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Summary 
Turbulence facilitates fast energy/information transfer across scales in physical systems. These 

qualities are important for brain function, but it is currently unknown if the dynamic intrinsic 

backbone of brain also exhibits turbulence. Using large-scale neuroimaging empirical data from 1003 

healthy participants, we demonstrate Kuramoto’s amplitude turbulence in human brain dynamics. 

Furthermore, we build a whole-brain model with coupled oscillators to demonstrate that the best fit 

to the data corresponds to a region of maximally developed amplitude turbulence, which also 

corresponds to maximal sensitivity to the processing of external stimulations (information capability). 

The model shows the economy of anatomy by following the Exponential Distance Rule of anatomical 

connections as a cost-of-wiring principle. This establishes a firm link between turbulence and optimal 

brain function. Overall, our results reveal a way of analysing and modelling whole-brain dynamics 

that suggests turbulence as the dynamic intrinsic backbone facilitating large scale network 

communication. 
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Introduction 
The study of turbulence remains one of the most exciting unsolved problems of modern physics 

(Cross and Hohenberg, 1993). Much progress has been made in the field of fluid and oscillator 

dynamics in terms of understanding and modelling turbulence (Cross and Hohenberg, 1993; 

Kawamura et al., 2007; Kuramoto, 1984). One of the most relevant aspects of turbulence is the ability 

to facilitate fast energy transfer across in fluids, the statistical study of which was pioneered by 

Andrey Kolmogorov (Frisch, 1995; Kolmogorov, 1941a, b). At an abstract level, effective energy 

transfer can be thought of in terms of efficient information processing. Thus, a key question presents 

itself, namely are there turbulence-like dynamics in the human brain? 

 

In the context of turbulence in fluid dynamics, Kolmogorov developed his phenomenological theory 

of turbulence (Kolmogorov, 1941a, b) (see excellent review in (Frisch, 1995)). This introduced the 

important concept of structure functions, based on computing the spatial correlations between any 

two points in a fluid, which demonstrated and quantified the energy cascades that balance kinetics 

and viscous dissipation. 

 

Later on, Kuramoto used the theory of coupled oscillators to show turbulence in fluid dynamics 

(Kuramoto, 1984). Beyond fluid dynamics, coupled oscillators have in general been highly successful 

for describing large scale brain activity and in particular its metastability ((Cabral et al., 2014; Deco 

et al., 2017c)). These findings suggest that turbulence could play a role in brain dynamics, and could 

be important for ensuring efficient information transfer (rather than energy transfer). Specifically, in 

the coupled oscillator framework, the Kuramoto local order parameter represents a spatial average of 

the complex phase factor of the local oscillators weighted by the coupling. The level of amplitude 

turbulence is defined as the standard deviation of the modulus of Kuramoto local order parameter and 

can be applied to the empirical data of any physical system.  

 

Here, to investigate the presence of turbulence-like traces in human brain dynamics, we combined 

Kuramoto’s framework for describing turbulence together with Kolmogorov’s concept of structure 

functions for describing turbulence. We applied this framework to a large Human Connectome 

Project (HCP) database with neuroimaging data from 1003 healthy human participants. We found 

that the empirical data shows clear evidence of Kuramoto’s amplitude turbulence (indexed by the 

local Kuramoto order parameter).  

 

One thing is to observe, however, and another is to truly understand a phenomenon through a causal 

mechanistic model. The dynamics of the human brain has been described using a plethora of whole-
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brain models, which include biophysical realistic models (Chaudhuri et al., 2015; Deco and Jirsa, 

2012; Demirtas et al., 2019; Demirtas et al., 2017; Ghosh et al., 2008; Honey et al., 2009; Izhikevich 

and Edelman, 2008) and models of coupled oscillators (Cabral et al., 2014; Deco et al., 2017b; Deco 

et al., 2017c). Yet, no one has yet investigated whether these dynamics show traces of turbulence. 

 

Therefore we used a whole-brain model utilising Stuart-Landau (also known as Hopf) oscillators 

(Deco et al., 2017c) and using the Exponential Distance Rule of anatomical connections as a cost-of-

wiring principle. This demonstrated the economy of anatomy and showed that, at the dynamical 

working point of the whole-brain model optimally fitting the empirical data, the system shows not 

just Kuramoto’s amplitude turbulence but maximal amplitude turbulence. Even further, we 

generalised the concept of susceptibility which measures the sensitivity of the brain to the processing 

of external stimulation, to define a measure of the information capability of the whole-brain model. 

The information capability is designed to capture how different external stimulations of the model 

are encoded in the elicited dynamics (see Methods). Remarkably, at the dynamical working point of 

the model fitting the data where there is maximal amplitude turbulence, we also found maximal 

information capability.  

 

This framework also allowed us to investigate the differences between the amplitude turbulence 

found in resting state and in the seven behavioural tasks found in HCP dataset. The results show that 

they share a turbulent core but that the long-distance correlations show task-specific increases in 

higher-order brain regions outside the turbulent core.  

 

Finally, given that we have shown that turbulence is the dynamic intrinsic backbone facilitating large 

scale network communication, we also investigated if there are power laws in empirical brain 

dynamics similar to those found by Kolmogorov in the structure functions of fluid dynamics. In our 

case, however, such power laws would be evidence of the presence of a cascade of efficient 

information processing across scales. We found power laws in the turbulent core, tentatively named 

the ‘inertial subrange’ similar to those found in fluid dynamics, and which similarly appear to be 

homogeneous isotropic, i.e. with average properties that are both independent of position and 

direction. 
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Results 
In order to demonstrate turbulence in human brain dynamics we combined the seminal insights and 

methods of Kolmogorov (Kolmogorov, 1941a, b) and Kuramoto (1984). The study of turbulence in 

fluid dynamics (see left panel of Figure 1A) was strongly influenced by Richardson’s concept of 

cascaded eddies reflecting the energy transfer (see cartoon in right panel of Figure 1A), where the 

hierarchical organisation of different sizes of eddies is schematised for the turbulent so-called ‘inertial 

subrange’, ie the range where turbulence kinetic energy is transferred from larger to smaller scales 

without loss (see shaded areas in Figures 1A and 1B). Subsequently, this inspired Kolmogorov to 

create his phenomenological theory of turbulence based on the concept of structure functions. For 

fluid dynamics, he demonstrated the existence of power laws in the inertial subrange where the 

structure functions show a universal scaling of the spatial scale, r, given by r! "#  (left panel of Figure 

1B) and an energy scaling of k, the associated wave number of the spectral scale given by k$% "#  (right 

panel of Figure 1B).  

 

Another way to describe turbulence in fluid dynamics was proposed by Kuramoto (1984), who 

defined a local order parameter, representing a spatial average of the complex phase factor of the 

local oscillators weighted by the coupling. The amplitude turbulence is simply given by the standard 

deviation of the modulus of this measure. An example of this is shown in Figure 1C for a ring of 

Stuart-Landau oscillator system (Kawamura et al., 2007).  

