsampled bi-adjacency matrix as Ã, whose dimensions are m̃×ñ,
and the two subsampled covariate matrices as X̃1 and X̃2, whose dimensions are m̃× p1 and
ñ× p2 respectively.

2. Kernel enhancement. To find initial node co-clusters from this bipartite sub-network Ã with
node covariates X̃1 and X̃2, a technical issue is that this sub-network may have sparse edges
and disconnected nodes. To address this issue, BiTSC employs the kernel enhancement tech-
nique proposed by Razaee (2017) to complement network edges by integrating node covariates.
This kernel enhancement step will essentially reweight edges by incorporating pairwise node
similarities on both sides. Technically, BiTSC defines two kernel matrices K̃1 and K̃2, which
are symmetric and have dimensions m̃× m̃ and ñ× ñ, for nodes on side 1 and 2 respectively.
In K̃r, r = 1, 2, the (i, j)-th entry is kr(x̃ri, x̃rj) = exp(−‖x̃ri − x̃rj‖2/pr), where ‖x̃ri − x̃rj‖
is the Eulidean distance between nodes i and j on side r in this sub-network. Then BiTSC
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constructs an enhanced bi-adjacency matrix B̃ = (K̃1+Im̃)Ã(K̃2+Iñ), whose dimensions are
m̃× ñ, and Im̃ and Iñ are the m̃- and ñ-dimensional identity matrices. As a side note, this en-
hanced bi-adjacency matrix may be more generally defined as B̃τ = (K̃1+τ1Im̃)Ã(K̃2+τ2Iñ),
where τ = (τ1, τ2) ∈ [0,∞)2 is a tuning parameter. Razaee (2017) studied the limiting prop-
erties of B̃τ against τ . We chose τ = (1, 1) for BiTSC based on a simulation study that
investigates the robustness of BiTSC to τ (Supplementary Figure S3C).

3. Bipartite spectral clustering. BiTSC identifies initial node co-clusters from B̃, the enhanced
bi-adjacency matrix of the bipartite sub-network, by borrowing the idea from Dhillon (2001).
Technically, BiTSC first constructs

W̃ = (w̃ij)(m̃+ñ)×(m̃+ñ) =

[
0m̃×m̃ B̃m̃×ñ

B̃T
ñ×m̃ 0ñ×ñ

]
,

which may be viewed as the adjacency matrix of a unipartite network with (m̃ + ñ) nodes.
Then BiTSC identifies K0 mutually exclusive and collectively exhaustive clusters from W̃ via
normalized spectral clustering (Ng et al., 2001) as follows.

(a) BiTSC computes a degree matrix D̃, a (m̃ + ñ)-dimensional diagonal matrix whose
diagonal entries are the row sums of W̃.

(b) BiTSC computes the normalized Laplacian of W̃ as L̃ = Im̃+ñ − D̃−
1
2 W̃D̃−

1
2 . Note

that L̃ is a positive semi-definite (m̃+ ñ)× (m̃+ ñ) matrix with (m̃+ ñ) non-negative
real-valued eigenvalues: 0 = λ1 ≤ · · · ≤ λm̃+ñ.

(c) BiTSC finds the first K0 eigenvectors of L̃ that correspond to λ1, · · · , λK0 . Each eigen-
vector has length (m̃+ ñ). Then BiTSC collects these K0 eigenvectors column-wise into
a matrix Ũ, whose dimensions are (m̃+ ñ)×K0.

(d) BiTSC normalizes each row of Ũ to have a unit `2 norm and denotes the normalized
matrix as Ṽ. Specifically, Ṽ also has dimensions (m̃ + ñ) ×K0, and its i-th row ṽTi =
ũTi /‖ũTi ‖, where ũTi is the i-th row of Ũ and ‖ · ‖ denotes the `2 norm.

(e) BiTSC applies K-means clustering to divide the (m̃+ ñ) rows of Ṽ into K0 clusters. In
detail, Euclidean distance is used to measure the distance between each row and each
cluster center.

The resulting K0 clusters of (m̃ + ñ) nodes are regarded as the initial K0 node co-clusters.
We note that some co-clusters may only contain nodes from one side.

4. Assignment of unsampled nodes. BiTSC assigns the unsampled nodes, which are not subsam-
pled in step 1, into the initial K0 node co-clusters. Specifically, there are (m−m̃) and (n− ñ)
unsampled nodes on side 1 and 2, respectively. For each initial node co-cluster, BiTSC first
calculates a mean covariate vector on each side. For example, if a co-cluster contains nodes
i and j on side 1 of the bipartite sub-network, its mean covariate vector on side 1 would be
computed as (x̃1i + x̃1j)/2. BiTSC next assigns each unsampled node to the co-cluster whose
mean covariate vector (on the same side as the unsampled node) has the smallest Euclidean
distance to the node’s covariate vector.

With the above four steps, in the h-th run, h = 1, . . . ,H, BiTSC obtains K0 node co-clusters,
which are mutually exclusive and collectively containing all the m nodes on side 1 and n nodes
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on side 2. To aggregate the H sets of K0 node co-clusters, BiTSC first constructs a node co-

membership matrix for each run. Specifically, M(h) = (m
(h)
ij )(m+n)×(m+n) denotes a node co-

membership matrix resulting from the h-th run. M(h) is a binary and symmetric matrix indicating
the pairwise cluster co-membership of the (m+ n) nodes. That is, an entry in M(h) is 1 if the two
nodes corresponding to its row and column are assigned to the same co-cluster; otherwise, it is 0.
Then BiTSC constructs a consensus matrix M̄ = (m̄ij)(m+n)×(m+n) by averaging M(1), . . . ,M(H),

i.e., m̄ij =
∑H

h=1m
(h)
ij /H ∈ [0, 1]. An entry of M̄ indicates the frequency that the two nodes

corresponding to its row and column are assigned to the same co-cluster, among the H runs.
Lastly, BiTSC identifies tight node co-clusters from M̄ such that within every co-cluster, all

pairs of nodes have been previously clustered together at a frequency at least α, the input tightness
parameter. Specifically, BiTSC considers (1− M̄) as a pairwise distance matrix of (m+ n) nodes.
Then BiTSC applies hierarchical clustering with complete linkage to (1− M̄), and it subsequently
cuts the resulting dendrogram at the distance threshold (1 − α). This guarantees that all the
nodes within each resulting co-cluster have pairwise distances no greater than (1 − α), which is
equivalent to being previously clustered together at a frequency at least α. A larger α value will
lead to finer co-clusters, i.e., a greater number of smaller clusters and unclustered nodes. BiTSC
provides a visualization-based approach to help users choose α: for each candidate α value, BiTSC
collects the nodes in the resulting tight co-clusters and plots a heatmap of the submatrix of M̄
that corresponds to these nodes; users are encouraged to pick an α value whose resulting number
of tight co-clusters is close to the number of visible diagonal blocks in the heatmap. (Please see
Supplementary Materials for a demonstration in the real data example in Section 3.2.) Regarding
the choice of K0, i.e., the input number of co-clusters in each run, the entries of M̄ provide a good
guidance. A good K0 should lead to many entries close to 0 or 1 and few close to 0.5 (Monti et al.,
2003). In Supplementary Section S6, we will describe how we implemented this idea to choose K0

in the real data application of BiTSC (Section 3.2).
To summarize, BiTSC leverages joint information from bipartite network edges and node co-

variates to identify tight node co-clusters, which are robust to data perturbation, i.e., subsampling.
In its application to gene co-clustering, BiTSC integrates gene orthology information with gene
expression data to identify tight gene co-clusters, which are enriched with orthologs and contain
genes of similar expression patterns in both species. In particular, within each subsampling run, the
bipartite spectral clustering step identifies co-clusters enriched with orthologs; another two steps,
the kernel enhancement and the assignment of unsampled nodes, ensure that genes with similar
expression patterns in each species tend to be clustered together. Moreover, the subsampling-and-
aggregation approach makes the output tight gene co-clusters robust to the existence of outlier
genes, which may have few orthologs or outlying gene expression patterns. The pseudocode of
BiTSC is in Algorithm 1.

