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Abstract10

Although the decisions of our daily lives often occur in the context of temporal and reward11

structures, the impact of such regularities on decision-making strategy is poorly understood.12

Here, to explore how temporal and reward context modulate strategy, we trained rhesus13

monkeys to perform a novel perceptual decision-making task with asymmetric rewards and14

time-varying evidence reliability. To model the choice and response time patterns, we developed15

a computational framework for fitting generalized drift-diffusion models (GDDMs) which flexibly16

accommodates diverse evidence accumulation strategies. We found that a dynamic urgency17

signal and leaky integration, in combination with two independent forms of reward biases, best18

capture behavior. We also tested how temporal structure influences urgency by systematically19

manipulating the temporal structure of sensory evidence, and found that the time course of20

urgency was affected by temporal context. Overall, our approach identified key components of21

cognitive mechanisms for incorporating temporal and reward structure into decisions.22

23

Introduction24

In an uncertain and dynamic environment, humans and other animals detect temporal regular-25

ities in the environment and use them to inform decision-making (Woodrow, 1914; Rosenbaum26

and Collyer, 1998; Los, 2010; Behrens et al., 2007; Farashahi et al., 2017). Even in relatively sim-27

ple perceptual tasks, the timing and accuracy of decisions are sensitive to the temporal statistics28

of stimuli (Grosjean et al., 2001). Cognitive strategies in perceptual tasks are often reflected in29

the response times (RTs), which therefore can be effectively used to test mechanistic models of30

decision-making processes (Luce, 1986).31

One paradigm for studying perceptual decision-making computations and their neural cor-32

relates is to present dynamic sensory evidence over time (Newsome et al., 1989; Roitman and33

Shadlen, 2002). Evidence accumulation has been proposed as a leading strategy for decision-34

making under this paradigm, which can be formalized using the drift-diffusion model (DDM) (Rat-35

cliff, 1978; Ratcliff et al., 2016). The DDM has been employed to capture choice and RT behavior36

in a range of decision-making tasks (Palmer et al., 2005; Krajbich and Rangel, 2011; Ding and Gold,37

2012; Bogacz et al., 2006; Resulaj et al., 2009; Ratcliff et al., 2003; Mormann et al., 2010). In the38

DDM, a dynamic decision variable integrates evidence over time, and a decision is reached when39

this variable crosses a bound. An open question is how evidence accumulation is shaped by tem-40
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poral uncertainty or expectation of the stimulus. For instance, if the signal-to-noise ratio changes41

across the time of stimulus presentation, can the integration process dynamically gate this input42

signal?43

Such gating is important for integrating relevant information while ignoring irrelevant informa-44

tion. Uncertainty in the temporal onset of information creates a need to modulate the integration45

process over time. For example, beginning integration before relevant information is available46

causes noise to be unnecessarily integrated, thereby reducing decision accuracy (Laming, 1979;47

Grosjean et al., 2001). By contrast, beginning integration after the onset of the stimulus discards48

potentially beneficial information (Devine et al., 2019). It is unknown how these timing factors49

should be implemented within a DDM framework. Time-varying bounds (Murphy et al., 2016;50

Hanks et al., 2014; Ditterich, 2006b; Drugowitsch et al., 2012) and gain modulation (Ditterich,51

2006b; Cisek et al., 2009; Thura et al., 2012) have improved predictive ability for RT patterns, but52

these mechanisms have not been utilized to explain uncertainty in stimulus onset time. Further-53

more, the utility of DDMs incorporating these and other complex extensions is limited by the com-54

putational challenges of simulating and fitting such models to empirical choice and RT patterns.55

In addition to sensory evidence and temporal expectation, decisions should incorporate differ-56

ences in value among the options. Reward bias has long been an active topic of research (Feng57

et al., 2009; Rorie et al., 2010; Laming, 1968; Ratcliff, 1985; Mulder et al., 2012), with more recent58

attention to its connections to timing (Drugowitsch et al., 2012; Voskuilen et al., 2016; Hanks et al.,59

2011; Lauwereyns et al., 2002; Nagano-Saito et al., 2012; Gao et al., 2011). While these asymme-60

tries have previously been incorporated into the DDM framework (Ratcliff and McKoon, 2008; Rat-61

cliff, 1985; Edwards, 1965; Laming, 1968;Mulder et al., 2012), the strategies throughwhich sensory,62

value, and timing information are combined to form a decision are still poorly understood.63

To investigate these issues, we developed a novel behavioral paradigm for perceptual decision-64

making in which the onset of the evidence is temporally uncertain. Therefore, the temporal struc-65

ture of evidence could be strategically exploited during decision-making. By simultaneously ma-66

nipulating reward differences between options, we also examined whether and how time-varying67

evidence interacts with temporal strategies to produce reward bias. We trained monkeys to per-68

form this task, and found that the animals exploited the temporal structure of the evidence and69

adjusted the timing of their decisions in such away to reduce uncertainty about the evidence onset.70

To quantitatively model the decision-making behavior, we developed a framework for compu-71

tationally efficient simulation and fitting of generalized DDMs (GDDMs) to choice and RT behavior.72

GDDMs encompass both the DDM and also non-integrative models as special cases (Cisek et al.,73

2009; Thura et al., 2012). We found that a GDDM with timing and reward processes can quantita-74

tively capture the animal’s behavior as determined by its RT distribution. Temporal modulation of75

the integration process can be implemented through an urgency signal which varies across time.76

Such an urgency signal can flexibly adjust the animal’s behavior as task timing demands change. In77

addition, capturing reward-related behavioral effects required two mechanisms, one dependent78

on the integration process and the other independent of integration. Overall, our findings suggest79

that evidence accumulation in perceptual decision-making can be flexibly modulated by temporal80

and reward expectation, and that generalized DDMs can mathematically capture these phenom-81

ena.82

Results83

Behavioral task84

Two rhesus monkeys (Macaca mulatta) were trained to perform a two-alternative forced choice,85

color matching task (Figure 1). In each trial, a central square patch was presented consisting of86

a 20×20 grid of green and blue pixels that rearranged randomly at 20 Hz. Stimulus presentation87

was divided into two consecutive periods containing an uninformative ”presample” and informa-88

tive ”sample”. The animal indicated its choice by shifting its gaze to one of two flanking choice89
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targets, one green and one blue. The trial was rewarded via juice delivery if the selected target90

color corresponded to the majority color of pixels in the sample. Task difficulty was manipulated91

by parametrically varying the proportion of pixels of each color in the sample, which we refer to92

as color coherence. Animals were allowed to direct their gaze to a choice target any time after93

the onset of the sample. In addition, reward cues were displayed surrounding the saccade targets94

which indicated whether a large or small reward would be delivered for a correct response to the95

corresponding target. These reward cues were randomly assigned to a target on each trial. Zero96

coherence corresponds to a 50/50 mixture of blue and green pixels, and coherence of ±1 corre-97

sponds to a solid color. By convention, we define coherence relative to large- and small-reward98

targets, where a coherence of +1 or -1 corresponds to all pixels being the color of the large-reward99

or small-reward target, respectively.100

Temporal uncertainty in the sensory evidence was introduced by varying the duration of the101

uninformative presample. No explicit cuewas presented to indicate this transition frompresample102

to sample. During the presample period, the color coherence was zero, and at the transition to103

the sample, the coherence switched to the particular value chosen for that trial. The presample104

duration was selected randomly from three possible time intervals—0, 0.4 or 0.8 s—with equal105

probability. A premature choicewas punishedby a 2 s timeout. In a separate experiment described106

below, we manipulated the set of presample durations (Figure 6).107

Task parameters influence behavior108

We predicted that all three primary task variables—coherence, presample duration, and reward109

location—would lead to systematic changes in the animal’s behavior as measured by the RT dis-110

tributions. In this study, RT was measured from the onset of the presample, since the transition111

from presample to sample was not explicitly cued. To test the impact of these three task variables112

on the animal’s performance, we used multiple-regression models to predict RT and accuracy in113

individual trials using these three task variables (see Methods).114

We found that all three task variables had a significant influence on RT (𝑝 < .05 for both ani-115

mals, Equation 1) and accuracy (𝑝 < .05 for both animals, Equation 3). Higher absolute coherences116

decreased the RT and increased accuracy, meaning that animals responded faster (Figure 2b,e)117

and more accurately (Figure 2a,d) on easier trials. Likewise, responses directed towards the large-118

reward target were faster than those directed at the small-reward target (Figure 2b,e). Further-119

more, responses were faster and more accurate on trials with shorter presample durations (Fig-120

ure 2a,b,d,e).121

We next examined whether these task variables modulated RT and accuracy independently.122

We found that both accuracy (𝑝 < .05 for both animals, Equation 2) and RT (𝑝 < .05 for both ani-123

mals, Equation 4) were significantlymodulated by the interaction between absolute coherence and124

presample duration. This interaction’s effect on RT can be seen in the chronometric function (Fig-125

ure 2b,e) by observing that for low-coherence trials, RT aligned to the presample is approximately126

equal regardless of the presample duration. In other words, despite the fact that there is 800ms127

of additional sensory evidence presented to the animal during the 0ms presample trials compared128

to the 800ms presample trials, the RT is similar in both cases. Such similarity in response time is129

reflected in the overlap in the RT distribution in low-coherence trials for all presample durations130

(Figure 2c,f). By contrast, for middle- or high-coherence trials, the RT shows a larger effect of co-131

herence.132

In summary, we find that coherence, presample duration, and large-reward location not only133

modulated RT and accuracy independently, but the interaction between coherence and presample134

duration influences choice and RT. To gain insights into the underlying mechanisms, we tested135

whether a DDM that incorporated these task variables could provide a parsimonious account for136

the observed behaviors.137
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Figure 1. Color matching task with asymmetric reward. The temporal sequence of trial events in the color
matching task with asymmetric reward is shown above. Reward cues indicating a large or small reward are
inset. Below is a timeline indicating the presence of various task elements on the screen, with presample and
sample lines for each condition denoted by the line color.
Figure 1–video 1. Video of the task. The task is demonstrated across several coherences and presamples.