 

We used the state-of-the-art resting state data from a large set of 1003 healthy human participants in 

the Human Connectome Project (HCP) database (see Figure 1D and Methods), extracting the 

timeseries from each the 1000 parcels in the fine-grained Schaefer parcellation (Schaefer et al., 2018) 

(Figure 1E). The empirical data was minimally pre-processed according to the HCP protocol and 

subsequently filtered in the narrow relevant band between 0.008 and 0.08 Hz, detrended and z-scored 

(see Methods). We computed the function structure as the functional correlations between pairs with 

equal Euclidean distance, r, in MNI space (Figure 1F). We combined Kolmogorov’s structure 

functions with Kuramoto’s local order parameter to demonstrate amplitude turbulence. Finally, we 

created a whole-brain model using simplified brain connectivity following the Exponential Distance 

Rule (Ercsey-Ravasz et al., 2013; Markov et al., 2013; Markov et al., 2014) based on massive tract 

tracing studies in non-human primates (Figure 1G). This whole-brain model was based on Stuart-

Landau (also called Hopf) oscillators (Deco et al., 2017c) aiming to establish the causal mechanisms 

underlying the emergence of turbulence (Figure 1H).  
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Amplitude turbulence in empirical brain dynamics 

We computed the local Kuramoto order parameter, R, for the empirical brain resting data of 1200 

data points from the 1003 HCP participants and compared this to surrogate data, a shuffled version 

maintaining the spatiotemporal characteristics of the empirical data (Kantz and Schreiber, 1997). 

Amplitude turbulence, D, is defined as the standard deviation of the modulus of the local Kuramoto 

order parameter 𝑅 across time and space (Kawamura et al., 2007). Figure 2A (left panel) shows a 

box plot of the statistical significant difference (p<0.001, two-sided Wilcoxon rank sum test) between 

empirical and surrogate data. Furthermore, to ascertain the absence of regular spatiotemporal patterns 

in the empirical data, we computed the autocorrelation of the local Kuramoto order parameter, R, 

across space and time (middle and right panel, respectively), which show a rapid decay as expected 

in turbulence. 

 

It is instructive to visualise the change over time and space of the local Kuramoto order parameter, 

R. Figure 2B shows the spatiotemporal evolution of amplitude turbulence in empirical data of a single 

participant in a 2D plot of all 500 parcels in the left hemisphere over the 1200 timepoints. Given that 

this is a 1D representation of a 3D space, the 500 parcels are not ordered in terms of spatial 

neighbourhood and therefore this does not represent the true spatiotemporal evolution of amplitude 

turbulence. Instead to appreciate the synchronisation of neighbouring clusters over time, Figure 2C 

shows snapshots for two segments separated in time (the left and right parts marked on the 2D plot) 

rendered on a flatmap of the hemisphere. The evolution of turbulence in the empirical data across 

space and time is even clearer in Video S1 in the supplementary material, which shows the full 

spatiotemporal evolution over the full 1200 timepoints of the full resting state session. Remarkably, 

the evolution of amplitude turbulence in terms of R, where spatial neighbourhood is conserved, 

closely resembles the typical turbulence found in fluid dynamics and oscillators, which can now be 

directly compared with the theoretical ring results of Kawamura and colleagues (Kawamura et al., 

2007). Furthermore, Figure 2D shows this in another way by plotting only 26 neighbouring parcels 

running from the front to the back of the brain. 

 

Finally, similar to Kawamura and colleagues (Kawamura et al., 2007), Figure 2E plots consecutive 

snapshots over time of the phases of all brain regions for both the empirical data (top) and the 

surrogate data (bottom). This figure convincingly demonstrates the absence of structure in the 

surrogate data and clustering resembling vortices in the empirical data. 
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Mechanistic origins of turbulent human brain dynamics  

We wanted to understand the causal mechanistic principles underlying the emergence of turbulence 

in brain dynamics. Turbulence has been described by Kuramoto using Stuart-Landau oscillators 

(Kuramoto, 1984), and the very same oscillators have successfully been used in whole-brain models 

modelling human brain activity, although these models are usually named after the Hopf bifurcation, 

given the fact that the Stuart-Landau oscillator expressed mathematically is the normal form of the 

Hopf bifurcation (Deco et al., 2017c). Therefore Hopf whole-brain models are highly suitable for 

elucidating the underlying mechanisms of turbulence in brain dynamics. 

 

Whole-brain modelling couples local dynamics between different brain regions through their 

anatomical structural connectivity, which usually obtained from tractography estimated with dMRI. 

On the other hand, massive tract tracing studies in non-human primates have shown that the core of 

anatomical structural brain connectivity can be fairly well described by a simple rule, the Exponential 

Distance Rule, given by  C&' = e$((*(&,'))  (Ercsey-Ravasz et al., 2013) (see Figure 1G and 

Methods). Here C&' is the anatomical coupling between brain region n and p, and λ is the exponential 

decay of the connectivity as a function of the distance, i.e. r(n, p), which is simply the Euclidean 

distance between brain regions in MNI space. 

 

Figure 3A shows the close relationship between the empirical HCP dMRI tractography of the human 

brain and the exponential distance rule. Specifically, the figure shows a plot of the fibre densities 

between the pairs of regions in the Schaefer parcellations as a function of the Euclidian distance, r, 

between the nodes. The blue line represents dMRI tractography and the red line represents the fitted 

exponential distance rule. The subpanels show the structural connectivity matrices for the empirical 

dMRI tractography (left) and the fitted exponential distance rule (right), at the optimal λ=0.18 mm-1 

when fitting the dMRI connectivity data to the underlying exponential function. These matrices are 

remarkably similar reflecting the excellent level of fitting. 

 

This fact simplifies the fitting of a Hopf whole-brain model to the empirical functional data. We built 

a Hopf whole-brain model using the exponential distance rule (with the empirically derived λ=0.18 

mm-1) (Figure 1H). As the fitting function, we used Kolmogorov’s concept of structure functions of 

a variable u (in turbulence usually a transversal or longitudinal velocity), which is defined here 

(Figure 1H and in the Methods) as 𝑆(r) = 〈(𝑢(𝑥̅ + r) − 𝑢(𝑥̅))!〉 = 2[𝐵(0) − 𝐵(r)], where the basic 

spatial correlations of two points separated by an Euclidean distance r, are given by 𝐵(r) =
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〈𝑢(𝑥̅ + r)𝑢(𝑥̅)〉. Here, we use variable u to denote the spatiotemporal fMRI BOLD signals from our 

analysis of the whole-brain dynamics of the HCP resting state data. The symbol 〈 〉 refers to the 

average across the spatial location 𝑥̅ of the nodes and time. Please note that many pairs of nodes 

across the brain have the same Euclidean distance, r, and are thus averaged, as indicated by the 

notation 〈 〉. As can be seen from the two equations, S(r) and B(r), they are basically characterising 

the evolution of the functional connectivity as function of the Euclidean distance between equally 

distant nodes. This is different from the usual definition of functional connectivity which is not 

measured as a function of the distance. Thus, we studied the whole brain fit of the root squared error 

between the empirical and simulated B(r) as a function of the global coupling parameter, G (see 

Methods). This global coupling parameter regulates the effectivity of the interactions between 

regions. 