2.3 Six possible variants of BiTSC

In the development of BiTSC, we considered six possible variants of its algorithm, and we compared
them with BiTSC to justify our choice of BiTSC as the proposed algorithm. The performance
comparison is in Section 3.1.

1. Bipartite spectral clustering with kernel enhancement (Spectral-kernel). This algorithm ap-
plies kernel enhancement followed by bipartite spectral clustering to the original bipartite
network with node covariates. Comparing it with BiTSC would help us evaluate the effec-
tiveness of the subsampling-and-aggregation approach taken by BiTSC.
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Table 1 Input and output of BiTSC

Input data: bipartite network with node covariates
• A: m× n bi-adjacency matrix

• X1: m× p1 covariate matrix for side 1

• X2: n× p2 covariate matrix for side 2

Input parameters:
• H: number of subsampling runs

• ρ ∈ (0, 1): proportion of nodes to subsample in each run

• K0: number of node co-clusters to identify in each run

• α ∈ (0, 1): tightness parameter

Output:
• Tight node co-clusters that are mutually exclusive and collectively a subset of the (m+n)

nodes

Algorithm 1 Pseudocode of BiTSC

• For h = 1 to H:
1. Subsample m̃ = bρmc nodes from side 1 and ñ = bρnc nodes from side 2 to obtain a

subsampled bi-adjacency matrix Ã and two subsampled node covariate matrices X̃1 and
X̃2

2. Use kernel enhancement to construct an enhanced bi-adjacency matrix B̃ from Ã, X̃1

and X̃2

3. Find K0 initial node co-clusters from B̃ by bipartite spectral clustering

4. Obtain K0 node co-clusters by assigning the unsampled nodes into the K0 initial node
co-clusters; encode the K0 node co-clusters as a co-membership matrix M(h)

• Calculate the consensus matrix M̄ as the average of M(1), . . . ,M(H)

• Identify tight node co-clusters from M̄ with tightness parameter α
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2. Bipartite spectral clustering (Spectral). This algorithm removes the kernel enhancement step
from Spectral-kernel. Comparing it with Spectral-kernel would help us evaluate whether
kernel enhancement is useful.

3. BiTSC-1. This algorithm differs from BiTSC in terms of the timing of subsampling. Un-
like BiTSC, BiTSC-1 performs subsampling after applying kernel enhancement and bipartite
spectral clustering to the original bipartite network. The use of “1” in the algorithm name
means that bipartite spectral clustering is only applied for once. In detail, BiTSC-1 first per-
forms kernel enhancement on the original bipartite network with node covariates to obtain an
enhanced bi-adjacency matrix B. BiTSC-1 next applies bipartite spectral clustering, same as
in BiTSC but without the last K-means clustering step, to B to obtain V, an (m+ n)×K0

matrix. Then BiTSC-1 applies the subsampling-and-aggregation approach to the (m + n)
rows of V. Specifically, in the h-th run, h = 1, . . . ,H, BiTSC-1 has the following three
steps: (1) it randomly samples without replacement m̃ rows from the first m rows of V and
ñ rows from the last n rows of V; (2) it divides the subsampled (m̃+ ñ) rows into K0 initial
co-clusters using the K-means algorithm with Euclidean distance; (3) it assigns the unsam-
pled (m− m̃+n− ñ) nodes to the K0 initial co-clusters based on node covariates, same as in
BiTSC. The remaining steps of BiTSC-1, including the aggregation of these H sets of K0 node
co-clusters into a consensus matrix and the identification of tight node co-clusters, are the
same as those of BiTSC. Comparing BiTSC-1 with BiTSC will help us evaluate the effect of
the timing of subsampling, i.e., whether performing subsampling before kernel enhancement
and bipartite spectral clustering aids the identification of tight node co-clusters.

4. BiTSC-1-nokernel. This algorithm removes the kernel enhancement step from BiTSC-1. Com-
paring it to BiTSC-1 would help us evaluate whether kernel enhancement is useful given the
subsampling-and-aggregation approach.

5. BiTSC-1-NC. This algorithm modifies BiTSC-1 by changing how the unsampled nodes are
assigned into the K0 initial node co-clusters in each of the H runs. Specifically, BiTSC-1-NC
only differs from BiTSC-1 in step (3) of the h-th run, h = 1, . . . ,H, where BiTSC-1-NC
assigns the unsampled (m − m̃ + n − ñ) nodes to the K0 initial node co-clusters based on
their corresponding rows in V instead of their covariates. In detail, BiTSC-1-NC calculates
a mean vector for each initial node co-cluster as the average of its corresponding rows in V;
then BiTSC-1-NC assigns each unsampled node to the initial co-cluster whose mean vector
has the smallest Euclidean distance to the node’s corresponding row in V. Note that “NC”
in the algorithm name means that “no covariates” is used in the assignment step. Comparing
BiTSC-1-NC with BiTSC-1 would help us evaluate the effect of using node covariates in the
assignment step.

6. BiTSC-1-NC-nokernel. This algorithm removes the kernel enhancement step from BiTSC-1-
NC. When compared to BiTSC-1-NC, it can help us evaluate whether kernel enhancement is
useful in the absence of node covariates in the assignment step.

In summary, the above six possible variants of BiTSC can help us evaluate the design of
BiTSC. Three variants pose contrasts to BiTSC in three aspects: Spectral-kernel does not use the
subsampling-and-aggregation approach; BiTSC-1 uses a different timing for subsampling; BiTSC-
1-NC does not use node covariates in the assignment of unsampled nodes to initial node co-clusters.
The other three variants, Spectral, BiTSC-1-nokernel, and BiTSC-1-NC-nokernel, remove the ker-
nel enhancement from Spectral-kernel, BiTSC-1, and BiTSC-1-NC respectively to evaluate the
effectiveness of kernel enhancement.
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2.4 Data generation in simulation studies

Here we describe how we generate bipartite networks with node covariates in simulation studies
(Section 3.1). The generation process comprises three steps.

1. Network structure setup. To evaluate the capacity of BiTSC in detecting tight node co-
clusters and leaving out outlier nodes, we generate a bipartite network including two types of
nodes: clustered nodes in co-clusters and noise nodes that do not belong to any co-clusters.
We consider K non-overlapping node co-clusters, each of which contains n1 nodes from side
1 and n2 nodes from side 2. Hence, there are Kn1 and Kn2 clustered nodes on side 1 and 2,
respectively. We define θ as the ratio (# of noise nodes)/(# of clustered nodes). Then there
are bθKn1c and bθKn2c noise nodes on side 1 and 2, respectively. Therefore, the bipartite
network contains a total of m = Kn1 +bθKn1c nodes on side 1 and n = Kn2 +bθKn2c nodes
on side 2.

2. Edge generation. We generate independent binary edges between nodes by following a stochas-
tic block model (Nowicki and Snijders, 2001): if two nodes belong to the same co-cluster, an
edge between them is drawn from Bernoulli(p), where p ∈ (0, 1) is the within-cluster edge
probability; otherwise, an edge is drawn from Bernoulli(q), where q ∈ (0, p) is the not-within-
cluster edge probability smaller than p. A larger q/p ratio would lead to a more obscure node
co-cluster structure in the resulting bipartite network.