Element sizes are adjusted for demonstration.
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Figure 2. Animal and model performance. Psychometric (a,d) and chronometric (b,e) functions, as well as RT histograms (c,f), are plotted for
the validation data of Monkey 1 (a,b,c) and 2 (d,e,f). Data are plotted for each coherence value as dots in the behavioral function (a,b,d,e) and as
thick translucent lines in the probability distributions (c,f). “Sample RT” indicates the RT minus the presample duration. Overlaid as a thin solid
line is the best-fit generalized drift-diffusion model described in section GDDM accounts for strategies with parameters fit to the exploration
data. Error bars for 95% CI are hidden beneath the markers.
Figure 2–Figure supplement 1. DDM with reward bias does not capture monkey behavior. Format similar to Figure 2, but with the model
described in Drift-diffusion model with reward mechanisms.
Figure 2–Figure supplement 2. Animal and model performance in exploration dataset. Format similar to Figure 2, but showing the explo-
ration data using model parameters fit to it.

5 of 29

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/865501doi: bioRxiv preprint 

https://doi.org/10.1101/865501


Manuscript submitted to eLife

Drift-diffusion model with reward mechanisms138

The DDM is one of the simplest models that formalizes evidence integration for two alternative139

choices (Luce, 1986; Bogacz et al., 2006; Ratcliff et al., 2016). Recently, studies have shown that140

reward bias in psychometric functions can be accounted for by two separate mechanisms (Fan141

et al., 2018; Gesiarz et al., 2019). First, the initial bias shifts the starting position of the decision142

variable in the direction of the large-reward target (Edwards, 1965; Laming, 1968; Ratcliff, 1985).143

Second, a time-dependent bias allows a constant evidence signal to be continuously added to the144

integrator in the direction of the large-reward choice (Mulder et al., 2012; Ratcliff, 1985; Ashby,145

1983). These two types of reward biases have been shown to be effective in reproducing choice146

bias (van Ravenzwaaij et al., 2012; Voss et al., 2004; Diederich and Busemeyer, 2006; Ratcliff and147

McKoon, 2008).148

We thus took this combined reward-biased DDM (Fan et al., 2018; Gesiarz et al., 2019) as a149

point of departure to gain further insights and understanding of our data. In this extended seven-150

parameter model (see Methods, Equation 7), the weight on evidence is constant over time, as are151

the bounds. We fit this model by maximizing likelihood using the method of differential evolution152

(Storn and Price, 1997).153

While theDDMwith combined reward bias correctly predicted the large-reward target would be154

chosen with a higher probability and a shorter RT than the small-reward target, overall this model155

could not fit other major features of the choice and RT data as measured by the psychometric156

(Figure 2–Figure Supplement 1a,d) and chronometric functions (Figure 2–Figure Supplement 1b,e)157

as well as the RT distributions (Figure 2–Figure Supplement 1c,f). First, it failed to reproduce the158

overlapping RT distributions across different durations of presample for low-coherence samples159

(Figure 2–Figure Supplement 1c,f). This model, like DDMmodels in general, predicts that RT should160

depend on the amount of evidence which has been integrated. However, the overlapping RT distri-161

butions indicate aminimal effect of evidence integrated during the early part of the trial compared162

to evidence later in the trial.163

Second, themodel failed to produce the characteristic shapes of RT distributions in the data. In164

both the data and the model, color coherence and sample time jointly influenced the shape of the165

RT distribution. However, the distribution of the actual RT data became more symmetric as color166

coherence decreased, whereas the distribution of RT in the model remained skewed similarly in167

all conditions (Figure 2–Figure Supplement 1c,f top panels).168

Finally, the model failed to fit the time course of errors induced by the strong reward bias. Dur-169

ing the task, errors during high-coherence stimuli were made almost exclusively because animals170

tended to choose the large-reward target when the evidence supported the small-reward choice171

(Figure 2–Figure Supplement 1a,d). Therefore, errors during the high-coherence sample particu-172

larly reflect animals’ strong bias toward large-reward target and the error rate tended to sharply173

increase immediately after the sample onset (Figure 2–Figure Supplement 1c,f bottom panels). By174

contrast, the DDM predicted that fewer errors must follow the onset of the sample, as more evi-175

dence supporting correct choice becomes available after sample onset. These results collectively176

suggest that animals’ behavior during the task used in our study cannot be fully explained by a177

time-invariant evidence integration strategy in conjunction with simple extensions to incorporate178

reward bias.179

Elements of Generalized DDMs180

The above results suggest that relatively simple modifications of the DDM are insufficient in that181

they cannot accurately reproduce the RT distribution. This is especially true of their ability tomodel182

the evolution of reward effects over time under temporally uncertain conditions. Therefore, we183

extended the DDM framework to create a generalized drift-diffusion model (GDDM) for testing184

potential mechanisms to account for animals’ behavior in our task. GDDMs allow the drift rate and185

diffusion coefficient to be arbitrary functions of time and of the position of integrated evidence186

(i.e. decision variable), and integration bounds to be arbitrary functions of time. GDDMs also allow187
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for a leaky integrator, meaning the model can incorporate both integrative and non-integrative188

strategies that utilize instantaneous evidence (Cisek et al., 2009; Thura et al., 2012) (see Methods,189

Equation 9 for the details of the model). Therefore, the GDDM enables fitting of drift-diffusion190

models that implement complex time-varying mechanisms for evidence sampling and integration191

as well as reward bias.192

Mechanisms for modulating the time scale of evidence integration193

While the simple DDM assumes perfect integration in which the integrated evidence does not de-194

cay over time (i.e. “forgetting”), we consider the possibility that animals might integrate evidence195

at a relatively short time scale so that the integrated evidence primarily reflects themost recent ev-196

idence (Usher and McClelland, 2001; Cisek et al., 2009; Brown and Holmes, 2001; Feng et al., 2009;197

Brown et al., 2005; Ossmy et al., 2013; Veliz-Cuba et al., 2016). Therefore, the GDDM included198

a “leak” parameter that determines the time constant of the decay in decision variable. A leak pa-199

rameter permits themodel to capture both perfect integration, where all evidence is considered in200

the decision-making process, and non-integration, where only momentary evidence is considered201

(Cisek et al., 2009), thereby generalizing across these distinct strategies.202

Mechanisms of time-varying urgency203

To explain animals’ strategic timing of decisions, we hypothesized that animals might dynamically204

modulate the evidence accumulation process as a function of time during the trial. Within the205

DDM framework, this was implemented through a time dependence of parameter values, which206

has beenmost studied in the context of an “urgency” signal. An urgency signal can be characterized207

across two dimensions: its type, and its form. Two types of urgency signal include decision bounds208

which collapse over time (Ditterich, 2006b; Drugowitsch et al., 2012; Hanks et al., 2014; Murphy209

et al., 2016) and a time-dependent increase in the gain of the momentary sensory evidence (Cisek210

et al., 2009; Gold and Shadlen, 2001; Ditterich, 2006b). Here, we consider both of these time-211

varying urgency signal types as means to modulate the evidence accumulation process.212

In addition to the urgency signal’s type, we can also consider its form. Consistent with prior213

work, animals might have begun increasing their urgency at the beginning of the trial. We imple-214

mented this as a linearly increasing gain function (“linear gain”, Figure 3a) or a gradually decreasing215

bound (“collapsing bounds”, Figure 3a). The limiting cases—where the slope of the gain function216

is zero or the time constant of the collapsing bound is infinite—correspond to time-independent217

urgency, or equivalently to the lack of explicit urgency in the simple DDM (“constant”, Figure 3a).218