 

Figure 3B shows the evolution of the amplitude turbulence, D, (red line) and the level of model 

fitting (blue line) as a function of the global coupling parameter, G (see Methods). We find that the 

amplitude turbulence, D, is increasing with G and reach a plateau until tapering off at high levels. 

This means that the model exhibit turbulence at a broad range of global coupling strengths. 

Remarkably, however, the maximum of amplitude turbulence, D, is found at the optimal working 

point at G = 0.8, where the model fits the empirical data; specifically 𝐵(𝑟),	the spatial correlation 

function of two nodes. The fact that we get a maximum of turbulence at the working point could 

suggest that the level of turbulence is reflecting the information capabilities of the brain. Furthermore, 

the level of amplitude turbulence for the empirical data is plotted by a dotted line, which corresponds 

to the maximum. In other words, at the optimal working point, the model is not only reaching its 

maximum but this is also corresponding the empirical value. As a note, Figure S1 shows that using 

the traditional strategy of fitting using the correlation between empirical and simulated functional 

connectivity matrices (red line) is not informative for constraining the model. This shows the 

usefulness of defining functional connectivity as a function of equally distanced nodes as is defined 

in the structure function definitions of S(r) and B(r). 

 

In order to investigate the role of turbulence on fitting the model, we were inspired by the findings 

by Kawamura, Nakao and Kuramoto (Kawamura et al., 2007), who manipulated the shear parameter 

(see Methods). Figure S2 shows the results of systematically changing the shear parameter, β, and 

the resulting changes in amplitude turbulence (red line) and the level of fitting (black line). Increasing 

the shear parameter leads to a worsening of the level of fitting, which is the error of the estimation of 

B(r). Nevertheless, the shear parameter is strongly affecting the amplitude turbulence, and it is 
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interesting to observe that when this decreases so the level of fitting get worse, establishing the 

relevance of turbulence for fitting the model. 

 

We investigated the possibility that the level of turbulence reflects information capability of the brain 

by generalising the concept of susceptibility, which is defined as the sensitivity of the whole-brain 

model to the processing of external stimulations (see Methods). On the other hand, the information 

capability of the whole-brain model is defined as the standard deviation across trials of the difference 

between the perturbed and unperturbed mean of the modulus of the local order parameter across time, 

averaged over all brain nodes (see Methods). This is easy to implement in the Hopf whole-brain 

model (Deco et al., 2017a; Deco et al., 2019), where perturbations can be introduced by changing the 

local bifurcation parameter a& of each brain node n (see Methods). For each value of G, we perturbed 

the whole-brain model 200 times with random parameters for the local bifurcation parameter a&.  

 

Figure 3C shows that the maximum of information capability (red line) is found at G=0.9 which 

corresponds to the optimal fitting of the whole-brain model to the empirical data (blue line). This 

clearly demonstrates that maximal turbulence is directly associated with information capability at the 

working point of the whole-brain model fitting the empirical data and thus presumably reflecting 

optimal information processing. In contrast, as is shown by the pink line, the simple measure of 

susceptibility is not maximal at this working point (but high) and in fact does not show a maximum 

in the range shown for G.  

 

Further probing the question of optimal information processing, we measured the integration and 

segregation of the whole-brain model in the whole range of global coupling (as before, see Methods). 

Integration is measured as the mean functional correlation and segregation is measured by the level 

of modularity of the functional connectivity (see Methods for precise definition). Figure 3D shows 

the combined measure of segregation/integration (red line) G. As can be seen the maximum is around 

the optimal fitting of the whole-brain model to the empirical data (blue line). This suggests the normal 

brain is also at its highest level of being able to segregate and integrate information (Deco et al., 

2015).  
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Spatiotemporal evolution of amplitude turbulence in whole-brain model dynamics 

Deeper insights into the spatiotemporal evolution of amplitude turbulence can be gained from 

studying the Hopf whole-brain model for different coupling strengths showing different levels of 

amplitude turbulence. Figure 4A shows 2D plots of the spatiotemporal evolution of the local 

Kuramoto order parameter, R, reflecting different levels of turbulence in the model for four different 

coupling strengths (G=0, G=0.4, G=0.8, and G=3.0). Similar to Figure 2, we plot the level of R for 

all 500 parcels in the left hemisphere over 1200 timepoints. The optimal working point (G=0.8) is 

highlighted and shows maximal turbulence as can be appreciated by comparing the level of variability 

of R in the other three 2D plots. Please also note how the uncoupled case (G=0) resembles random 

spatiotemporal dynamics, while the two cases demonstrate various degrees of turbulence (as shown 

by the values of D, the standard deviation of R, in Figure 3B). Figure 4B shows the corresponding 

2D plots of the spatiotemporal evolution of R in 26 neighbouring parcels running from the front to 

the back of the brain (similar to the plot in Figure 2D).  

 

The supplementary material contains four videos (Videos S2-S5) of the full spatiotemporal evolution 

of amplitude turbulence in one hemisphere across the 1200 timepoints of the full resting state session 

for each G. For the optimal working point fitting the empirical data (G=0.8), Figure 4C shows 

snapshots of for two segments of separated in time rendered on a flatmap of the hemisphere for each 

the four values of G. Again, it is remarkable how the spatiotemporal patterns generated by the whole-

brain model at for the optimal working point fitting the data (G=0.8) resemble the amplitude 

turbulence found in the empirical brain activity. It is also clear that there is amplitude turbulence for 

other values of G, but as shown in Figure 3B, the maximal value of turbulence is observed at the 

working point of the model fitting the empirical data. 

 

Differences between task and resting 

These results demonstrate amplitude turbulence in the brain dynamics of resting state. We were 

interested in investigating how turbulence is controlled when performing different cognitive tasks. 

To address this question, we studied the seven HCP tasks and contrasted these results with rest.  