3. Covariate generation. We generate covariate vectors for clustered nodes and noise nodes
separately. First, we assume that nodes in each co-cluster on each side have covariate vec-
tors following a multivariate Gaussian distribution. In detail, for the n1 nodes in the k-th
co-cluster on side 1, we independently draw n1 vectors of length p1 from a p1-dimensional
Gaussian distribution N (µ1k, (ω1k)2Ip1), k = 1, . . . ,K. Note that the larger the co-cluster
index k, the more spread out the n1 covariate vectors are around the mean µ1k. The K co-
cluster mean vectors on side 1, µ11, . . . ,µ1K , are independently drawn from a p1-dimensional
Gaussian prior N (0, σ21Ip1). Nodes in co-clusters on side 2 are simulated similarly from K
p2-dimensional Gaussian distributions N (µ2k, (ω2k)2Ip2), with the co-cluster mean vectors on
side 2, µ21, . . . ,µ2K , independently drawn from a p2-dimensional Gaussian prior N (0, σ22Ip2).
Second, for noise nodes that do not belong to any co-clusters on each side, we randomly gen-
erate their covariate vectors from uniform distributions defined by the ranges of the already-
generated covariate vectors of clustered nodes. In detail, on side 1, we take the Kn1 clustered
nodes and define a range based on their values in each of the p1 dimensions. Then we in-
dependently draw bθKn1c scalars uniformly from the range of each dimension to construct
bθKn1c covariate vectors of length p1. Similarly, we simulate covariate vectors of noise nodes
on side 2.

In summary, the data generation process requires the following input parameters: K, the num-
ber of true co-clusters; nr, the number of nodes in each co-cluster on side r; θ, the ratio of the
number of noise nodes over the number of clustered nodes; p, the within-cluster edge probability;
q, the not-within-cluster edge probability; pr, the dimension of covariate vectors on side r; ωr, the
parameter for within-cluster variance on side r; σ2, the variance parameter for generating co-cluster
mean vectors on side r, r = 1, 2. For a concrete example of data generation, see Supplementary
Section S1.
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2.5 Data processing in the real data application

In the real data application of BiTSC (Section 3.2), the D. melanogaster (fly) and C. elegans
(worm) data set consists of two parts: gene expression data and gene orthology information. For
gene expression data, we started with 15,095 fly protein-coding genes’ expression levels across 30
developmental stages and 44,969 worm protein-coding genes’ expression levels across 35 develop-
mental stages. Note that the gene expression levels are in the FPKM (Fragments Per Kilobase of
transcript per Million mapped reads) unit and were processed from RNA-seq data collected by the
modENCODE Consortium (Gerstein et al., 2014; Li et al., 2014). For gene orthology information,
we started with 11,403 ortholog pairs between the above mentioned fly and worm genes (obtained
and processed from the TreeFam database (Li et al., 2006, 2014)). Then we removed all the fly
and worm genes that have zero expression levels across all the developmental stages, leaving us
with 5,414 fly genes, 5,731 worm genes, and 10,975 ortholog pairs. After that, we performed the
logarithmic transformation on the gene expression levels and standardized the transformed levels by
subtracting the mean and dividing the standard deviation for every gene (Supplementary Section
S5). Finally, we built a bipartite network of fly and worm genes by connecting orthologous genes,
and we collected every gene’s standardized expression levels into its node covariate vector. In this
resulting bipartite network with node covariates (Table 1), m = 5, 414, n = 5, 731, p1 = 30, and
p2 = 35. The average degree of this bipartite network is 1.97 (Supplementary Section S2).

2.6 Statistical analysis of identified gene co-clusters

Here we introduce three hypothesis tests, which are designed to analyze the gene co-clusters iden-
tified by BiTSC in the real data application (Section 3.2). The three tests are from Li et al. (2014)
and described in detail below. Note that we only include biological process (BP) gene ontology
(GO) terms in the GO term enrichment test and the GO term overlap test for ease of interpretation.
The GO terms are from the R package GO.db (Carlson, 2019).

2.6.1 GO term enrichment test

Given a gene co-cluster, the GO term enrichment test is to check for each species, whether a GO
term is enriched in this co-cluster relative to all the genes in that species. The top enriched GO
terms would indicate the biological functions of this co-cluster in each species.

Suppose that there are u genes of species 1 in this co-cluster, v of which are annotated with
a given GO term. Also suppose that species 1 has a total of U genes, V of which are annotated
with the same GO term. The null hypothesis is that this GO term has the same enrichment level
in the u genes as in the U genes, i.e., the u genes are randomly sampled from the U genes. The
alternative hypothesis is that this GO term is more enriched in the u genes relative to the U genes.
Under the null hypothesis, X, the number of genes that are annotated with this GO term among
any u genes, follows a hypergeometric distribution with the following probability mass function

P (X = x) =

(
V
x

)(
U−V
u−x

)(
U
u

) , x = 0, 1, · · · ,min(V, u) .

Hence, this test has a p-value defined below and denoted by P1.

P1 = P (X ≥ v) =

min(V,u)∑
x=v

(
V
x

)(
U−V
u−x

)(
U
u

) .

We implemented this test, which is equivalent to the one-tail Fisher’s exact test, using the R package
topGO (Alexa and Rahnenfuhrer, 2019).
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2.6.2 GO term overlap test

Given a gene co-cluster, the GO term overlap test is to check whether the genes from the two species
share similar biological functions, i.e., whether the two sets of genes have a significant overlap in
their annotated GO terms.

Specifically, for this co-cluster, we denote by A and B the sets of GO terms associated with
its genes in species 1 and 2, respectively. We define a population of N GO terms as the set of
terms associated with any genes in species 1 or 2. The null hypothesis is that A and B are two
independent samples from the population, i.e., the common GO terms shared by two species in
this co-cluster is purely due to a random overlap. The alternative hypothesis is that A and B are
positively dependent samples. Under the null hypothesis that two samples with sizes |A| and |B|
are independently drawn from the population, Y , the number of common GO terms shared by the
two samples, has the following probability mass function

P (Y = y) =

(
N
y

)(N−y
|A|−y

)(N−|A|
|B|−y

)(
N
|A|
)(

N
|B|
) , y = 0, 1, · · · ,min(|A|, |B|) .

Hence, this test has a p-value defined below and denoted by P2.

P2 = P (Y ≥ |A ∩B|) =

min(|A|,|B|)∑
y=|A∩B|

(
N
y

)(N−y
|A|−y

)(N−|A|
|B|−y

)(
N
|A|
)(

N
|B|
) .

2.6.3 Ortholog enrichment test

Given a gene co-cluster, the ortholog enrichment test is to check whether the genes from the two
species are rich in orthologs. This test will work as a sanity check for BiTSC, which is expected to
output co-clusters enriched with orthologs.

For example, given D. melanogaster (fly) and C. elegans (worm), the two species in our real
data application (Section 3.2), we denote the population of ortholog pairs between fly and worm
by O = {(f1, w1), · · · , (fM , wM )}, where fi and wi are the fly gene and worm gene in the i-th
ortholog pair. Note that f1, . . . , fM contain repetitive genes and so do w1, · · · , wM . Given a co-
cluster, F denotes its set of fly genes, and F ′ = {(fi, wi) : fi ∈ F} denotes the set of ortholog
pairs whose fly genes are in F . Similarly, W denotes the set of worm genes in this co-cluster, and
W ′ = {(fi, wi) : wi ∈ W} denotes the set of ortholog pairs whose worm genes are in W . Note
that F ′ ∩W ′ is the set of ortholog pairs between fly genes in F and worm genes in W . The null
hypothesis is that F ′ and W ′ are two independent samples from O, i.e., their common ortholog
pairs in F ′ ∩W ′ are purely due to a random overlap. The alternative hypothesis is that F ′ and W ′

are positively dependent samples. Under the null hypothesis that two samples with sizes |F ′| and
|W ′| are independently drawn from O, Z, the number of ortholog pairs shared by the two samples,
has the following probability mass function

P (Z = z) =

(
M
z

)(
M−z
|F ′|−z

)(M−|F ′|
|W ′|−z

)(
M
|F ′|
)(

M
|W ′|
) , z = 0, 1, · · · ,min(|F ′|, |W ′|) .

Hence, this test has a p-value defined below and denoted by P3.