In a simple form of a task-specific time-varying urgency signal, animals might have delayed219

increasing urgency until the uncertainty of evidence onset was sufficiently resolved. Therefore, in220

addition to urgency signals that begin to ramp at the onset of the sensory stimulus, as is commonly221

described in the literature, we additionally considered urgency signals which do not begin to ramp222

until some later point within the trial. We tested both gain modulation and collapsing bounds ur-223

gency signals with such a nonlinear time course to allow for an effect of task structure on urgency.224

The delayed urgency signal introduced a delay before the linear increase in the gain function (“de-225

layed gain”, Figure 3a) or exponential collapse of the bounds (“delayed collapse”, Figure 3a). This226

delay parameter would be tuned by the temporal uncertainty of the behavioral task.227

Mechanisms of reward bias228

We found that animals’ bias toward the large-reward choice increased as the samplewas presented229

at more predictable time, particularly for higher coherence samples (Figure 2a,d). We considered230

two classes of mechanism, one in which reward directly influences the integration process, and231

the other in which the reward bias is implemented outside the integration process.232

Similar to how the DDM was extended to incorporate reward bias, the effect of reward on233

the integration process can be modeled by an “initial bias”, which maintains a fixed magnitude234

throughout the trial, or a “time-dependent bias”, which increases inmagnitude throughout the trial235
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Figure 3. Generalized DDM components. Our GDDM included extensions related to timing and reward. (a)
We modeled timing using two types of urgency signals. We implemented a gain function and collapsing
bounds, each with and without a time delay. Constant gain and constant bounds indicates the absence of an
urgency signal. Bounds are shown in red, and gain functions in blue. (b) Reward mechanisms are shown with
example decision variable trajectories for each mechanism. Initial bias: the integrator starts biased towards
the large-reward target, and the leaky integrator decays back to this starting position instead of to the origin.
Time-dependent bias: there is a gradual increase in baseline evidence towards the large-reward target over
time. Mapping error: once a decision is reached, the monkey chooses the opposite target on a percentage of
trials. Lapse error: there is a higher, exponentially-distributed probability of making an evidence-independent
choice to the large-reward target at any given point throughout the trial, contrasted to equal probabilities in
the absence of this mechanism.

(Fan et al., 2018; Gesiarz et al., 2019) (Figure 2–Figure Supplement 1; Figure 3b). The initial bias is236

traditionally implemented as an initial value of the decision variable, but due to leaky integration,237

this is ineffective because the decision variable will decay from this starting position back to zero.238

Thus, in addition to setting the initial value of the decision variable, our implementation of initial239

bias also causes the decision variable to leak towards this initial position. For similar reasons, our240

implementation of the time-dependent bias is a linear increase in the value to which the decision241

variable leaks over the course of the trial (see Methods).242

We also considered two additional types of reward bias which are outside the integration pro-243

cess. First, the animal may be biased in its categorical choice at the end of evidence accumulation244

(Erlich et al., 2015; Hanks et al., 2015). Namely, when the decision variable reaches the bound, an-245

imals may with some probability mistakenly produce a motor response towards the large-reward246

choice even if they correctly reached the bound for small-reward choice (“mapping error”, Fig-247

ure 3b). Second, we also considered that a small number of response may be generated randomly248

anytime during the integration process (“lapse trials”). The responses on these lapse trials may be249

biased toward the large-reward choice (Simen et al., 2009; Noorbaloochi et al., 2015), which can250

be implemented by an asymmetric lapse rate for the large- and small-reward choices (“lapse bias”,251

Figure 3b) (Yartsev et al., 2018).252

Robust estimation of model parameters253

As the models described here have many parameters, methods for parameter estimation must be254

carefully considered. First, we must consider the metric by which potential models are evaluated.255

Weused a state-of-the-art simulation environmentwhich allows fittingmodels usingmaximum like-256

lihood on the full probability distribution. Further details are described in Section Fitting method.257

Second, we must protect against overfitting. Before performing any analyses on the data for258

the task with asymmetric reward, the data were split in half by pseudo-randomly choosing half259

of the trials for the “validation” set and excluding these from further analysis, analyzing only the260

disjoint “exploration” data. The validation trials were not fit to the model or otherwise examined261

until all analyses for the present manuscript were complete. After unmasking the validation trials,262

no additional analyses were performed on the data. More details are described in Section Cross-263
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validation procedure.264

GDDM accounts for strategies265

We fit the GDDM to the choice and RT behavior for each animal, and evaluated model fit with held-266

out log-likelihood (HOLL). Overall, models with time-varying urgency performed remarkably better267

than ones with constant urgency such as the simple DDM (Figure 4a,b). When combined with268

each of several different reward bias mechanisms, models with delayed urgency best explained269

the data for monkey 1, while models with non-delayed and delayed urgency performed similarly270

well for monkey 2. Despite some individual differences, these results suggest that the animal’s271

strategic adaptation to the temporal structure of sensory evidence can be well accounted for by a272

time-varying urgency.273

Regarding reward biasmechanisms, we first comparedGDDMswith only one of the four reward274

bias mechanisms, and found that the models with mapping error performed best. This suggests275

that asymmetric rewards affected the animal’s choice through an integration-independent mech-276

anism (Figure 4a,b). Moreover, models with a time-dependent bias did not perform better than277

those with initial bias, suggesting that the reward bias mechanisms need not depend on time in278

order to explain the observed effects. We next asked whether these bias mechanisms could be279

combined to further improve model fit. In conjunction with a delayed collapsing bounds urgency280

signal, we tested all combinations of two reward bias mechanisms, and found that adding initial281

bias to the mapping error mechanism consistently improved the model fit for both monkeys more282

than any other mechanism such as time-dependent bias or lapse bias (Figure 4c,d). While initial283

bias and time-dependent bias both performed well individually and with mapping error, they did284

not improve the fit of the model when considered together (Figure 4c,d). These results suggest285

that both integration-dependent and integration-independent mechanisms are needed to explain286

animals’ reward bias.287

We next examined the role of leak in evidence accumulation in the GDDM. For our best-fit288

model, the time constant was 140 ms for monkey 1 and 63 ms for monkey 2. We found that289

given urgency mechanisms, the estimated time scale of integration was consistently short (<150290

ms) across all the tested models (Figure 5). Model comparison showed that adding a leak param-291

eter to each model improved model fit for all the models except the simple DDM (Figure 5), for292

which the best-fitting leak time constant was often infinity. Notably, the models with non-delayed293

urgency and themodels implementing time-dependent bias mechanism showed particularly large294

improvement with the addition of the leak parameter (Figure 5a,b). This result suggests that the295

leaky integration might improve the performance of these models by providing a mechanism to296

disregard early uncertain evidence, a property which can also be represented through a delayed297

urgency signal. However, the fact that the leak parameter also produced substantial improvement298

in delayed urgency models suggests that the short time scale of integration itself is an important299

feature.300

The best-fit model captured behavior quite well. It fit the psychometric and chronometric func-301

tions and exhibited major features of choice and RT data that cannot be accounted for by simple302

DDM with integration-based reward mechanisms alone (Figure 2). In particular, the best-fit model303

dramatically improves the quantitative and qualitative fit to the RT distributions, compared to the304

simpler model (Figure 2). This model provided the best fit of all models considered here for Mon-305

key 1, and nearly the best fit for Monkey 2, for which a slightly higher likelihood can be obtained306

through the use of the delayed gain function as an urgency signal (Figure 4).307

Asmentioned above, the RT distributions in our data during the low-coherence sample overlap308

with one another for all presample durations, and this could not be captured by the simple DDM309

with reward bias which uniformly integrates sensory evidence (Figure 2–Figure Supplement 1). By310

contrast, the best GDDM correctly predicts overlapping RT distributions as well as the RT-accuracy311

relationship for low-coherence samples (Figure 2). When evidence is weak, delayed urgency com-312

bined with a short time scale of integration implies the decision is most likely to be driven not by313
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Figure 4. Fit of potential GDDMmodels. Various models were fit to the exploration data from monkey 1
(a,c) or monkey 2 (b,d) and subsequently evaluated with HOLL on the validation data. Color indicates the
HOLL of the model, with higher values indicating a better fit. (a,b) Models were constructed by selecting one
urgency signal (Figure 3b) and one reward mechanism (Figure 3a). Models with HOLL outside the range of the
color bar are shown in black with their corresponding overlaid HOLL value. (c,d) Models were constructed
using the delayed collapse urgency signal in conjunction with one or two reward mechanisms (Figure 3a).
Models with only one reward mechanism appear on the diagonal. All models used leaky integration.
Figure 4–Figure supplement 1. Fit of GDDMmodels with exploration data. Format similar to Figure 4,

except fit is evaluated using BIC on the exploration data instead of HOLL on the validation data.

the total evidence, but rather by the later evidence close to themaximumpresample duration used314

(0.8 s), i.e. when the uncertainty about stimulus onset is resolved.315

Finally, the best GDDM fit the time course of errors frequently occurring after the onset of the316

high-coherence sample. This pattern of errors is inconsistent with one of the basic tenets of the317