 

First, we established a spatial map of the most significant correlations in resting state in order to have 

this as a reference for the analysis of the tasks. Figure 5A shows the group average functional 

connectivity (FC) correlation matrix for all 1000 parcels across all 1003 participants in the resting 

state. We calculated the global brain connectivity (GBC) of the FC matrix by calculating the average 

functional connectivity of each region with all other regions (the mean value of each row across the 

columns). Right panel of Figure 5B shows a rendering of GBC thresholded at the 80% quantile. 
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Remarkably, as shown in Figure 5C, there is a strong spatial overlaps with the myelination measured 

with T1w/T2w (Glasser et al., 2014; Glasser and Van Essen, 2011) thresholded at a similar 80% 

quantile (left subpanel). This can be seen in the middle panel of Figure 5C, where GBC is overlaid 

on spatial myelin map, and in the right panel of the overlapping histograms of the top GBC and top 

myelin regions as indexed by the spatial location (indexed by the Schaefer parcellation number), 

which are showing a 67.0% overlap. This means that the backbone of resting state processing builds 

a functional core in primarily visual, auditory and somatomotor regions.  

 

Second, for rest and each task we compare the correlation function B(r) as a function of the distance 

r (see Methods). As a representative example, Figure 5D shows the contrast between the HCP 

relational task (red, see Methods) and the resting state (grey), with the shaded error showing the 

dispersion across nodes, i.e. all pairs across all participants. As can be seen from Figure 5D, it would 

appear that the task and rest are similar in a subrange of values for r and that precisely in this range, 

there is a power law. We will return to this power law behaviour in the next section. Inspired by 

Kolmogorov, we use the term ‘inertial subrange’ to refer to the range r=[8.13 33.82] mm (light 

yellow background), which is the functional core, where task and rest are similar. In contrast, we use 

the term ‘long-distance correlation subrange’ for r>33.82 mm (light grey background), which is 

outside the functional core and where task and rest are dissimilar. As can be seen, the inertial subrange 

is mainly unaffected, but the long-distance correlations are significantly increased in the relational 

task (p<0.001, Wilcoxon rank sum, and for all other tasks, not shown).  

 

Figure 5E shows the histograms of rest (grey) and relational task (red) of correlations averaged across 

the long-distance subrange. As can be seen clearly, the two distributions are significantly different 

(p<0.001, Wilcoxon rank sum) and there is a group of task-specific regions that show larger 

correlations than the maximum of resting state (which is equally true for the six other HCP tasks). 

Figure 5F (left subpanel) shows the spatial maps of the relational task-specific regions are found in 

higher-order brain regions (in red) outside the functional core, and overlaid on the maps for the 

thresholded GBC map from resting state (in grey). Remarkably, the overlap is very low (16.4%) as 

can be seen in the right panel, which shows the overlapping histograms of the top relational (red) and 

top GBC (grey) regions as indexed by the spatial location. This finding demonstrates that the task-

specific regions are taken from the long-range correlations that serve to control the unaffected 

functional core. 

 

Figure 6A shows the same procedure of thresholding the correlations averaged over the long-distance 

subrange (for the maximum value of the resting state long-distance correlations) but now applied to 
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all seven HCP tasks (relational, red; gambling, green; emotion, light blue; working memory (wm), 

light red; social, pink; language, blue and motor, purple). These are rendered to visualise the task-

specific regions for each task, overlaid on the thresholded GBC map from resting state (grey regions). 

The regions are found in higher-order regions of the frontal, orbitofrontal, parietal, temporal, insular 

and midline frontal and cingulate cortices.  

 

Importantly, for all tasks there are hardly any overlaps with the resting GBC maps strongly suggestive 

of significant role of long-distance connections in controlling the unaffected common turbulent core. 

Interesting, as expected, each of the tasks use different, yet overlapping higher-order regions to 

perform the relevant cognitive task.  

 

Figure 6B shows a quantification of the overlap of task-specific exceptions by computing the 

intersection between task-specific regions by thresholding of the seven tasks at two thresholds: max 

(leftmost panel, red) and 99% quantile (middle panel, orange) of the resting state long-distance 

correlations). These are then overlaid on the GBC map (right panel, grey). The common regions are 

compatible with the large literature on higher order functional regions. The common regions are 

known to engage a network of brain regions in the ventromedial prefrontal/orbitofrontal, insular, mid-

cingulate and dorsolateral prefrontal cortices. We propose that this overlap could correspond to a 

“cognitive control network” which is needed to control the turbulence in the functional core 

processing.  

 

Exploring the functional core and power law in the empirical data 

The important result that the functional core is the underlying backbone for information processing 

leaves open the important question of whether this shows a power law similar to that found in fluid 

dynamics, which would be indicative of an information cascade. The existence of such a power law 

does not, of course, demonstrate the existence of turbulence but provides consistent evidence in 

support of our main findings of turbulence in the human brain demonstrated using Kuramoto’s 

oscillator framework in the empirical data and in the Hopf whole-brain models of the data. Other 

studies have shown power laws in human brain data in the context of criticality which could be 

consistent with turbulence but is not definite proof (Cocchi et al., 2017; Shew and Plenz, 2013). 

 

We explored whether power laws exist in the inertial subrange sustaining the functional core for both 

S(r) and B(r). We plot both in log-log plots and fit a straight line in the relevant range of r. The slope 

of the straight line is the exponent of the power law but note that shifting of functions S and B. 

Averaging across participants, Figure 7A shows the structure function S(r), plotted in a log-log plot. 
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We clearly observe an inertial subrange, inspired by the similar observation in fluid dynamics, where 

a power law is found (see Kolmogorov’s law in Figure 1B). Our results show a power scaling law 

with an exponent of approximately 1/2 in the range between r=8.13 mm and r=33.82 mm in the 

inertial subrange coinciding with the functional core (shown in the shaded areas in Figures 7A-C). 

 

The functional correlation between two nodes, 𝐵(𝑟), is computed as a function of the distance 

between those nodes (averaged across nodes and time), i.e. using homogenous isotropy (see Figure 

7B). Again, we observe a power law, here with a negative exponent of approximately -1/2 in the same 

inertial subrange in the functional core. Figure 7C shows as 𝐵(𝑟) as function of the distance (in a 

normal coordinate system) but averaged across time and showing the dispersion across nodes, i.e. all 

pairs across all participants. The unimodal distribution with a single peak suggests homogeneity 

across nodes in the functional core. 

 

In fact, the homogeneity can be quantified. For each node location 𝑥̅ for each participant we compute 

the fitting of the power scaling law in the same inertial subrange, i.e. logE𝐵(𝑟)F = 𝑎	𝑙𝑜𝑔(𝑟) + ℎ. 

Here, the parameters 𝑎 (slope) and ℎ (bias) describe the power scaling law for each participant and 

each location. Figure 7D shows the density distribution (across participants and node locations) of 

the slope parameter 𝑎, while Figure 7E shows this for the bias parameter ℎ. Both distributions are 

unimodal, which is suggestive of a core of homogeneity of the correlation function 𝐵(𝑟) across node 

location. Furthermore, Figure 7F shows the density distribution (across participants and node 

locations) of the mean (across 𝑟 in the inertial subrange) of the standard deviation of 𝐵(𝑟) (labelled 

isotropy in the figure). This distribution reflects also a unimodal distribution suggestive of isotropy, 

given that the variability across directions (standard deviation of 𝐵(𝑟)) is consistent with an isotropic 

peak. 