P3 = P (Z ≥ |F ′ ∩W ′|) =

min(|F ′|,|W ′|)∑
z=|F ′∩W ′|

(
M
z

)(
M−z
|F ′|−z

)(M−|F ′|
|W ′|−z

)(
M
|F ′|
)(

M
|W ′|
) .
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3 Results

3.1 Simulation validates the design and robustness of BiTSC

We designed multiple simulation studies to justify the algorithm design of BiTSC by comparing it
with the six possible variants listed in Section 2.3: spectral-kernel, spectral, BiTSC-1, BiTSC-1-
nokernel, BiTSC-1-NC, and BiTSC-1-NC-nokernel.

We use the weighted Rand index (Thalamuthu et al., 2006), defined in Supplementary Sec-
tion S3, as the evaluation measure of co-clustering results. The weighted Rand index compares
two sets of node co-clusters: the co-clusters found by an algorithm and the true co-clusters used to
generate data, and outputs a value between 0 and 1, with a value of 1 indicating perfect agreement
between the two sets. The weighted Rand index is a proper measure for evaluating BiTSC and its
variants because it accounts for noise nodes that do not belong to any co-clusters.

We compared BiTSC with its six possible variants in identifying node co-clusters from simulated
networks with varying levels of noise nodes (i.e., θ in Section 2.4) and varying average degrees of
nodes. It is expected that the identification would become more difficult as the level of noise
nodes increases or the average degree decreases. Our results in Figure 2 are consistent with this
expectation. Figure 2 also shows that BiTSC consistently outperforms its six variant algorithms at
all noise node levels and average degrees greater than five. This phenomenon is reasonable because
BiTSC performs subsampling on the network, and the subsampled network, if too sparse, would
make the bipartite spectral clustering algorithm fail. In fact, the three algorithms that outperform
BiTSC for sparse networks, i.e., spectral-kernel, BiTSC-1, and BiTSC-1-NC, only perform the
bipartite spectral clustering on the entire network, so they are more robust to network sparsity.
Additionally, we observe that the three variants that do not use kernel enhancement consistently
have the worst performance. In summary, BiTSC has a clear advantage over its possible variants
in the existence of noise nodes and when the network is not overly sparse. These results confirm
the effectiveness of the subsampling-and-aggregation approach and the kernel enhancement step,
and they also show that performing subsampling as the first step is beneficial if the network is not
too sparse, thus justifying our design of the BiTSC algorithm.

In addition to validating the design of BiTSC, we also performed robustness analysis of BiTSC
to its input parameters: K0 (the number of co-clusters to identify in each subsampling run) and
ρ (the proportion of nodes to subsample in each run) (Supplementary Section S4). We find that
BiTSC performs well when K0 is set to be equal to or larger than K, the number of true co-
clusters (Supplementary Figure S3a). For ρ, we recommend a default value of 0.8 (Supplementary
Figure S3b). Overall, our results show that BiTSC is robust to the specification of these two tuning
parameters.

3.2 BiTSC identifies gene co-clusters from D. melanogaster and C. elegans
timecourse gene expression data and predicts unknown gene functions

In this section, we demonstrate how BiTSC is capable of identifying conserved gene co-clusters
of D. melanogaster (fly) and C. elegans (worm). We compared BiTSC with an existing method
OrthoClust (Yan et al., 2014) and performed a series of downstream bioinformatics analysis to both
validate BiTSC and verify the biological significance of its identified co-clusters.
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Figure 2: Performance of BiTSC vs. its six variant algorithms (Section 2.3). The weighted Rand
index is plotted as a function of (a) noise node level or (b) average degree. The data sets are
simulated using the approach described in Section 2.4. For both (a) and (b), we set K = 15,
n1 = 50, n2 = 70, p1 = p2 = 2, σ1 = σ2 = 10, and ω1 = ω2 = 0.1. For (a), we vary the noise
node level θ from 0 to 2, and set p = 0.15 and q = 0.03. For (b), we set θ = 0.5, vary p from 0.005
to 0.175, set q = p/5, and as a result vary the average degree from 1 to 51 (see Supplementary
Section S2 for details about the average degree). For the input parameters of the algorithms, we
choose H = 50, ρ = 0.8,K0 = 15, and α = 0.7.

3.2.1 BiTSC outperforms OrthoClust in identifying gene co-clusters with enriched
ortholog pairs and similar expression levels

We first compared BiTSC to OrthoClust, a method that also identifies gene co-clusters by simul-
taneously using gene expression and orthology information. We chose OrthoClust as the baseline
method to evaluate BiTSC because OrthoClust is the only recent method that does not (1) have
strong distributional assumptions like SCSC (Cai et al., 2010) or (2) exclude genes that are not in
one-to-one orthologs like MVBC (Sun et al., 2016). Moreover, OrthoClust is a unipartite network-
based method, so its comparison with BiTSC would inform the effectiveness of our bipartite network
formulation.

We applied BiTSC and OrthoClust to the D. melanogaster and C. elegans developmental-stage
RNA-seq data generated by the modENCODE consortium (Gerstein et al., 2014) and the gene
orthology annotation from the TreeFam database (Li et al., 2006). For data processing, please see
Section 2.5. We ran BiTSC with input parameters H = 100, ρ = 0.8, K0 = 30, and α = 0.9. For the
choices of K0 and α, please see Supplementary Section S6 and Supplementary Materials. We ran
OrthoClust by following the instruction on its GitHub page (https://github.com/gersteinlab/
OrthoClust accessed on Nov 12, 2019). For details regarding the computational time of BiTSC
and OrthoClust, please see Supplementary Section S7. To compare BiTSC and OrthoClust, we
picked a similar number of large gene co-clusters identified by either method: 16 BiTSC co-clusters
with at least 10 genes in each species (Table 2) vs. 14 OrthoClust co-clusters with at least 2 genes
in each species (Supplementary Table S1). Compared with OrthoClust, the co-clusters identified
by BiTSC are more balanced in sizes between fly and worm. In contrast, OrthoClust co-clusters
typically have many genes in one species but few genes in the other species; in particular, if we
restricted the OrthoClust co-clusters to have at least 10 genes in each species, only two co-clusters
would be left. We evaluated both methods’ identified co-clusters in two aspects: the enrichment
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of orthologous genes and the similarity of gene expression levels in each co-cluster. Figure 3 shows
that the BiTSC co-clusters exhibit both stronger enrichment of orthologs and higher similarity of
gene expression than the OrthoClust co-clusters do. Therefore, the gene co-clusters identified by
BiTSC have better biological interpretations than their OrthoClust counterparts because of their
more balanced gene numbers in two species, greater enrichment of orthologs, and better grouping
of genes with similar expressions.
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Figure 3: Comparison of BiTSC and OrthoClust in terms of their identified fly-worm gene co-
clusters (Section 3.2). (a) Distributions of within-cluster enrichment of ortholog pairs. For BiTSC
and OrthoClust, a boxplot is shown for the − log10 P3 values calculated by the ortholog pair en-
richment test (Section 2.6.3) on the identified gene co-clusters. Larger − log10 P3 values indicate
stronger enrichment. (b): Distributions of within-cluster gene expression similarity. For BiTSC
and OrthoClust, a boxplot is shown for the average pairwise Pearson correlation coefficients (PCCs)
between genes of the same species within each identified co-cluster. (c): Within-cluster gene ex-
pression similarity vs. ortholog enrichment. Each point corresponds to one co-cluster identified by
BiTSC or OrthoClust. The − log10 P3 and average PCC values are the same as those shown in (a)
and (b).