DDM that stronger sensory evidence for one alternative makes the subject more likely to choose318

that alternative. To the contrary, our result shows that in the presence of asymmetric rewards,319

strong evidence for one alternative can paradoxically make the subject more likely to choose the320

other alternative. The apparently dynamic reward bias that increases with presample duration is321

mostly captured by the mapping error mechanism, indicating a failure of mapping the decision322

variable to motor output correctly.323

Manipulating temporal expectation changes strategy324

Thus far, our findings suggest a set of mechanisms in the GDDM to quantitatively capture the325

behavioral choice and RT patterns. The two temporal features in this model, leaky integration and326

a delayed urgency signal, hint that the temporal structure of the taskmay drive their properties. By327

manipulating the task’s structure, we testedwhether the urgency signal could be flexibly influenced328

by temporal context within a single experimental session.329

We investigated this question using a variant of the task in the samemonkeys (Figure 6). In this330

new task, the duration of temporal uncertainty was manipulated by varying the set of alternative331

presample durations between different blocks of trials within a session. In the “short-presample”332

10 of 29

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/865501doi: bioRxiv preprint 

https://doi.org/10.1101/865501


Manuscript submitted to eLife

Initia
l bias

Time-dep. bias

Mapping erro
r

Lapse bias

None
Initia

l bias

Time-dep. bias

Mapping erro
r

Lapse bias

Initial bias

Time-dep. bias

Mapping error

Lapse bias

Initial bias

Time-dep. bias

Mapping error

Lapse bias

0

1000

2000

3000

0

500

1000

1500

2000
∆HOLL

∆HOLL

M
o
n
k
e
y 

1
M

o
n
k
e
y 

2
Ti

m
in

g 
m

ec
ha

ni
sm

s
Ti

m
in

g 
m

ec
ha

ni
sm

s
Reward mechanisms Reward mechanisms

R
ew

ar
d

 m
ec

ha
ni

sm
s

R
ew

ar
d

 m
ec

ha
ni

sm
s

Larger leak effect
Larger leak effect

τ= 131 τ= 126 τ= 122 τ= 115 τ= 117

τ= 74 τ= 71 τ= 78 τ= 73 τ= 74

τ= 122 τ= 140 τ= 123 τ= 117 τ= 121

τ= 58 τ= 55 τ= 61 τ= 57 τ= 58

τ= ∞ τ= 1045 τ= ∞ τ= ∞ τ= ∞

τ= 77 τ= 92 τ= 79 τ= 60 τ= 77

τ= 82 τ= 97 τ= 81 τ= 83 τ= 33

τ= 64 τ= 75 τ= 79 τ= 99 τ= 70

τ= 60 τ= 74 τ= 56 τ= 51 τ= 49

τ= ∞ τ= 1134 τ= ∞ τ= ∞ τ= ∞

τ= 131 τ= 142 τ= 140 τ= 128

τ= 126 τ= 121 τ= 127

τ= 122 τ= 119

τ= 115

τ= 77 τ= 79 τ= 63 τ= 70

τ= 92 τ= 75 τ= 103

τ= 79 τ= 106

τ= 60

a c

b d

Figure 5. Leaky integration improves model fit non-uniformly. All models shown in Figure 4 were
subsequently fit to the exploration data with leaky integration disabled. The difference in HOLL on the
validation data is shown, with larger ΔHOLL indicating a larger effect of leaky integration. As in Figure 4,
models involving one reward mechanism and one urgency signal (a,b) as well as models involving two timing
mechanisms in conjunction with the delayed collapse urgency signal (c,d) were examined for monkey 1 (a,c)
and monkey 2 (b,d). Overlaid are leaky integration time constants in units of milliseconds for each model.

Figure 5–Figure supplement 1. Leaky integration with exploration data. Format similar to Figure 5,
except fit is evaluated using BIC on the exploration data instead of HOLL on the validation data.
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elements on the screen for either the short- or long-presample blocks, with presample and sample lines for
each condition denoted by the line color.

blocks, there was a 0.5 s presample in majority of the trials (60%); in the remaining 40% of trials,333

the sample arrived either earlier (0.25 s) or later (0.75 s) with 20% probability each. Similarly, in334

the “long-presample” block, 60% of trials had a presample of duration 1.25 s, and 20% each had335

0.75 s and 1.75 s (Figure 6). Accordingly, 20% of trials in each block had a 0.75 s presample, which336

corresponded to the longest presample duration in the short-presample block and the shortest337

presample duration in the long-presample block. No reward bias was imposed in this modified338

version of the task, so a correct response to either target elicited an identical reward.339

This task was utilized to test whether temporal context can modify the urgency mechanisms340

of the fitted GDDM. Under a pure DDM framework, the RT distribution for the 0.75 s presample341

should be the same in both blocks. However, if temporal context influenced behavior, the RTs for342

the 0.75 s presample in the short-presample block would be on average shorter than those in the343

long-presample block.344

We first performed a linear regression analysis in order to determine the effect of coherence,345

presample duration, and block on RT and accuracy (seeMethods). As expected, we foundhigher co-346

herences and shorter presample durations both decreased RT (𝑝 < .05, Equation 5) and increased347

accuracy (𝑝 < .05, Equation 6). More importantly, we also found a significant effect of the block348

regressor, in that trials presented during the long-presample blocks had significantly longer RT349

(𝑝 < .05, Equation 5) and higher accuracy (𝑝 < .05, Equation 6) compared to the short-presample350
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blocks.351

To examinemoremechanistically how the animals altered their decision-making strategies, we352

fit the best GDDM chosen for the first task, including a leaky delayed collapsing bound, to the353

second task. Mechanisms for reward bias were removed given the lack of reward asymmetry in the354

present task. This model provided an excellent fit to the psychometric and chronometric functions355

as well as the probability distribution (Figure 7).356

To investigate which model parameters could best explain the difference between blocks, we357

allowed individual parameters in this model to differ for the two blocks and assessed the log-358

likelihood in each case. For comparison, we also fit a 16-parametermodel in which all of the param-359

eters were allowed to vary between blocks, and an 8-parameter model which fixed all parameters360

to be the same for both blocks.361

We examined the difference in HOLL when each parameter was fit separately for each block362

compared to shared between the blocks, as well as when all parameters or no parameters are363

shared. We found that the 16-parameter model fit the data better than models in which only a364

single parameter was allowed to vary between the short and long blocks. Nevertheless, changes in365

the urgency signal alone were sufficient to explain most of this improvement in model fit (Figure 8).366

For example, in Figure 7, themodel which allows the “collapse delay” 𝑡1 parameter to vary is shown.367

This demonstrates that the timing of the urgency signal mediates a critical aspect of the monkey’s368

change in strategy between different temporal contexts.369

Urgency timing can implement a speed-accuracy tradeoff370

The above results showed that context-dependent changes in the timing of the urgency signal can371

account for the changes in behavior related to temporal uncertainty. In theory, the animal could372

increase accuracy by simply delaying the onset of the increase in urgency signal for the longest373

possible duration (1750 ms) on every trial, which would minimize the effect of integrating noise.374

However, this would come at the cost of long RT. Conversely, the animal could reduce RT by begin-375

ning to increase urgency immediately at the beginning of the trial, but at the cost of lower accuracy.376

Therefore, the onset of the urgency signal can mediate a speed-accuracy tradeoff, with longer on-377

set delays favoring accuracy and shorter onset delays favoring speed.378

To examine this quantitatively, we systematically varied the “collapse delay” 𝑡1 (Figure 3b) from379

0 ms to 1000 ms, separately for long- and short-presample blocks, to observe how this parameter380

modulated the speed-accuracy tradeoff in the GDDM, with all other parameters shared (Figure 9).381

This analysis confirmed that changes to the urgency signal are able to control the speed-accuracy382

tradeoff. Furthermore, the speed-accuracy tradeoff is strikingly similar for both monkeys, despite383

the differences in estimated parameter values. This demonstrates that strategic modulation of384

speed-accuracy tradeoff can be accomplished using changes to only the urgency signal, which sug-385

gests that urgency may be critical for timing-related decision strategies.386

Discussion387

In this study, we found that perceptual decision-making is driven by temporal changes in evidence388

quality via a dynamic urgency signal. We also showed that reward bias in animals’ choice can be389

accounted for by integration-dependent and integration-independent mechanisms.390

Temporal uncertainty and decision-making391

An urgency to commit to a decision has long been hypothesized to modulate the speed and accu-392

racy of perceptual decision-making (Reddi andCarpenter, 2000). In computationalmodels, urgency393

has been implemented either by a collapsing bound or gain modulation of sensory evidence (Dit-394

terich, 2006a,b; Forstmann et al., 2008, 2010; Ratcliff and McKoon, 2008; Churchland et al., 2008;395