 

Furthermore, we also checked for power laws in the dynamics of the Hopf whole-brain model. Figure 

S3 shows the goodness of fit of power law for the pair correlation function B(r) in the inertial 

subrange. This is not particularly sensitive to finding optimal turbulence as shown by the red line, 

representing the goodness of fit, which only goes below p<0.05 for G>0.65. Still, this is evidence for 

the existence of power law and is consistent with the findings of high values of amplitude turbulence 

in the same range. 

 

Additionally, in the context of the Exponential Distance Rule, we were interested in estimating the 

exponential decay, λ, in a complementary way to estimating this from dMRI tractography which 

yields 𝜆 = 0.18 mm-1. This is consistent with research showing that smaller brain species such as 
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non-human primates and rodents have higher exponential decays (Horvát et al., 2016), with values 

of 𝜆 = 0.19  mm-1 for non-human primates (Ercsey-Ravasz et al., 2013) and 𝜆 = 0.78  mm-1 for 

rodents (Horvát et al., 2016). Nevertheless, in order to see if lower values of lambda are feasible in 

humans, we constructed a Hopf whole-brain model entirely reliant on the Exponential Distance Rule 

and estimated the possible exponential decays (see Methods). Thus, this model has two free 

parameters G and 𝜆, which can be systematically varied to study the root squared error between the 

empirical and simulated B(r) in the inertial subrange. Figure S4A shows that the model fitting 

includes the previously empirically estimated 𝜆 = 0.18  mm-1, based on the dMRI connectivity. 

Importantly, as can be seen from the plot, many exponential decays are possible, including smaller 

ones as suggested by the existing empirical data in other species. 

 

Similarly, Figure S4B shows there is a combination of the two parameters that provides the optimal 

balance between segregation and integration, computed as the product of the segregation and 

integration for the model (see Methods). Figure S4C shows the fit between empirical and simulated 

𝐵(𝑟) for the inertial subrange, with empirical data shown by the red line and standard deviation, while 

the data from the Hopf whole-brain model is shown by the blue line and standard deviation. This 

causally demonstrates that the human brain contains a homogeneous isotropic functional core, which 

observes spatial power scaling behaviour in the inertial subrange, generated by the Exponential 

Distance Rule.  

 

Summing up, the results show that the functional core of the human brain exhibits a power law and 

isotropic homogeneity; both are characteristics of turbulence, and, importantly, this could reflect the 

presence of an information cascade. 

 

Discussion 
Overall, we used a large, high-quality state-of-art dataset of 1003 HCP participants to demonstrate 

that human brain dynamics exhibit turbulence as formalised by Kuramoto in his studies of oscillators. 

Deepening our understanding the causal mechanistic root of this, we built a whole-brain model with 

coupled oscillators and demonstrated that the best fit of the Hopf whole-brain model to the empirical 

data corresponds to a region of maximally developed amplitude turbulence. Furthermore, the Hopf 

whole-brain model shows the economy of anatomy by using the Exponential Distance Rule of 

anatomical connections as a cost-of-wiring principle. Remarkably, the optimum of turbulence in the 

model also corresponded to maximal information capability, i.e. sensitivity to the processing of 

external stimulations, which suggests that turbulence is crucial for information processing.  
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Probing further the link to information processing in resting state dynamics, we investigated the brain 

dynamics during seven cognitive tasks in the same participants. We found that the tasks share a 

turbulent functional core with the resting state, and that the long-distance correlations show task-

specific increases in specific higher-order brain regions outside this functional core. We were 

interested to further establish a link to turbulence in fluid dynamics, and were able to demonstrate a 

consistent power law for functional brain correlations in a broad spatial range in the functional core 

suggestive of a cascade of information processing. Overall, our results reveal a way of analysing and 

modelling whole-brain dynamics establishes turbulence in the dynamic intrinsic backbone of the 

brain. 

 

Evidence of turbulence in empirical brain dynamics 

The study of turbulence was pioneered by the phenomenological theory of Kolmogorov, based on the 

concept of structure functions (Kolmogorov, 1941a, b). Equally, Kuramoto were able to formalise a 

framework for turbulence with a central role for oscillators that is able to model turbulence in fluid 

dynamics (Kuramoto, 1984). This inspired us to combine Kolmogorov’s structure functions with 

Kuramoto’s local order parameter to demonstrate turbulence in human brain dynamics. More 

specifically, we obtained significant results when computing amplitude turbulence is defined as the 

standard deviation of the modulus of the local Kuramoto order parameter across time and space for 

the empirical brain resting data compared to applying this to carefully constructed surrogate data. We 

visualised the change over time and space of amplitude turbulence on a flatmap rendering of the 

individual empirical brain data. This closely resembled the typical turbulence found in fluid dynamics 

and oscillators (Kawamura et al., 2007). 

 Please note that our demonstration of a turbulent dynamic backbone in empirical brain dynamics 

is entirely compatible with the rich literature on structured temporal patterning in brain data. This can 

be appreciated by considering two complementary perspectives on brain function, namely 

computational and dynamical. The former establishes a relationship between behaviour and 

concomitant brain activity, while the latter focuses on the information flow across space-time in order 

to integrate the processing segregated in different neuronal modules. In other words, the dynamical 

framework provides a description of the communication between nodes.  

 Our results described are compatible with an account of structured patterns of computation 

embedded in an intrinsic backbone regulating the windows of opportunity facilitating the 

communication necessary for integration. Take as an example how metastable dynamics are not only 

possible but necessary for implementing computation - and for integrating the corresponding 
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structured spatiotemporal patterns (Roberts et al., 2019; Tognoli and Kelso, 2014). The turbulence 

demonstrated here uses Kuramoto’s framework and generalises previous work showing metastability 

in whole brain dynamics (Cabral et al., 2014; Deco et al., 2017c), to show that turbulence results in 

more, rather than less, structure in the brain.  

 

Modelling the origin of turbulence  

Moving beyond correlation, we built a causal mechanistic Hopf whole-brain model using the 

exponential distance rule for the anatomical structural connectivity to demonstrate the emergence of 

turbulence. The whole-brain Hopf model of coupled oscillators was able to produce an excellent fit 

to the empirical data. The results showed maximal amplitude turbulence at the dynamical working 

point of the whole-brain model. Even more, at this working point, we rendered the spatiotemporal 

evolution of amplitude turbulence on a flatmap of the cortex, which showed a remarkable similarity 

to the renderings of the empirical data. Importantly, the renderings of other non-optimal working 

points of the model look rather different as reflected in the Kuramoto amplitude turbulence definition, 

eg when using very weak connectivity which results in very weak synchronisation and dissolving the 

vortex structure in the spatiotemporal evolution of patterns (see Figure 4C, G=0). 