3.2.2 Functional analysis verifies the biological significance of BiTSC gene co-clusters

We next analyzed the 16 gene co-clusters identified by BiTSC. First, we verified that genes in each
co-cluster exhibit similar functions within fly and worm. We performed the GO term enrichment
test (Section 2.6.1) for each co-cluster in each species. The results are summarized in Figure 4
and Supplementary Materials, which show that every co-cluster has strongly enriched GO terms
with extremely small p-values, i.e., P1 values. Hence, genes in every co-cluster indeed share similar
biological functions within fly and worm. We also calculated the pairwise Pearson correlation
coefficients between genes of the same species within each co-cluster (Figure 5). The overall high
correlation values also confirm the within-cluster functional similarity in each species. Second, we
show that within each co-cluster, genes share similar biological functions between fly and worm. We
performed the GO term overlap test (Section 2.6.2), which output small p-values, i.e., P2 values,
suggesting that fly and worm genes in each co-cluster have a significant overlap in their GO terms.
Figure 4 also illustrates this functional similarity between fly and worm genes in the same co-cluster.
In summary, the 16 gene co-clusters exhibit clear biological functions, some of which are conserved
between fly and worm.

The above analysis results are summarized in Table 2. Specifically, for each co-cluster, Table 2
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lists the numbers of fly and worm genes, the numbers of genes lacking BP GO term annotations,
example GO terms enriched in both species by the GO term enrichment test, and p-values from the
GO term overlap test and the ortholog enrichment test (Section 2.6). Interestingly, we observe that
when BiTSC identifies co-clusters, it simultaneously leverages gene expression similarity and gene
orthology to complement each other. For example, co-clusters 10 and 11 do not have strong enrich-
ment of orthologs but exhibit extremely high similarity of gene expression in both fly and worm;
on the other hand, co-cluster 13 have relatively weak gene expression similarity but particularly
strong enrichment of orthologs. This advantage of BiTSC would enable it to identify conserved
gene co-clusters even based on incomplete orthology information.

We further visualized the 16 gene co-clusters using the concensus matrix M̄. Figure 6 plots the
fly and worm genes in these co-clusters, as well as 1,000 randomly sampled unclustered genes as
a background. Supplementary Figure S5 shows that the pattern of the 16 co-clusters is robust to
the random sampling of unclustered genes. We observe that many co-clusters are well separated,
suggesting that genes in these different co-clusters are rarely clustered together. We also see that
some co-clusters are close to each other, including co-clusters 1 and 12, co-clusters 9 and 16, and
co-clusters 10, 11 and 14. To investigate the reason behind this phenomenon, we inspected Table 2
and Figure 4 to find that overlapping co-clusters share similar biological functions. This result
again confirms that the identified gene co-clusters are biologically meaningful.

Moreover, we computationally validated BiTSC’s capacity of predicting unknown gene func-
tions. Many co-clusters contain genes that do not have BO GO terms. For each of these genes,
we predicted its BP GO terms as its co-cluster’s top enriched BP GO terms. Then we compared
the predicted BP GO terms with the gene’s other functional annotation, in particular, molecular
function (MF) or cellular component (CC) GO terms. Our comparison results in Supplementary
Figure S6 show that the predicted BP GO terms are highly compatible with the known MF or CC
GO terms, suggesting the validity of our functional prediction based on the BiTSC co-clusters.

4 Code availability

The Python package BiTSC is open-access and available at https://github.com/edensunyidan/BiTSC.

5 Discussion

BiTSC is a general bipartite network clustering algorithm. It is unique in identifying tight node
co-clusters such that nodes in a co-cluster share similar covariates and are densely connected. In
addition to cross-species gene co-clustering, BiTSC has a wide application potential in biomedical
research. In general, BiTSC is applicable to computational tasks that can be formulated as a bi-
partite network clustering problem, where edges and node covariates jointly indicate a co-clustering
structure. Here we list three examples. The first example is the study of transcription factor (TF)
co-regulation. In a TF-gene bipartite network, TFs and genes constitute nodes of two sides, an
edge indicates that a TF regulates a gene, and node covariates are expression levels of TFs and
genes. BiTSC can identify TF-gene co-clusters so that every co-cluster indicates a group of TFs
co-regulating a set of genes. The second example is cross-species cell clustering. One may construct
a biparite cell network, in which cells of one species form nodes of one side, by drawing an edge
between cells of different species if the two cells are similar in some way, e.g., co-expression of
orthologous genes. Node covariates may be gene expression levels and other cell characteristics.
Then BiTSC can identify cell co-clusters as conserved cell types in two species. The third example
is drug repurposing. One may construct a drug-target bipartite network by connecting drugs to
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their known targets (usually proteins) and including biochemical properties of drugs and targets as
node covariates (Mei et al., 2013). BiTSC can then identify drug-target co-clusters to reveal new
potential targets of drugs.

A natural generalization of BiTSC is to identify node co-clusters in a multipartite network, which
has more than two types of nodes. An important application of multipartite network clustering is
the identification of conserved gene co-clusters across multiple species. Here we describe a possible
way of generalizing BiTSC in this application context. Suppose that we want to identify conserved
gene co-clusters across three species: Homo sapiens (human), Mus musculus (mouse), and Pan
troglodytes (chimpanzee). We can encode the three-way gene orthology information in a tripartite
network and include gene expression levels as node covariates. To generalize BiTSC, we may
represent the tripartite network as three bi-adjacency matrices (one for human and mouse, one
for human and chimpanzee, and one for mouse and chimpanzee) and three covariate matrices, one
per species. A key step in this generalization is to stack three (subsampled and kernel-enhanced)
bi-adjacency matrices into a unipartite adjacency matrix and apply spectral clustering. Other parts
of BiTSC, such as the subsampling-and-aggregation approach, the assignment of unsampled nodes,
and the hierarchical clustering in the last step to identify tight co-clusters, will stay the same.

BiTSC is also generalizable to find tight node co-clusters in a bipartite network with node
covariates on only one side or completely missing. In the former case, we will perform a one-sided
kernel enhancement on the bi-ajdancecy matrix by using available node covariates on one side. We
also need to perform bipartite spectral clustering on the whole network to obtain an Euclidean
embedding, i.e., the matrix V in BiTSC-1 (Methods Section), for the nodes without covariates.
Then we can apply the same subsampling-and-aggregation approach as in BiTSC, except that in
each subsampling run we will assign the unsampled nodes without covariates into initial co-clusters
based on Euclidean embedding instead of node covariates. In the latter case where all nodes have
no covariates, we will skip the kernel enhancement step, and BiTSC-1-NC, a variant of BiTSC
described in Methods Section, will be applicable.

Another extension of BiTSC is to output soft co-clusters instead of hard co-clusters. In soft
clustering, a node may belong to multiple clusters in a probabilistic way, allowing users to detect
nodes whose cluster assignment is ambiguous. Here we describe two ideas of implementing soft
clustering in BiTSC. The first idea is that after we obtain the consensus matrix (M̄), we replace
the current hierarchical clustering by spectral clustering to find the final co-clusters; inside spectral
clustering, we use fuzzy c-means clustering (Dunn, 1973; Bezdek, 1981) instead of the regular K-
means to find soft co-clusters. The second idea is that after we obtain the distance matrix (1−M̄),
we use multidimensional scaling to find a two-dimensional embedding of the nodes and then perform
fuzzy c-means clustering to find soft co-clusters.