Cisek et al., 2009; Drugowitsch et al., 2012; Hanks et al., 2014;Murphy et al., 2016). In models with396

collapsing bounds, an evidence-independent, time-varying signal is combined with the accumula-397

tors with fixed weight on evidence, while the gain function multiplicatively modulates the evidence398
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Figure 7. Model fit to timing dataset. Psychometric functions (a,d,g,j), chronometric functions (b,e,h,k), and RT histograms (c,f,i,l) are shown
for short-presample (a,b,c,g,h,i) and long-presample (d,e,f,j,k,l) blocks for monkey 1 (a,b,c,d,e,f) and monkey 2 (g,h,i,j,k,l). Data are represented by
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with time-varying weight. However, the nature of time-varying mechanisms has been controver-399

sial (Hawkins et al., 2015a,b; Voskuilen et al., 2016). During the task used in our study, we varied400

the uncertainty about evidence onset over time to probe the time-varying mechanisms. Using an401

array of computational models, we showed that an urgency signal provides a flexible mechanism402

by which temporal information can be incorporated into the decision.403

Recently, several studies have found, using dynamically changing sensory evidence, that sub-404

jects can adjust the gain or weight on the evidence across time during the trial, depending on the405

temporal statistics of evidence (Cheadle et al., 2014; Levi et al., 2018). In these previous studies,406

however, subjects were not allowed to freely choose the timing of their response, so it was not pos-407

sible to determine how the subject’s strategy reflected a speed-accuracy trade-off. In the present408

study, we adopted an RT paradigm and explicitly showed that animals voluntarily adjusted the409

timing of their decision in order to reduce uncertainty about evidence through task-specific time-410

varying urgency. While we did not explore the potential optimality of this strategy, this presents411

an interesting opportunity for future study (Drugowitsch et al., 2012, 2014).412

Time-varying stimuli were also used to test the time scale of evidence integration (Bronfman413

et al., 2016). Whereas the traditional DDMassumed a perfect integrator, recent studies have raised414

possibility that evidence integration may be leaky, as the accuracy of the decision does not neces-415

sarily increase with integration time (Usher and McClelland, 2001; Zariwala et al., 2013; Tsetsos416

et al., 2015; Farashahi et al., 2018). Moreover, when evidence dynamically changes during the417

course of a trial, modelswith leaky integration or instantaneous evidence fit the datawell, as shown418

in the present study (Cisek et al., 2009; Thura et al., 2012; Thura and Cisek, 2014; Bronfman et al.,419

2016). In addition to leaky integration, bounded integration has also been proposed as a mecha-420

nism to account for the apparent failure to use the full stream of stimulus information (Kiani et al.,421

2008).422

Our use of a dynamic urgency signal can be seen as a generalization of the idea that integration423

must begin at a single point in time (Teichert et al., 2016). Recently, integration onset was exam-424

ined byDevine et al. (2019), who tested human subjects on a perceptual decision-making paradigm425

with multiple presample durations, a single sample coherence level, and no reward bias. Based426

on behavioral and EEG data, they proposed that under temporal uncertainty, integration begins427

approximately at the time of the earliest sample onset. However, their analyses did not fit a model428

of decision-making processes to test against alternative mechanisms. By contrast, we find strong429

evidence that our subjects used the temporal statistics of the task to modulate the evidence ac-430

cumulation process. Applying our model comparison framework in other task paradigms can test431

the generality of these strategies.432

A monotonically increasing gain function provides a straightforward mechanism to weight late433

evidence more than early evidence. The collapsing bounds mechanism does not by itself weight434

late evidence more than early evidence, although the interplay between time-varying urgency and435

leaky integration may provide a mechanism for temporal weighting of late evidence over early ev-436

idence. For example, in fixed-duration paradigms, a leaky integrator can effectively weight late437

evidence more than early evidence (Levi et al., 2018; Lam et al., 2017). We found that leaky in-438

tegration improved fit in all models but played a larger role for simpler urgency signals than for439

the best-fitting delayed urgency signals, suggesting that leaky integration may capture a related440

component of behavior as the delay in urgency increase. While our results imply that both leaky441

integration and a delayed urgency signal are necessary, the ability of a time-varying urgency signal442

to reduce the relative benefit of adding leaky integration to the model demonstrates the flexibility443

of the urgency signal.444

Asymmetric rewards and decision-making445

Asymmetry in reward or prior probability of the correct target can induce a bias to targets with a446

higher expected value (Voss et al., 2004; Lauwereyns et al., 2002; Diederich and Busemeyer, 2006;447

Ratcliff andMcKoon, 2008;Mulder et al., 2012; Feng et al., 2009; Rorie et al., 2010; Teichert and Fer-448
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rera, 2010). Several studies have indicated that reward bias in perceptual decision-making could449

be well accounted for by an integration-dependent mechanism in which reward is modeled either450

a constant evidence (i.e. initial bias) or momentary evidence (i.e. time-dependent bias) (Feng et al.,451

2009; Rorie et al., 2010; Fan et al., 2018; Gesiarz et al., 2019). In our task, even a combination of452

these two reward mechanisms could not fit our data in the absence of an urgency signal or leaky453

integration. Likewise, recent studies have reported that under time pressure, reward bias might454

be produced by integration-independent mechanisms such as a quick guess that races with the455

process of evidence integration (Simen et al., 2009; Noorbaloochi et al., 2015; Afacan-Seref et al.,456

2018). However, this possibility was not consistent with our data either. This discrepancy might be457

due to the fact that previous studies have seldom tested the possible role of urgency inmodulating458

the balance between evidence and bias when determining choice. Although reward bias increas-459

ing with time following the onset of an informative sensory stimulus could imply a time-varying460

bias mechanism, our results showed that such a time-varying bias is not necessary to explain our461

data. Overall, our results suggest that temporal and reward structures play an important role in462

perceptual decision-making. In addition, models within the GDDM framework can effectively de-463

scribe the contribution of temporal and reward related factors during decision-making and play464

an important role in investigating the cognitive mechanisms of decision-making.465

As investigators begin to explore more complicated behavioral tasks and computational mod-466

els, it is important to usemethods ofmodel-fittingwhich are specialized for complex, high-dimensional467

models. In this study, we fit each model to the entire RT distributions of correct and error choices468

using maximum likelihood, and were able to provide qualitatively good fits to both the RT distribu-469

tion and the psychometric and chronometric functions. By contrast, much previous work has fit470

models directly to the psychometric and chronometric functions, producing excellent fits to these471

reduced behavioral functions with a potentially poor fit to the RT distributions. Indeed, we found472

that evaluating and providingmodel fits to the entire probability distribution are highly informative473

for differentiating performance of different models and mechanisms. This methodology is imper-474

ative for simulating and fitting complex models. Our methodological innovations will therefore475

allow for increased complexity in experimental design to test a broad range of hypotheses about476

the mechanisms of decision-making.477

Methods478

Animal preparation479

Two male rhesus macaque monkeys (Q and P, identified as monkey 1 and 2 respectively: body480

weight, 10.5–11.0 kg) were used. The animal was seated in a primate chair with its head fixed481

and eye position was monitored with a high-speed eye tracker (ET49, Thomas Recording, Giessen,482

Germany). All procedures used in this study were approved by the Institutional Animal Care and483

Use Committee at Yale University, and conformed to the Public Health Service Policy on Human484

Care and Use of Laboratory Animals and Guide for the Care and Use of Laboratory Animals.485

Behavioral tasks486

Animals were trained to perform a color matching task, in which the onset time of the sample487

was systematically manipulated by varying the duration of non-informative stimulus (presample)488

that preceded the sample. Two versions of the task were used. In the color matching task with489

asymmetric reward (Figure 1), either large or small magnitude of reward was randomly assigned490

for identifying the correct color of the sample at a given trial. Presample duration was randomly491

selected from three discrete values at each trial. In the color matching task with timing blocks492

(Figure 6), two sets of presample intervals were used and presented in alternating blocks of trials493

(i.e. short- and long-presample blocks). In each block, presample duration was randomly selected494

from three discrete values. Themagnitude of reward was the same for all correct choices. Animals495

were first trained for the task with timing blocks and then for the task with asymmetric reward.496
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Color matching task with asymmetric reward497

Each trial began when the animal fixated a central square (white, 0.6° × 0.6° in visual angle) (Fig-498

ure 1). After the 0.3 s fixation period, cues indicating magnitudes of reward available from two499

alternative choices were presented at the potential locations of saccade targets. Two sets of re-500

ward cues were used: in addition to those shown in Figure 1, for some sessions, a circle was used501

for the large-reward target and a diamond for the small-reward target. Two nested squares in thin502

gray lines (or a circle) and a single square in thicker white lines (or a 45°-angled square) indicated503

larger and smaller reward, respectively. The ratio of rewardmagnitude was 2:3 and 1:4 formonkey504