 

Furthermore, the results suggest that turbulence could play a crucial role in brain information 

processing, given that we also found maximal information capability of the Hopf whole-brain model 

for capturing how different external stimulations are encoded in the dynamics. Importantly, we also 

found an optimal balance between segregation and integration at this working point of the model. 

Taken together the findings clearly demonstrate that the human brain is turbulent and this helps to 

facilitate optimal information processing across scales, suggestive of an information cascade. 

 

Please note that an important caveat to using a causal modelling framework is provided by the seminal 

work of Judea Pearl (Pearl, 2009). In his book “Causality”, he shows that any framework of causal 

inference is based on inferring causal structures that are equivalent in terms of the probability 

distributions they generate; that is, they are indistinguishable from observational data, and could only 

be distinguished by manipulating the whole system. Nevertheless, our modelling framework is 

perfectly suited for our stated aim of determining the origin of turbulence using a causal modelling 

framework.  
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Task-specific higher-order regions 

In order to study the link between turbulence and information processing, we used the same 

framework to contrast the brain dynamics in seven cognitive tasks with resting state in the same 

participants. We found that the task-specific functional differences were mainly found in regions in 

the long-distance subrange of correlations, while the turbulent functional core in the inertial subrange 

was largely unaffected. This reveals the existence of a turbulent functional core which could be 

essential for basic brain function and is reflecting the underlying economy of anatomy that keeps the 

human brain cost effective.  

 The turbulent functional core is consistent with the discovery of the default mode network (Raichle 

et al., 2001). This follows the fact that the brain is clearly hierarchical in its structure from single 

units to the larger circuits (Bullmore and Sporns, 2012; Felleman and Van Essen, 1991; Hagmann et 

al., 2008; Markov et al., 2014; Mesulam, 1998; van den Heuvel and Sporns, 2011; Zamora-Lopez et 

al., 2010). In particular, research by Margulies and colleagues (Margulies et al., 2016) have used 

neuroimaging to extend Mesulam’s seminal proposal that brain processing is shaped by a hierarchy 

of distinct unimodal areas to integrative transmodal areas (Mesulam, 1998). More recently, we have 

added to this literature by identifying the ‘global workspace’ of brain regions at the top of the 

hierarchy (Deco et al., 2020).  

 Beyond the functional core, the regions that we have identified could promote higher brain 

function through the breaking of the homogeneity and isotropy of the functional core organisation 

mainly due to the brain networks found in long-distance subrange, which are the functional 

homologues driven by the anatomical exceptions to Exponential Distance Rule. 

 

Finding a power law in the functional core  

It is well-known that human brain activity reflects the underlying brain anatomy (Deco et al., 2017c), 

and that this shaping of function by anatomical connectivity gets even stronger in brain states such as 

deep sleep  (Tagliazucchi et al., 2016) and anaesthesia (Barttfeld et al., 2015). Over the last decades, 

a large body of convincing research has identified how precisely the underlying anatomical 

connectivity is responsible for the emergence of the fundamental resting state networks that give rise 

to the low dimensional manifold of the functional organisation shaped by the human brain 

(Damoiseaux et al., 2006).  

 

The important result presented here, namely the discovery of a turbulent functional core suggests an 

even simpler underlying backbone for information processing that can create the necessary efficient 

information cascade. Supporting this proposal, we were able to show the existence of a power law in 

the common functional core in the empirical data of both resting state and seven tasks. Taken together, 
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this provides consistent evidence in support of our main findings of turbulence in human brain 

dynamics as demonstrated using Kuramoto’s oscillator framework in the empirical data and in the 

Hopf whole-brain models of the data.  

 

The discovery of the turbulent functional core opens up for an elegant proposal, namely that 

anatomical connectivity of the brain can be described by a structural core following a simple, 

homogeneous isotropic rule, namely the Exponential Distance Rule that provides the economy of 

anatomy as a cost-of-wiring principle (Markov et al., 2013).  

 

Future perspectives 

Using state-of-the-art neuroimaging data from over 1000 people, we demonstrate turbulence in 

human brain activity, in a tour-de-force technical analysis combining empirical methods and whole-

brain modelling adapting established methods from the fields of fluid dynamics and oscillators.  

 

This result significantly expands on previous research aiming at relating spatiotemporal chaos to brain 

activity (Babloyantz and Lourenco, 1994; Breakspear, 2017; Freeman, 2000; Honey et al., 2007; van 

Vreeswijk and Sompolinsky, 1996). Careful mathematical research has suggested that a main 

difference between spatiotemporal chaos and turbulence is that the latter is primarily needed for the 

propagation of disturbances and the transmittal of information from one spatial point to the other 

(Cross and Hohenberg, 1993; Oono and Yeung, 1987). This could offer a tentative answer not only 

to Heisenberg’s general question of “Why turbulence” but also to the more specific question of why 

turbulence in the brain. The purpose of turbulence in the brain must be closely linked to catalyse fast 

and efficient information processing. 

 

The results presented here from our whole-brain modelling of a very large set of empirical human 

data confirm that the human brain operates in a turbulent regime showing a maximum of amplitude 

turbulence and information capability and an optimal balance between integration and segregation.  

 

This finding of turbulence in the human brain is important for its controllability, not only in directing 

task activity but more generally for characterising brain states in health and disease (Deco et al., 2019; 

Gu et al., 2017; Tu et al., 2018). As such, the findings will allow for much more sensitive and selective 

biomarkers of brain states and provide important information on how to control brain disorders and 
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find novel, efficient ways to force homeostatic transitions to a healthy state using external 

perturbations (Deco et al., 2018; Kringelbach et al., 2020; Kringelbach et al., 2007). 
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Figures 

 
Figure 1. Measuring turbulence in fluid dynamics and in human brain activity. A) The study of 

turbulence in fluid dynamics was pioneered by Kolmogorov’s phenomenological theory of turbulence 

which is based on the concept of structure functions. In turn, this was inspired by Richardson’s 

concept of cascaded eddies. The left panel shows a snapshot of turbulence in a real physical system 

with different sizes of eddies, whose hierarchical organisation is schematised for the inertial 

subrange in the right panel. B) In fluid dynamics, as shown in the cartoon, power laws are found in 

an inertial subrange where the structure functions show a universal scaling of 𝑟! "#  (left panel) and 

an energy scaling of 𝑘$% "#  (right panel), where r is the spatial scale and k the associated wave 

number of the spectral scale. This power law behaviour reflects the energy transfer cascade found in 

turbulence. C) Fluid dynamics can equally well be modelled by coupled oscillators as shown by 