To summarize, BiTSC is a flexible algorithm that is generalizable for multipartite networks,
bipartite networks with partial node covariates, and soft node co-clustering. This flexibility will
make BiTSC a widely-applicable clustering method in network analysis.
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Table 2: Fly-worm gene co-clusters identified by BiTSC (Results Section)

Co-cluster # of fly genes1 # of worm genes Examples BP GO terms highly enriched in both species3 P2
4 P3

5

(without GO2) (without GO)

1 106 (19) 83 (15) Chemical synaptic transmission; synaptic signaling 1.35e-07 2.77e-53
2 46 (8) 119 (28) Muscle cell development 1.70e-09 1.50e-17
3 75 (3) 83 (6) Peptide and amide biosynthetic process 1.17e-08 6.23e-180
4 73 (4) 50 (13) ATP metabolic process 2.72e-12 1.61e-58
5 57 (4) 62 (8) Protein catabolic process; proteolysis 3.15e-09 3.15e-56
6 83 (4) 36 (8) Mitochondrial translation; mitochondrial gene expression 2.60e-03 2.04e-32
7 89 (13) 25 (8) Protein localization to endoplasmic reticulum 2.69e-10 7.72e-22
8 80 (16) 26 (11) Ribosome biogenesis; RNA metabolic processing 2.05e-16 7.50e-37
9 29 (3) 76 (19) Cilium and cell projection organization 2.03e-09 3.81e-05
10 32 (2) 24 (6) DNA replication and metabolic process 2.98e-06 6.53e-02
11 25 (4) 19 (4) DNA replication 2.46e-06 1.00e-00
12 28 (4) 15 (4) G protein-coupled glutamate receptor signaling pathway 4.17e-14 1.81e-10
13 16 (7) 25 (12) Glycoside catabolic process; transmembrane transport 1.52e-02 5.29e-46
14 15 (1) 24 (4) DNA metabolic process; cell cycle process 1.83e-05 3.11e-02
15 24 (2) 11 (1) Oxidation-reduction process 1.41e-03 2.36e-31
16 14 (0) 15 (1) Cilium organization; cell projection assembly 1.20e-07 1.83e-02

1 Number of fly genes in the co-cluster.
2 Number of fly genes without BP GO term annotations in the co-cluster.
3 Examples of BP GO terms that are highly enriched in both species in the co-cluster.

These example BP GO terms are used as labels of the co-clusters in Figure 6.
4 p-value of the co-cluster based on the GO term overlap test.
5 p-value of the co-cluster based on the ortholog enrichment test.
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anion transport
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purine ribonucleoside triphosphate metabolic process
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proteolysis involved in cellular protein catabolic process
cellular protein catabolic process
proteasomal protein catabolic process
protein catabolic process
proteolysis
mitochondrial translation
mitochondrial gene expression
protein deglutathionylation
response to endoplasmic reticulum stress
IRE1−mediated unfolded protein response
endoplasmic reticulum unfolded protein response
cellular response to unfolded protein
ribosome biogenesis
ribonucleoprotein complex biogenesis
ncRNA processing
ncRNA metabolic process
rRNA processing
cell projection organization
cilium organization
plasma membrane bounded cell projection organization
cilium assembly
plasma membrane bounded cell projection assembly
DNA metabolic process
chromosome organization
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DNA replication
nuclear chromosome segregation
DNA−dependent DNA replication
cellular response to DNA damage stimulus
cellular response to stress
glutamate receptor signaling pathway
adenylate cyclase−modulating G protein−coupled receptor signaling pathway
G protein−coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger
G protein−coupled receptor signaling pathway
adenylate cyclase−inhibiting G protein−coupled glutamate receptor signaling pathway
glycosyl compound metabolic process
purine nucleoside metabolic process
purine ribonucleoside metabolic process
sulfur amino acid biosynthetic process
sulfur amino acid metabolic process
cellular macromolecule metabolic process
cell cycle
primary metabolic process
cell cycle process
oxidation−reduction process
ammonium transmembrane transport
ammonium transport
heme o metabolic process
heme O biosynthetic process
cell projection assembly
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Figure 4: Top five enriched BP GO terms in each of the 16 fly-worm gene co-clusters identified
by BiTSC. (a) GO terms enriched in fly genes of each co-cluster. (b) GO terms enriched in worm
genes of each co-cluster. The p-value (P1 value) of each GO term is computed by the GO term
enrichement test. Smaller P1 values are shown in darker colors to indicate stronger enrichment.
For each co-cluster, the top enriched GO terms common to fly and worm are highlighted in green.
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Figure 5: Boxplots of pairwise Pearson correlation coefficients in each species within each of the 16
fly-worm gene co-clusters identified by BiTSC. In each co-cluster, the Pearson correlation coefficient
is computed for every two genes of the same species based on their expression levels, i.e., covariate
vectors.
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Figure 6: Visualization of the 16 gene co-clusters found by BiTSC from the fly-worm gene network.
The visualization is based on the consensus matrix M̄ using the R package igraph (Csardi and
Nepusz, 2006) (https://igraph.org, the Fruchterman-Reingold layout algorithm). Genes in the
16 co-clusters are marked by distinct colors, with squares and circles representing fly and worm
genes respectively. For each co-cluster, representative BP GO terms are labeled (Table 2). 1,000
randomly-chosen unclustered genes are also displayed and marked in white. In this visualization,
both the gene positions and the edges represent values in M̄. The higher the consensus value
between two genes, the closer they are positioned, and the darker the edge is between them. If the
consensus value is zero, then there is no edge.
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Supplementary Information

Bipartite Tight Spectral Clustering (BiTSC) Algorithm for

Identifying Conserved Gene Co-clusters in Two Species

Yidan Eden Sun, Heather J. Zhou and Jingyi Jessica Li

S1 Simulation example

Here we show an example bipartite network simulated using the approach described in Methods
Section, with H = 50, n1 = 50, n2 = 70, p1 = p2 = 2, σ1 = σ2 = 10, ω1 = ω2 = 0.1, θ = 0.5,
q/p = 5, and q = 0.03. Figure S2a-b illustrate the bi-adjacency matrix and the true co-membership
matrix of this simulated network. Figure S2c-d show the node covariates.

S2 Average degree

Here we use the same notations as in Methods Section, where the simulation approach is described.
Within each of the K true co-clusters, there are n1 and n2 nodes on side 1 and 2, respectively. The
noise node ratio is denoted by θ; that is, there are bn1Kθc and bn2Kθc noise nodes on side 1 and 2.
Hence, in total there are m = n1K+ bn1Kθc nodes on side 1 and n = n2K+ bn2Kθc nodes on side
2. Recall that A = (aij)m×n is the bi-adjacency matrix. Let λ1i =

∑n
j=1 aij and λ2j =

∑m
i=1 aij be

the degree of node i on side 1 and node j on side 2, respectively. Then, the average degree of the
network is

λ =

∑m
i=1 λ1i +

∑n
j=1 λ2j

m+ n
=

2
∑m

i=1

∑n
j=1 aij

m+ n
. (S1)

S3 Evaluation metric of clustering result

In the simulation study (Results Section), we use the weighted Rand index (Thalamuthu et al.,
2006), which the extension of the adjusted Rand index (Hubert and Arabie, 1985), to evaluate the
clustering result by comparing the identified co-clusters to the true co-clusters. The weighted Rand
index was developed for the case where noise nodes exist and should stay unclustered. We use V =
{V1,V2, . . . ,VK ,VK+1} to denote the true node cluster membership, where V1,V2, . . . ,VK indicate
the K true co-clusters and VK+1 indicates the set of noise nodes. We use Ṽ = {Ṽ1, Ṽ2, . . . , ṼC , ṼC+1}
to denote the clustering result, where Ṽ1, Ṽ2, . . . , ṼC indicate the C identified co-clusters and ṼC+1

represents the set of unclustered nodes.
Thalamuthu et al. proposed two types of adjusted Rand index. The first one, Rand1(V, Ṽ),

considers VK+1 and ṼC+1 as two regular clusters:

Rand1(V, Ṽ) =

∑K+1
i=1

∑C+1
j=1

(Nij

2

)
−
∑K+1

i=1

(
Ni·
2

)∑C+1
j=1

(N·j
2

)
/
(
N
2

)
0.5
[∑K+1

i=1

(
Ni·
2

)
+
∑C+1

j=1

(N·j
2

)]
−
∑K+1

i=1

(
Ni·
2

)∑C+1
j=1

(N·j
2

)
/
(
N
2

) ,
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where Nij = |Vi ∩ Ṽj |, Ni· =
∑C+1

j=1 Nij , N·j =
∑K+1

i=1 Nij , and N =
∑K+1

i=1

∑C+1
j=1 Nij . Note that N

denotes the total number of nodes.
The second index Rand2(V, Ṽ) ignores VK+1 and ṼC+1:

Rand2(V, Ṽ) =

∑K
i=1

∑C
j=1

(Nij

2

)
−
∑K

i=1

(
Ñi·
2

)∑C
j=1

(Ñ·j
2

)
/
(
Ñ
2

)
0.5
[∑K

i=1

(
Ñi·
2

)
+
∑C

j=1

(Ñ·j
2

)]
−
∑K

i=1

(
Ñi·
2

)∑C
j=1

(Ñ·j
2

)
/
(
Ñ
2

) ,
where Ñi· =

∑C
j=1Nij , Ñ·j =

∑K
i=1Nij and Ñ =

∑K
i=1

∑C
j=1Nij .