1 and 2, respectively. Following the reward-cue period (0.4 s), a green disk was presented inside505

one of the two reward cues and a blue disk appeared within the other, serving as targets for choice506

saccade. After 0.4 s of target period, a checkered square with equal numbers of green and blue507

pixels (20 × 20; 1.63° × 1.63° in visual angle), or presample, was presented replacing the central508

fixation target. In addition, green and blue pixels were dynamically redistributed to random po-509

sitions at a rate of 20 Hz. After a variable interval (0, 0.4, 0.8 s), the presample was replaced by510

the sample, which was identical to the presample except that it contained green and blue pixels511

in different proportions. Presample duration was randomly sampled from the three intervals with512

equal probability. The animal was allowed to shift its gaze towards one of the peripheral target at513

any time after the onset of the sample and was rewarded only when it correctly chose the target514

with the same color as the majority of the pixels in the sample. Choices made during presample515

were punished by an immediate end of the trial followed by a 2 s timeout. Three levels of color516

coherence were used for the sample (53%, 60%, 70% for monkey 1; 52%, 57%, 63% of pixels for517

monkey 2), each with equal probability. In about 5% of the trials, the presample never changed518

to a sample, meaning the coherence of each color was 50% and there was no correct choice. On519

these trials, a reward was delivered with 50% probability regardless of the monkey’s choice. After520

0.3 s of fixation on the chosen target, feedback was provided for 0.3 s with a horizontal or vertical521

bar superimposed on the chosen target indicating erroneous or correct choice, respectively. Re-522

ward was delivered for correct choices. Color coherence, location of saccade target with correct523

color, presample duration, and location of large-reward cue were pseudo-randomly selected for524

each trial. Monkey 1 performed 30868 trials across 50 sessions, and monkey 2 performed 23695525

trials across 29 sessions.526

Color matching task with timing blocks527

The sequence of trial events was the same as in the color matching task with asymmetry (Figure 6),528

except that fixation and saccade targets were presented simultaneously without the reward cue,529

and the durations of the presample varied between blocks. Presample duration for the majority530

of the trials (60%) in the short- and long-presample block was 0.5 s and 1.25 s, respectively. In the531

remaining trials, the presample was terminated with equal probability (20%) either earlier (0.25 s532

and 0.75 s for short- and long-presample blocks, respectively) or later (0.75 s and 1.75 s for short-533

and long-presample blocks, respectively) than the most frequent presample durations. Choices534

made during the presample were penalized by subsequent 5 s timeout. Three levels of color co-535

herence were used for the sample (54%, 60% and 70% for both monkey 1 and 2), each with equal536

probability. Short- and long-presample blocks alternated within a given session and the order of537

the two types of block was randomized across sessions. Monkey 1 performed 12,773 trials across538

10 sessions, and monkey 2 performed 10,777 trials across 10 sessions.539

Fitting method540

Aswe fitmodels withmany parameters, wemust be careful about themethods used for parameter541

estimation. One common approach in the field is to fit the parameters of the DDM based only on542

the probability of a correct response and the mean RT for correct trials. This uses only a very small543

subset of the data, using only two summary statistics, and is thus insufficient for fitting complex544

models. A second approach which is commonly used when fitting complex models is to simulate545
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individual trajectories of the decision variable, and then perform tests on the quadrants of the546

simulated values to determine whether there is a match. While this approach utilizes more data547

than the previously discussed method, it still uses only summary statistics of the data. More criti-548

cally, this simulation process is very slow, and hence does not permit efficiently fitting themodel to549

data. These two approaches are principally used to overcome limitations in simulating and fitting550

these models, namely, that a full RT distribution is not always available. Our approach simulates551

the stochastic differential equations by numerically solving the Fokker-Planck equations so that we552

may use likelihood-based methods on the entire RT distribution for estimating parameters. This553

allows all data to be utilized through a robust statistical framework.554

RT distributions simulated directly from the Fokker-Planck equation often use the forward Euler555

method, an easy-to-implement method for solving stochastic differential equations. The forward556

Euler method mandates the use of very small time steps and a coarse decision variable discretiza-557

tion to maintain numerical stability. In practice, this means that simulations which achieve a rea-558

sonable margin of error are prohibitively time-consuming for fitting parameters.559

To circumvent this, we instead solve the Fokker-Planck equationusing theCrank-Nicolsonmethod560

(for the fixed-bound conditions) or the backward Euler method (for the collapsing bound condi-561

tions). These methods do not require small time steps in order to achieve low margin of error. As562

a result, we are able to fit parameters using the results of these numerical solutions. Simulations563

were performed using the PyDDM package1 using a timestep of 5 ms and decision variable dis-564

cretization of 0.005. Correctness of the implementation was verified using specialized techniques565

(Shinn, 2019).566

Fitting is performed by maximizing the log-likelihood function. For low-dimensional models,567

parameters may be optimized using a variety of local search functions which tend to give simi-568

lar results. However, for high-dimensional models, these methods are often unable to minimize569

the function, instead finding a local minimum or failing to converge. Because we were simultane-570

ously fitting up to 16 parameters, using an appropriate optimization routine was critical. We used571

differential evolution, a heuristic search method as implemented in Scipy (Jones et al., 2001). Dif-572

ferential evolution is a global search method, meaning it is intended to avoid local minima in the573

search space, and has been shown to exhibit consistent results in practice (Storn and Price, 1997).574

This gave consistent parameter estimates and similar log-likelihoods for our GDDMs.575

Cross-validation procedure576

Once obtaining a fit, there are many different processes which may be used for evaluating the fit577

of a model to protect against overfitting. There are two types of overfitting which are important578

to consider for complex models such as ours with many parameters. First, overfitting may occur579

because the model mechanism is complicated and thus the parameters of the model may fit to580

noise within the data. Second, overfitting may be the result of the modeler testing many potential581

model mechanisms and choosing the best mechanism. Simple models with few parameters may582

only be concerned with the first of these, but models with complicated mechanisms must guard583

against both types of overfitting.584

Many papers simply evaluate the best fit and report these values. This does not protect against585

either overfitting the parameters or overfitting the model mechanism. A more sophisticated ap-586

proach is to utilize a measure such as AIC or BIC, which takes the model complexity into account587

when comparing two competing models. However, these metrics judge model complexity exclu-588

sively by the number of parameters, and this has been shown to be a poor metric for evaluating589

model complexity (Piantadosi, 2018; Myung et al., 2000). Additionally, this only helps with over-590

fitting the parameter values and does not prevent overfitting of the model mechanism. A better591

approach is to utilize n-fold cross validation, which will properly penalize complex models over592

simple models by ensuring that the parameters are not overfit. However, this still leaves open593

1https://github.com/mwshinn/PyDDM
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the possibility for overfitting the model mechanism. For complex models, the best way to prevent594

overfitting is to use held-out data which is not analyzed or otherwise examined in any way until595

the final model has been constructed and the conclusions of the model have been determined.596

Therefore, in order to ensure robustness and protect against both types of overfitting, we split597

the dataset into two halves, an “exploration” dataset and a “validation” dataset. All analyses and598

model fitting were performed only on the exploration data using Bayesian information criterion599

(BIC) for comparing models. The validation trials were not fit to the model or otherwise examined600

until all analyses for the present manuscript were complete. After unmasking the validation tri-601

als, no additional analyses were performed, no additional results were added to the manuscript,602

and no existing results were removed. These analyses are shown as supplementary figures (Fig-603

ure 2–Figure Supplement 2, Figure 4–Figure Supplement 1, and Figure 5–Figure Supplement 1).604

For a more robust analysis, we evaluate models on the validation dataset using the held-out log-605

likelihood (HOLL), i.e. the likelihood under the held-out (validation) data when parameters were fit606

using the exploration dataset (Figure 2, Figure 4, Figure 5). All quantitative and qualitative results607

found using BIC were unchanged when using HOLL with the validation dataset.608

We did not perform this validation procedure on the task with timing blocks, as sample size was609

limited. Nevertheless, all models were developed on data from the task with asymmetric reward610

before being applied to data from the task with timing blocks.611

Behavioral analyses612

In analyzing animals’ behavior, we measured response time (RT) relative to the presample onset.613

However, we occasionally refer to the animal’s response time relative to the onset of the sample614

(“Sample RT”).615

A linear model was fit to examine the dependence of RT on task parameters:616

Response time = 𝛽0 + 𝛽1𝑅 + 𝛽2𝐷 + 𝛽3|𝐶| (1)

Here, 𝑅 is reward magnitude, where 1 indicates that the large-reward target was the correct re-617

sponse and 0 that the small-reward target was correct; 𝐷 is presample duration in units of seconds;618

and |𝐶| is unsigned coherence, where 1 corresponds to a solid color patch and 0 to an equal ratio of619

each color. We define RT relative to the onset of the presample, rather than the sample, given that620

the transition from presample to sample was not explicitly cued. Coherence takes values greater621

than or equal to 0. All notation is described in Table 1.622

To examine second-order interaction terms, a second model was fit:623

Response time = 𝛽0 + 𝛽1𝑅 + 𝛽2𝐷 + 𝛽3|𝐶| + 𝛽4𝑅𝐷 + 𝛽5𝑅|𝐶| + 𝛽6|𝐶|𝐷 (2)