Kuramoto (1984). He defined a local order parameter, representing a spatial average of the complex 

phase factor of the local oscillators weighted by the coupling. The standard deviation of the modulus 

of this measure defines the level of amplitude turbulence, which is shown in the adapted figure for a 

ring of Stuart-Landau oscillator system (Kawamura et al., 2007). This concept is not only valid for 
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coupled oscillator modelling but also can be used to detect turbulence in a given system in a model-

free way. D) Here, to detect the presence of amplitude turbulence in human brain activity, we used 

state-of-the-art resting state data from a large set of 1003 healthy human participants in the Human 

Connectome Project (HCP) database. E) We extracted the timeseries from each the 1000 parcels in 

the fine-grained Schaefer parcellation, here shown as slices in MNI space and on the surface of the 

HCP CIFTI space. F) The function structure is based on the functional correlations between pairs 

with equal Euclidean distance, r, in MNI space. Here we show two examples of the pairs with r=8-

10 mm (top) and r=160-162 mm (bottom). G) It has been that most of the underlying brain 

connectivity follows the exponential decay described by the Exponential Distance Rule (Ercsey-

Ravasz et al., 2013). The figure shows the histogram of interareal projection length for all labeled 

neurons (n = 6,494,974) in a massive tract tracing study in non-human primates. The blue line shows 

the exponential fit with a decay rate 0.188mm-1. H) We used this anatomical basis in a whole-brain 

model based on Stuart-Landau oscillators (Deco et al., 2017c) aiming to establish the causal 

mechanisms underlying the emergence of turbulence.  
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Figure 2. Amplitude turbulence in empirical data. A) The left panel shows a boxplot of the amplitude 

turbulence, D, computed on the empirical resting state data of the 1003 HCP participants and on the 

carefully matched surrogate data. These are significantly different (P<0.001, two-sided Wilcoxon 

rank sum test). The middle and right panel shows the autocorrelation of the local Kuramoto order 

parameter, R, across space and time, respectively. The rapid decay demonstrates absence of regular 

spatiotemporal patterns in the empirical data. B) The figure visualises the change over time and 

space of the local Kuramoto order parameter, R, reflecting amplitude turbulence in a single 

participant. Amplitude turbulence can be clearly seen in the 2D plot of all 500 parcels in the left 

hemisphere over the 1200 timepoints. C) This can be appreciated from the continuous snapshots for 
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two segments separated in time (left and right parts) rendered on a flatmap of the hemisphere (see 

insert with renderings of a single snapshot on the inflated and flatmapped cortex). Furthermore, the 

full spatiotemporal evolution can be appreciated in the video (found in the supplementary material, 

Video S1) over the full 1200 timepoints of the full resting state session. D) The synchronisation of 

clusters over time is dependent on the neighbourhood and so to further visualise the spatiotemporal 

evolution of amplitude turbulence, we show a 2D plot of 26 neighbouring parcels running from the 

front to the back of the brain (see blue insert). E) The figures further demonstrate the presence of 

turbulence by plotting consecutive snapshots over time of the phases of all brain regions for both the 

empirical data (top) and the surrogate data (bottom). This clearly shows the absence of structure in 

the surrogate data and clustering resembling vortices in the empirical data (although note that the 

regions are simply ordered in their original space similar to B, and therefore potentially show less 

of the neighbourhood effect shown in D). 
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Figure 3. Whole-brain modelling demonstrating turbulence in the empirical data. A) The 

Exponential Distance Rule is also evident in the empirical HCP dMRI tractography of the human 

brain, as shown by the fibre densities between the pairs of regions in the Schaefer parcellations as a 

function of the Euclidian distance between the nodes with blue showing dMRI tractography and red 

line showing the fitted Exponential Distance Rule at the optimal 𝜆=0.18 mm-1. The remarkable 

similarity can be appreciated by comparing the two subpanels. On the left is shown the structural 

connectivity matrices for the empirical dMRI tractography and on the right the optimally fitted 

Exponential Distance Rule connectivity, which was used as the basis for the whole-brain model. B) 

The figure shows the whole brain fit of the root squared error between the empirical and simulated 

B(r) in the inertial subrange as a function of the global coupling parameter G (black). The model 

shows amplitude turbulence (red line, defined in Methods) in a broad range of G but maximal 

amplitude turbulence is found at the optimal working point fitting the data (G=0.8). The dotted line 

shows the amplitude turbulence estimated from the empirical data, and it is interesting that the model 

at the optimal working point also corresponds to this value. C) The maximal amplitude turbulence is 

likely to reflect an optimal level of information processing, which we quantify in a measure of 

information capability, a meaningful extension of the standard concept of susceptibility (see 

Methods). As can be seen the maximum of information capability (red line) is found at G=0.8 which 

corresponds to the optimal fitting of the whole-brain model to the empirical data (black line) and 
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maximal amplitude turbulence. In contrast, the simple measure of susceptibility (orange line) is high 

but not maximal at the working point. D) Interestingly at the optimal point where the whole-brain 

model fits the empirical data (black line) and shows maximal amplitude turbulence and information 

capability, we also find an optimal balance between segregation/integration (red line) as a function 

of G.  
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Figure 4. The spatiotemporal evolution of whole-brain model for different coupling strengths 

showing different levels of amplitude turbulence. A) For four different coupling strengths (G=0, 

G=0.4, G=0.8, and G=3.0), we show a 2D plot of the spatiotemporal evolution of the local Kuramoto 

order parameter, R, reflecting different levels of turbulence in the model (for all 500 parcels in the 

left hemisphere over 1200 timepoints). The highlighted optimal working point (G=0.8 in red) is 

showing maximal turbulence as can be appreciated by comparing to the other three 2D plots. B) 

Similar to Figure 4C, for all four values of coupling strengths, G, we show 2D plots of the 

spatiotemporal evolution of amplitude turbulence in 26 neighbouring parcels running from the front 

to the back of the brain. C) Similarly, we show continuous snapshots for two segments of the model 

at G=0, G=0.4, G=0.8, and G=3.0, separated in time (left and right parts) rendered on a flatmap of 

the hemisphere. Furthermore, the full spatiotemporal evolution of each can be appreciated in the 

videos for each G (found in the supplementary material, Videos S2-S5) over the full 1200 timepoints 

of the full resting state session.  
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Figure 5. Discovering the functional exceptions driving the turbulent core in cognitive tasks. A) 

The figure shows the functional connectivity in resting state between the 1000 regions in the 