Rand1(V, Ṽ) is biased against clustering methods that do not allow unclustered nodes, especially
when the number of noise nodes is large. On the other hand, Rand2(V, Ṽ) is biased against clustering
methods that allow unclustered nodes. To balance the two, the weight Rand index was proposed
as a weighted sum of the two indices (Thalamuthu et al., 2006):

Rand(V, Ṽ) = λ · Rand1(V, Ṽ) + (1− λ) · Rand2(V, Ṽ) , (S2)

where λ = |VK+1 ∪ ṼC+1|/N .
We implemented the weighted Rand index by using the adjusted rand score function in the

Python package sklearn (Pedregosa et al., 2011).

S4 Robustness analysis of input parameters

Figure S3 shows the robustness analysis of BiTSC and its three variants: Spectral-kernel, BiTSC-
1, and BiTSC-1-NC, against input parameters K0 (the number of co-clusters in each subsampling
run), ρ (the subsampling proportion), and τ (the kernel enhancement parameter), in the simulation
setting (Methods Section). We observe that BiTSC is robust to the choice of K0 when K0 is larger
than K, the number of true co-clusters. BiTSC outperforms the three variants when ρ is larger
than 0.7, and BiTSC is robust to the choice of τ . Hence, we set ρ = 0.8 and τ = (1, 1) as the
default input parameters in BiTSC.

Interestingly, BiTSC-1-NC has weighted Rand indices that are extremely close to those of
Spectral-kernel and invariant to ρ in Figure S3b. Spectral-kernel does not use subsampling, so it
is expected to have a constant weighted Rand index invariant to ρ. However, BiTSC-1-NC uses
subsampling, so its weighted Rand index should depend on ρ. We investigated this phenomenon
and found that BiTSC-1-NC has weighted Rand indices not exactly the same but very close in
values:

ρ Weighted Rand index

0.3 0.7708656319227645
0.4 0.7706005330861144
0.5 0.7710055546541685
0.6 0.7711873136856517
0.7 0.7712402375720288
0.8 0.7713976529947345
0.9 0.7715965812884181

This result suggests that BiTSC-1-NC, where we only do subsampling on V and do not use
node covariates but only rows in V to assign unsampled nodes in each subsampling run (Methods
Section), is very robust to ρ and highly similar to Spectral-kernel. This result is consistent with
what we observed in Figure 2.
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S5 Processing of gene expression levels

Gene expression values in the FPKM (Fragments Per Kilobase of transcript per Million mapped
reads) unit are typically highly skewed with the presence of extremely large values. Logarithmic
transformation has been widely used to transform FPKM values to reduce the effects of outliers
and to make the transformed values more normally distributed (Danielsson et al., 2015; Zwiener
et al., 2014; Pertea et al., 2016). Following the notations in Methods Section, for gene i on side r,
we constructed its j-th covariate as

xrij =
lrij − l̄ri·√∑pr

j=1(lrij − l̄ri·)2/(pr − 1)
, (S3)

where lrij = log2(FPKMrij + 1) and l̄ri· =
∑pr

j=1 lrij/pr. In other words, the gene covariates are
standardized log-transformed FPKM values. We used these covariates in our fly-worm data analysis
in Section 2.5.

S6 Choice of K0 in real data example

In our simulation study in Section S4, we observed that BiTSC is robust to K0 values above K,
the number of true co-clusters. However, in real data applications, we do not know K. Here we
explain how we used the consensus distribution (Monti et al., 2003) to choose K0 = 30 in the real
data application in Results Section.

The idea of using the consensus distribution to guide the choice of K0 is the following: since the
entries of the consensus matrix M̄ lie between 0 and 1, with each entry indicating how frequently
two nodes are grouped into the same co-cluster, a good K0 should lead to many consensus values
close to 0 or 1 and few close to 0.5. Following (Monti et al., 2003), we applied BiTSC (H = 48
and ρ = 0.8) to the fly-worm data, with K0 ranging from 2 to 100. For each K0 and its resulting
consensus matrix, we plotted the empirical cumulative distribution function (CDF) of the matrix
entries in Figure S4a. We also plotted the area under the CDF curve as a function of K0 in
Figure S4b. We chose K0 = 30 because the area under the CDF curve plateaus after this point.

S7 Computational time

Under Ubuntu 16.04.6 LTS (GNU/Linux 4.4.0−157−generic x86 64), the computational time for
the real data analysis is: BiTSC with a single subsampling run took 161 seconds using a single
core, and OrthoClust took 258 seconds.

S8 Supplementary Materials

The “Supplementary Materials” file is available at https://www.dropbox.com/sh/6bmtpkyx8b5v94v/
AACZCNcQwQzUp5zH5cnBhPOra?dl=0

• Folder Code: R code for reproducing the statistical analysis in Methods Section

– P 1.R: R code to perform the GO term enrichment test (Methods Section) within each
co-cluster. The results are in the folder P1

– P 2.R: R code to perform the GO term overlap test (Methods Section). The results are
in P 2.xls
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– P 3.R: R code to perform the ortholog enrichment test (Methods Section). The results
are in P 3.xls

• Folder FlyWorm Result:

– Folder P 1

– P 2.xls

– P 3.xls

• Folder Figures:

– heatmap.pdf: In the application of BiTSC to the fly-worm bipartite network with input
parameters H = 100, ρ = 0.8, and K0 = 30, we varied the value of α in the set

{1.0, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88, 0.86, 0.84}

For each α value, we collected the nodes in the resulting tight co-clusters, which we
required to have at least 10 nodes on each side, and plotted a heatmap of the submatrix
of M̄ that corresponds to these nodes. Then we compared the number of visible blocks
in the heatmap with the number of tight co-clusters. Our goal was to choose a large
α value for which the two numbers are close, and we chose α = 0.9 for our analysis in
Results Section.

Table S1: Fly-worm gene co-clusters identified by OrthoClust (Results Section)

Co-cluster1 # of genes # of genes P2
2 P3

3 Average PCC4 Average PCC Average PCC5

Fly Worm Fly Worm Total
1 216 4 2.54e-03 1.25e-07 0.52758649 0.27495886 0.52752971
2 296 5 4.39e-02 1.14e-08 0.11182023 -0.09538319 0.11177321
3 999 3 9.57e-01 6.71e-04 0.51022172 -0.22759466 0.51021819
4 449 3 3.95e-02 6.07e-05 0.54076835 0.30057179 0.54076212
5 646 5 2.14e-01 4.88e-05 0.06707985 0.20971478 0.06708681
6 530 3 3.47e-01 9.99e-05 0.25106598 0.03598257 0.25106156
7 8 502 4.07e-03 1.34e-11 0.77520991 0.61604135 0.61608481
8 3 442 6.34e-02 5.79e-05 0.46570141 0.52308973 0.52308803
9 2 610 4.44e-01 2.86e-03 0.51949823 0.38322655 0.38322734
10 265 286 1.47e-08 9.72e-110 0.78480461 0.33437622 0.58870568
11 79 105 1.18e-08 1.10e-179 0.90816313 0.62631328 0.7687559
12 5 675 3.37e-03 7.17e-07 0.35234373 0.60067804 0.60066888
13 5 864 2.27e-02 1.54e-04 0.56978234 0.40720803 0.40721284
14 4 467 2.58e-04 2.78e-06 0.13064446 0.51414297 0.51412525