Similarly, a binomial generalized linear model was fit to understand how the task parameters624

influenced the monkey’s decision to choose the correct target:625

logit (ℙ(correct choice)) = 𝛽0 + 𝛽1𝑅 + 𝛽2𝐷 + 𝛽3|𝐶| (3)

where variables are as defined above. Likewise, a second model was fit which contained second-626

order interaction terms:627

logit (ℙ(correct choice)) = 𝛽0 + 𝛽1𝑅 + 𝛽2𝐷 + 𝛽3|𝐶| + 𝛽4𝑅𝐷 + 𝛽5𝑅|𝐶| + 𝛽6|𝐶|𝐷 (4)

Linear model results were similar in both the exploration and validation datasets. Trials with628

zero coherence were excluded.629

Likewise, RT was examined for the color match task with timing blocks using the linear model:630

Response time = 𝛽0 + 𝛽1𝐷 + 𝛽2|𝐶| + 𝛽3𝐵 (5)
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Table 1. Summary of notation. All mathematical notation used in equations and models are listed below.

Task variables
𝐷 Presample duration in ms
𝐶 Coherence strength from -1 to +1, 𝐶 > 0 indicates large-reward target correct
𝑅 1 = large-reward target correct, 0 = small-reward target correct
𝐵 1 = long-presample block, 0 = short-presample block

Parameters
𝑠 Signal to noise ratio (𝑠 > 0)
ℓ Leak magnitude, 0 = perfect integration, ∞ = no integration (ℓ ≥ 0)
𝑡𝑛𝑑 Non-decision time, (𝑡𝑛𝑑 ≥ 0)
𝜇 Drift rate (DDM only), (𝜇 ≥ 0)
𝜎 Noise (DDM only), (𝜎 > 0)
𝑝𝐿 The probability of a lapse, (𝑝𝐿 ≥ 0)
𝜆 Decay rate of lapse trials (symmetric) (𝜆 > 0)

𝑡1 Onset time of increase in urgency (𝑡1 ≥ 0)
Γ0 Urgency at time 𝑡 = 0 (Γ0 > 0)
𝑚𝐺 Slope of linear ramp in gain function (𝑚𝐺 ∈ ℝ)
𝜏𝐵 Decay rate of exponential decrease in bounds (𝜏𝐵 > 0)

𝑥0 Starting position of decision variable (𝑥0 ∈ ℝ)
𝑚 Increase in leak baseline over time (𝑚 ∈ ℝ)
𝑝𝑚𝑎𝑝 Probability of a mapping error (𝑝 ≥ 0)
𝜆ℎ𝑟 Decay of lapse probability towards the large-reward target (replaces 𝜆) (𝜆ℎ𝑟 ≥ 0)
𝜆𝑙𝑟 The decay rate of lapse trials towards the small-reward target (replaces 𝜆) (𝜆𝑙𝑟 ≥ 0)

Misc
𝑥 Decision variable
Γ(𝑡) Gain function
Θ(𝑡) Decision bound
𝐼 Indicator function
𝑊 Wiener process
𝐺 1 = correct trial, 0 = error trial
𝛽𝑖 Regression coefficients
𝜏 The leak time constant, defined as 1

ℓ
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Table 2. Model parameters. Parameters for each displayed model. Rew: Color matching task with
asymmetric reward, Time: Color matching task with timing blocks.

Task: Rew Rew Time Time Time Time Rew Rew
Model: GDDM GDDM GDDM GDDM GDDM GDDM DDM DDM
Monkey: 1 2 1 1 2 2 1 2
Block: — — Short Long Short Long — —
𝑠 9.32 6.52 11.25 11.25 12.11 12.11
Γ0 1.03 1.16 1.62 1.62 1.40 1.40
𝑡𝑛𝑑 0.22 0.21 0.20 0.20 0.22 0.22 0.27 0.21
ℓ 7.14 15.82 22.67 22.67 9.81 9.81
𝜏𝐵 1.19 0.70 0.35 0.35 0.47 0.47
𝑡1 0.36 0.09 0.00 0.21 0.20 0.73
𝑥0 0.09 0.05 -0.16 -0.04
𝑝𝑚𝑎𝑝 0.12 0.21
𝑝𝐿 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.10
𝜆 1.02 0.12 0.47 0.47 1.47 1.47 0.48 0.95
𝜇 2.90 6.27
𝜎 0.77 0.76
𝑚𝑒 0.60 0.43

where𝐵 is the block, coded as 0 for the short-presample block and 1 for long-presample, and other631

terms are as specified above. Accuracy was likewise analyzed with the binomial generalized linear632

model:633

logit (ℙ(correct choice)) = 𝛽0 + 𝛽1𝐷 + 𝛽2|𝐶| + 𝛽3𝐵 (6)

DDM with reward mechanisms634

The DDM is governed by a decision variable 𝑥. The evolution of 𝑥 in our reward-biased DDMmodel,635

similar to that of Fan et al. (2018) and Gesiarz et al. (2019), is described by:636

d𝑥 = 𝐼𝑡>𝐷 𝜇 𝐶 d𝑡 + 𝑚𝑒 d𝑡 + 𝜎 d𝑊 (7)

where the following parameters were fit to data:637

• 𝜇 - signal strength638

• 𝜎 - noise level639

• 𝑚𝑒 - momentary sensory evidence bias640

Additional terms in the model are:641

• 𝑊 - A Wiener process with standard deviation 1642

• 𝐶 - The color coherence643

• 𝐼𝑡>𝐷 - An indicator function for the presample on the current trial. 𝐼𝑡>𝐷 = 0 if we are in the644

presample, and 𝐼𝑡>𝐷 = 1 otherwise.645

We specify that 𝑥 has initial condition given by parameter 𝑥 = 𝑥0 at 𝑡 = 0 seconds. We use646

the convention that positive values of 𝑥 indicate choices towards the large-reward target, and thus647

positive coherence indicatesmotion towards the large-reward target and negative coherence away648

from it. When | ∫𝑡
0 d𝑥| ≥ 1, a decision to choose left or right is made based on the sign of 𝑥. Since649

the parameter 𝜎 is fit to data, integration bounds are fixed at 1 to prevent over-parameterization.650

The RTs generated by this model were shifted post-simulation by the non-decision time 𝑡𝑛𝑑 .651

Since we fit based on maximum likelihood, rare trials in which the choice appears unrelated to652

the stimulus (lapses) may have a large impact on the fitted parameters. Thus, for the purposes653
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of model fitting, we fit a mixture model between the drift-diffusion process and an exponentially-654

distributed lapse rate with rate parameter 𝜆. This is given by:655

𝑓(𝑡) = 1
2 𝜆𝑒−𝜆𝑡 (8)

where there is a 𝑝𝐿 probability of any given trial being a lapse trial. While we fit both of these656

parameters to data, results were unchanged when we fixed these parameters at constant values657

(data not shown).658

Thus, overall, this model contained seven parameters: 𝜇, 𝜎, 𝑥0, 𝑚𝑒, 𝑡𝑛𝑑 , 𝑝𝐿, and 𝜆.659

Generalized DDM660

Like the DDM, the GDDM is governed by the evolution of a decision variable 𝑥. The instantaneous661

value of 𝑥 is described by:662

d𝑥 = −ℓ (𝑥 − 𝑥0 + 𝑚 𝑡)d𝑡 + 𝐼𝑡>𝐷 Γ(𝑡) 𝐶 𝑠d𝑡 + Γ(𝑡)d𝑊 (9)

where the parameters which could potentially be fit by simulations are:663

• ℓ - The leak parameter, constrained to ℓ ≥ 0. Its inverse is the leak time constant.664

• 𝑥0 - The initial position of the integrator, and the location to which the leaky integrator decays.665

This was constrained to be 𝑥0 ≥ 0. By default, it was fixed to 𝑥0 = 0.666

• 𝑚 - The change in the leaky integrator baseline over time. By default this was fixed at 𝑚 = 0.667

• Γ(𝑡) - The sensory gain, a function of time. By default, Γ(𝑡) = Γ0.668

• 𝑠 - The signal-to-noise ratio, constrained to 𝑠 ≥ 0.669

• Θ(𝑡) - The decision bound. When | ∫𝑡
0 d𝑥| ≥ Θ(𝑡), a decision to choose left or right is made670

based on the sign of 𝑥. Since noise is allowed to vary, integration bounds are subject to the671

constraint Θ(0) = 1 to prevent overfitting. In the absence of collapsing bounds, this fixes the672

bounds to be equal to ±1, the default.673

Additional terms in this equation are defined as:674

• 𝑊 - White noise, i.e. a Wiener process.675

• 𝐶 - Coherence. We use the convention that positive values of 𝑥 indicate choices towards the676

large-reward target, and thus positive coherence indicates motion towards the large-reward677

target and negative coherence away from it.678

• 𝐼𝑡>𝐷 - An indicator function for the presample on the current trial. 𝐼𝑡>𝐷 = 0 if we are in the679

presample, and 𝐼𝑡>𝐷 = 1 otherwise.680

As above, we fit a mixture model between the drift-diffusion process and an exponentially-681

distributed lapse rate with rate 𝜆, with a 𝑝𝐿 probability of any given trial being a lapse trial. This is682

given by:683

𝑓(𝑡) = 1
2 𝜆𝑒−𝜆𝑡 (10)

Overall, in the simplest possible case where all parameters are set to their defaults (thereby684

indicating that no reward or timing effects are included in the model), the model includes six pa-685

rameters: 𝜆, 𝑝𝐿, Γ0, ℓ, 𝑠, 𝑡𝑛𝑑 . Reward and timing mechanisms added to the model increased the686

number of parameters which were fit.687

Reward mechanisms688

Within the GDDM framework, we designed reward mechanisms for the model according to our689

hypothesized cognitive mechanisms, shown in Figure 3.690
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Initial bias691

The total evidence necessary to reach a decision is lower for the large-reward target than for the692

small-reward target. This is equivalent to changing the starting position of integration. Because693

ourmodel deals with leaky integration, we furthermore impose that the leak decays to this position694

instead of to zero. This adds one parameter to the model: the magnitude of the baseline shift 𝑥0.695

Time-dependent bias696

The total evidence necessary to reach a decision is initially the same for the large- and small-reward697

targets, but a bias towards the large-reward target over the small-reward target develops linearly698

over time. Without leak, this is equivalent to a constant bias on the drift rate, i.e. a continuous inte-699

gration of a constant. Because our model deals with leaky integration, such a bias would instead700

change the point to which the leaky integrator decays. Thus, wemodel this bias by temporallymod-701

ulating the position to which the leaky integrator decays. This adds one parameter to the model:702

the slope of the increase in large-reward bias 𝑚.703

Mapping error704

After integrating to the bound, with some probability, small-reward choices are mapped to a re-705

sponse toward the large-reward target. Equivalently, some percentage of small-reward choices706

are assigned to be large-reward instead. This mechanism was first described in discrete evidence707

paradigms (Erlich et al., 2015; Hanks et al., 2015). This mechanism adds one parameter to the708

model: the probability of making a mapping error on any given trial 𝑝𝑚𝑎𝑝.709

Mapping error was implemented as post-simulation RT histogram modifications. For a simu-710

lated probability density function 𝑓(𝑥|𝑅 = 𝑟, 𝐶 = 𝑐, 𝐺 = 𝑔, 𝐷 = 𝑝), where 𝑅 is large vs. small reward,711

𝐶 is coherence, 𝐺 is correct or error trial, and 𝐷 is the presample duration, we compute the final712

density 𝑓 ′(𝑥) using 𝑓(𝑥). For the mapping error, this was calculated as:713

𝑓 ′(𝑥|𝑅 = large, 𝐶 = 𝑐, 𝐺 = corr, 𝐷 = 𝑑) = 𝑓(𝑥|𝑅 = large, 𝐶 = 𝑐, 𝐺 = corr, 𝐷 = 𝑑)+
𝑝𝑚𝑎𝑝 𝑓(𝑥|𝑅 = large, 𝐶 = 𝑐, 𝐺 = err, 𝐷 = 𝑑) (11)

𝑓 ′(𝑥|𝑅 = large, 𝐶 = 𝑐, 𝐺 = err, 𝐷 = 𝑑) = (1 − 𝑝𝑚𝑎𝑝) 𝑓 (𝑥|𝑅 = large, 𝐶 = 𝑐, 𝐺 = err, 𝐷 = 𝑑) (12)

𝑓 ′(𝑥|𝑅 = small, 𝐶 = 𝑐, 𝐺 = corr, 𝐷 = 𝑑) = (1 − 𝑝𝑚𝑎𝑝) 𝑓 (𝑥|𝑅 = small, 𝐶 = 𝑐, 𝐺 = corr, 𝐷 = 𝑑) (13)

𝑓 ′(𝑥|𝑅 = small, 𝐶 = 𝑐, 𝐺 = err, 𝐷 = 𝑑) = 𝑓(𝑥|𝑅 = small, 𝐶 = 𝑐, 𝐺 = err, 𝐷 = 𝑑)+
𝑝𝑚𝑎𝑝 𝑓(𝑥|𝑅 = small, 𝐶 = 𝑐, 𝐺 = corr, 𝐷 = 𝑑) (14)

Lapse rate bias714

The lapse rate, assumed to be exponentially distributed, is allowed to be higher in the direction715

of the large-reward target compared to the small-reward target. This is given for large- and small-716

reward targets respectively by:717

𝑓ℎ𝑟(𝑡) = 𝜆ℎ𝑟𝑒−(𝜆ℎ𝑟+𝜆𝑙𝑟)𝑡 (15)

𝑓𝑙𝑟(𝑡) = 𝜆𝑙𝑟𝑒−(𝜆ℎ𝑟+𝜆𝑙𝑟)𝑡 (16)

This mechanism has three parameters: the lapse rates for both large- and small-reward targets718

𝜆ℎ𝑟 and 𝜆𝑙𝑟, and the probability of any given trial being a lapsed trial 𝑝𝐿. Models which include this719

mechanism do not include unbiased lapse rate, as it is redundant. Since the unbiased lapse rate720

uses two parameters, this mechanism adds one net parameter to the model.721

Timing mechanisms722

Similarly, we designed timing mechanisms to capture the ideas of urgency signals. Two types of723

urgency signal have been previously described in the literature: a “gain function” which scales724

evidence and noise uniformly throughout the course of the trial, and “collapsing bounds” which725

cause the decision bounds to become less stringent as the trial progresses.726
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Collapsing bounds727

Collapsing bounds can be used to implement an urgency signal of various forms. While much728

debate has focused on the correct formof the bounds (Hawkins et al., 2015a;Malhotra et al., 2017),729

we use an exponentially collapsing bound for simplicity. This mechanism adds one parameter to730

the model: the time constant of the exponential collapse 𝜏𝐵 . It is implemented as:731

Θ(𝑡) = 𝑒−𝑡/𝜏𝐵 (17)

Note that this form satisfies the imposed boundary condition Θ(0) = 1.732

Delayed collapsing bounds733

This implements an exponentially decreasing bound as an urgency signal similarly to collapsing734

bounds, except the bounds do not begin to collapse until late in the trial. This mechanism adds735

two parameters to the model: the time before the bounds begin to collapse 𝑡1, and the rate of736

collapse 𝜏𝐵 . This is implemented as:737

Θ(𝑡) =
⎧⎪
⎨
⎪⎩

𝑒−(𝑡−𝑡1)/𝜏𝐵 , 𝑡 ≥ 𝑡1

1, otherwise
(18)

These also satisfies the boundary condition Θ(0) = 1 for all 𝑡1 ≥ 0.738

Linear gain739

A gain function can also be used to implement an urgency signal. It scales both the evidence and740

the noise simultaneously in order to preserve signal-to-noise ratio. This mechanism adds one741

parameter to the model: the rate at which gain increases 𝑚𝐺. It is implemented as:742

Γ(𝑡) = Γ0 + 𝑚𝐺 𝑡 (19)

Delayed gain743

The delayed gain function implements an urgency signal similarly to linear gain but it does not744

begin to increase the grain until part way into the trial. This mechanism adds two parameters745

to the model: the time at which the value begins to ramp 𝑡1, and the slope of the ramp 𝑚𝐺. It is746

implemented as:747

Γ(𝑡) =
⎧⎪
⎨
⎪⎩

Γ0 + 𝑚𝐺 (𝑡 − 𝑡1), 𝑡 ≥ 𝑡1

Γ0, otherwise
(20)

Simulations without leak748

Simulations without leak were performed by setting ℓ = 0.749
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Figure 2–Figure supplement 1. DDM with reward bias does not capture monkey behavior.
Format similar to Figure 2, but with the model described in Drift-diffusion model with reward
mechanisms.
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Figure 2–Figure supplement 2. Animal and model performance in exploration dataset. For-
mat similar to Figure 2, but showing the exploration data using model parameters fit to it.
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Figure 4–Figure supplement 1. Fit of GDDM models with exploration data. Format similar to
Figure 4, except fit is evaluated using BIC on the exploration data instead of HOLL on the validation
data.
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Figure 5–Figure supplement 1. Leaky integration with exploration data. Format similar to
Figure 5, except fit is evaluated using BIC on the exploration data instead of HOLL on the validation
data.
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