1 OrthoClust outputs a total of 24 clusters, among which 14 co-clusters have ≥ 2 genes in each species.
2 p-value of the co-cluster based on the GO term overlap test (Methods Section).
3 p-value of the co-cluster based on the ortholog enrichment test (Methods Section).
4 The average Pearson correlation coefficient (PCC) is computed for all fly gene pairs in each co-cluster.
5 The average PCC is computed for all gene pairs of the same species in each co-cluster. Values in this column

are shown in Figure 3b-c.
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Figure S1: Workflow of BiTSC (Methods Section).
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Figure S2: The simulated bipartite network described in Methods Section. (a) The bi-adjacency
matrix. (b) The true co-membership matrix. In both matrices, entries of ones are shown in blue
colors. Nodes belonging to the same true co-cluster are ordered next to each other. (c) The node
covariates on side 1. (d) The node covariates on side 2. Each point corresponds to one node, and
the two axes represent the two dimensions of node covariates. Nodes in the 15 true co-clusters are
marked in blue, and noise nodes not belonging to any co-clusters are marked in red.
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Figure S3: Clustering performance (weighted Rand index) of BiTSC and three variant algorithms
(Methods Section) as functions of (a) K0, the number of clusters in each run, (b) the subsampling
proportion ρ, and (c) the kernel enhancement parameter τ . A bipartite network was simulated as
described in Methods Section. We set α = 0.7 in BiTSC. For (a), we set ρ = 0.8 and τ = (1, 1).
For (b), we set K0 = 15 and τ = (1, 1). For (c), we set K0 = 15 and ρ = 0.8.

a b

Figure S4: (a) The empirical CDFs of the entries of the consensus matrix for K0 between 2 and
100 in the real data example (Results Section). (b) The area under the CDF curve as a function
of K0. K0 = 30 was chosen.
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Figure S5: Robustness of the random selection of 1,000 unclustered genes in Figure 6. (a)-(d)
Visualization of the 16 gene co-clusters found by BiTSC, same as in Figure 6 except that four
different random seeds were used to sample the 1,000 unclustered genes.
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Co-cluster Fly gene3 Fly gene MF/CC GO terms Worm gene4 Worm gene MF/CC GO terms
D1065.1 Cytosol; transporter activity; membrane
D2021.2 Membrane; transferase activity
C09B8.6 M band; striated muscle dense body
D2092.4 Myofibril (part of: body wall muscle cell)
F09F7.2 Cytoskeleton; myosin complex

striated muscle myosin thick filament 
(part of: body wall muscle cell); 

F55C12.1 Cytoskeleton
W03A5.7 Nucleus (part of: body wall muscle cell)
W04D2.1 Striated muscle thin filament;

striated muscle dense body (part of: body wall muscle cell)
C37A2.7 Ribosome
C53H9.2 Cytosol
K02B2.5 Cytosol; ribosome
Y37E3.8 Ribosome; cytosolic large ribosomal subunit
C25H3.9 Mitochondrion
F35D11.5 Mitochondrion
F58F12.1 Mitochondrion; proton-transporting ATP synthase complex
F59C6.5 Mitochondrion
M176.3 Mitochondrion
R53.4 Mitochondrion; proton-transporting ATP synthase complex
T02H6.11 Oxidoreductase Activity; mitochondrion
Y48E1B.5 Mitochondrion
Y71H2AM.5 Mitochondrion
Y94H6A.8 Oxidoreductase Activity; mitochondrion
F25H5.6 Mitochondrion
M01F1.6 Mitochondrion
T21B10.1 Mitochondrion

FBgn0011016 Endoplasmic reticulum F44E7.9 Integral component of membrane
FBgn0019925 Endomembrane system F56A8.3 Integral component of membrane
FBgn0021795 Endoplasmic reticulum T04G9.5 Endoplasmic reticulum; endoplasmic reticulum membrane
FBgn0028327 Endoplasmic reticulum Y56A3A.21 Endoplasmic reticulum; integral component of membrane
FBgn0030990 Endomembrane system Y71F9AM.6 Endoplasmic reticulum; endoplasmic reticulum membrane
FBgn0034500 Endomembrane system
FBgn0039303 Transport/localization; endomembrane system
FBgn0010520 Nucleolus; small-subunit processome C37H5.5 Nucleus; nucleolus; chromatin binding
FBgn0030067 Nucleolus; preribosome, large subunit precursor F44G4.1 Nucleolus; preribosome, large subunit precursor
FBgn0030504 Nucleolus JC8.2 Nucleus
FBgn0031361 Small ribosomal subunit rRNA binding; 

nucleolus; small-subunit processome
T05H4.10 Nucleus

FBgn0033169 RNA binding T23D8.3 Nucleus; preribosome, small subunit precursor
FBgn0034528 Nucleic acid binding T23G7.3 Nucleic acid binding
FBgn0034734 Nucleolus; small-subunit processome Y54H5A.1 Nucleus
FBgn0037489 Chromatin binding; nucleus Y73E7A.2 Nucleus; nucleolus
FBgn0037561 ATP binding; RNA binding; nucleolus
FBgn0260456 mRNA binding; RNA binding; 

ribonucleoprotein complex
C27F2.1 Cell projection; cytoskeleton; cilium
C52B9.3 Cytoplasm; cytoskeletal protein binding
F56D12.4 Cytoplasm
K07E8.6 Cytoplasm
Y97E10AR.2 Plasma membrane
ZK643.1 Cytoplasm (part of: body wall muscle cell)

10 C32E8.5 Nucleus; mRNA binding
11 FBgn0013548 Nucleus C09H10.6 Nucleus
12 C17H11.1 G protein-coupled receptor activity

FBgn0034605 Transferase activity; UDP-glycosyltransferase activity;
intracellular membrane-bounded organelle

AC3.7 UDP-glycosyltransferase activity; transferase activity

FBgn0040252 Glucuronosyltransferase activity; transferase activity; 
UDP-glycosyltransferase activity

C10H11.3 Glucuronosyltransferase activity; 
UDP-glycosyltransferase activity;transferase activity

FBgn0040255  Glucuronosyltransferase activity; transferase activity;
UDP-glycosyltransferase activity

C32C4.7 UDP-glycosyltransferase activity; transferase activity

FBgn0040257 Glucuronosyltransferase activity; transferase activity; 
UDP-glycosyltransferase activity

H23N18.1 UDP-glycosyltransferase activity; transferase activity

T19H12.10 UDP-glycosyltransferase activity; transferase activity
T19H12.11 UDP-glycosyltransferase activity; transferase activity
Y49C4A.8 UDP-glycosyltransferase activity; transferase activity

14 FBgn0032169 Nucleic acid binding C25A1.4 Nucleic acid binding; RNA binding
16 D1009.5 Cell projection; cytoskeleton

ZK512.2 Nucleotide binding; nucleic acid binding;
RNA binding; ATP binding

FBgn0032800 Cell projection; cilium

Mitochondrion

13

Molecular Function (MF) or Celluar Component (CC) GO terms1 closely related to featured BP GO terms2 in each co-cluster

1. GO Terms Information is collected from FlyBase (flybase.org) and WormBase (wormbase.org). 
    The Terms are based on experimental evidence or predictions or assertions.
2. BP GO terms that are highly enriched in both species in a given co-cluster.
3. Fly genes (non-BP-GO-annotated) with MF/CC GO terms that are closely related to featured BP GO terms in the co-cluster. 
    Please see Supplementary Materials for the featured BP GO terms that the MF/CC GO terms in this table are closely related to.
4. Worm genes (non-BP-GO-annotated) with MF/CC GO terms that are closely related to featured BP GO terms in the co-cluster.

4

6

7

8

9

FBgn0052311 Cytoskeletal binding

1

2
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FBgn0025336

Figure S6: MF and CC GO terms of the genes without BP GO terms in the 16 gene co-clusters
identified by BiTSC (Results Section).
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