Schaefer1000 parcellation averaged across all HCP 1003 participants. B) Similarly, from this we 

computed the global brain connectivity (GBC) as the mean correlation between each region with the 

rest of the brain (Demirtas et al., 2019) which characterises the node-level connectivity. The left 

panel shows the GBC vector (averaged over all participants) while the right panel shows a rendering 

on the brain of position of the top 20% quantile GBC regions. The top part shows them rendered on 

the left hemisphere, the middle part the midline while the bottom part shows a rendering on a flat 

map of the left hemisphere. C) The left panel shows the top regions with myelination (T1w/T2w) 

rendered on the brain. As can be seen in the middle panel, there is a strong spatial overlap between 

the top GBC regions and the top regions with myelination. This can also be seen in the right panel of 

the overlapping histograms of the top GBC and top myelin regions as indexed by the spatial location 

(Schaefer parcellation number), which shows a 46.5% overlap. D) Example of the pipeline finding 

the functional exceptions applied to HCP relational task (see Methods). Here is shown the contrast 

between the relational task (brown) and the resting state (grey), with the shaded error showing the 

dispersion across nodes, i.e. all pairs across all participants. The inertial subrange (r=[8.13 33.82] 

mm) is highlighted with a light yellow background, while the long-distance correlation subrange 

(r>33.82 mm) is shown on a light grey background. As can been clearly seen, the long-range 

correlations are mainly increased in task, whereas the inertial subrange correlations remain 

unchanged (p<0.001, Wilcoxon rank sum). E) We show a histogram of the difference of the average 
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correlation for each spatial location across the long-distance subrange. The histogram for task (in 

brown) is clearly showing higher correlations than the histogram for resting (in grey, p<0.001, 

Wilcoxon rank sum). F) We found the most changed long-distance regions in the relational task by 

thresholding the pair correlation by the maximum pair correlation of the resting condition. The left 

panel shows a rendering of the top changing regions in the relational task overlaid on the top GBC 

regions. The overlap is very low (18.2%) as can be seen in the right panel, which shows the 

overlapping histograms of the top relational (red) and top GBC (blue) regions as indexed by the 

spatial location. This is strong evidence that the most changed regions in task are complementary to 

the unchanged resting GBC regions. 
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Figure 6. Comparing task-specific exceptions across seven tasks. A) The same pipeline shown in 

Figure 6 was applied to all seven HCP tasks (relational, gambling, emotion, working memory (wm), 

social, language and motor). These are rendered on side views, midline views and flat map of the left 

hemisphere to visualise the task-specific regions for each task, overlaid on the thresholded GBC map 

from the resting state (dark blue). B) The overlap of task-specific exceptions is quantified by 

computing the intersection between task-specific regions by thresholding of the seven tasks at two 

thresholds: max (leftmost panel, red) and 99% quantile (middle panel, orange) of the resting state 

long-distance correlations). These are then overlaid on the GBC map (right panel, grey). This overlap 

could correspond to a “cognitive backbone” which is needed to control the turbulent core processing.  
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Figure 7. Power laws of the functional core. The figure demonstrates the presence of power law and 

homogenous isotropy in the empirical human neuroimaging data from 1003 participants. A) Spatial 

power scaling law of the structure function S(r) as a function of log(r) for the correlation function. 

B) Same spatial power scaling law for the correlation B(r) as a function of log(r). C) The correlation 

function B(r) as a function of the distance r, but showing the dispersion across regions. D) The 

unimodal density distribution (across participants and node locations) of the slope parameter 𝑎. E) 

Similar unimodal density distribution of the bias parameter ℎ. F) Unimodal density distribution of 

the mean (across r in the inertial subrange) of the standard deviation of B(r). These distributions are 

suggestive, but not proof, of turbulence and of a functional core of homogeneous isotropic function.  
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STAR Methods 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources should be directed to and will be fulfilled by the 

Lead Contact: Morten L. Kringelbach (morten.kringelbach@psych.ox.ac.uk). 

 

Materials Availability 

The data set used for this investigation was from an independent publicly available dataset of fMRI 

data, where we chose a sample of 1003 participants selected from the March 2017 public data release 

from the Human Connectome Project (HCP). From this large sample we further chose to replicate in 

the smaller subsample of 100 unrelated participants (54 females, 46 males, mean age = 29.1 +/- 3.7 

years). This subset of participants provided by HCP ensures that they are not family relatives, and 

this criterion was important to exclude possible identifiability confounds and the need for family-

structure co-variables in the analyses. 

 

Data and Code Availability 

The HCP dataset is available at https://www.humanconnectome.org/study/hcp-young-adult. The code 

to run the analysis is available on GitHub (https://github.com/decolab/cr-turbulence).  

 

Experimental models and subject details 

Neuroimaging Ethics 

The Washington University–University of Minnesota (WU-Minn HCP) Consortium obtained full 

informed consent from all participants, and research procedures and ethical guidelines were followed 

in accordance with Washington University institutional review board approval. 

Neuroimaging Participants 

The data set used for this investigation was selected from the March 2017 public data release from 

the Human Connectome Project (HCP) where we chose a sample of 1003 participants. From this 

large sample we further chose to replicate in the smaller subsample of 100 unrelated participants (54 

females, 46 males, mean age = 29.1 +/- 3.7 years). This subset of participants provided by HCP 
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ensures that they are not family relatives, and this criterion was important to exclude possible 

identifiability confounds and the need for family-structure co-variables in the analyses. 

The HCP task battery of seven tasks 

The HCP task battery consists of seven tasks: working memory, motor, gambling, language, social, 

emotional, relational, which are described in details on the HCP website (Barch et al., 2013). HCP 

participants performed all tasks in two separate sessions (first session: working memory, gambling 

and motor; second session: language, social cognition, relational processing and emotion processing). 

 

METHOD DETAILS 

Neuroimaging acquisition for fMRI HCP  

The 1003 HCP participants were scanned on a 3-T connectome-Skyra scanner (Siemens). We used 

one resting state fMRI acquisition of approximately 15 minutes acquired on the same day, with eyes 

open with relaxed fixation on a projected bright cross-hair on a dark background as well as data from 

the seven tasks. The HCP website (http://www.humanconnectome.org/) provides the full details of 

participants, the acquisition protocol and preprocessing of the data for both resting state and the seven 

tasks.  

Preprocessing and extraction of functional timeseries in fMRI resting data 

The preprocessing of the HCP resting state and task datasets is described in full details on the HCP 

website. Briefly, the data is preprocessed using the HCP pipeline which is using standardized methods 

using FSL (FMRIB Software Library), FreeSurfer, and the Connectome Workbench software 

(Glasser et al., 2013; Smith et al., 2013). This preprocessing included correction for spatial and 

gradient distortions and head motion, intensity normalization and bias field removal, registration to 

the T1 weighted structural image, transformation to the 2mm Montreal Neurological Institute (MNI) 

space, and using the FIX artefact removal procedure (Navarro Schroder et al., 2015; Smith et al., 

2013). The head motion parameters were regressed out and structured artefacts were removed by 

ICA+FIX processing (Independent Component Analysis followed by FMRIB’s ICA-based X-

noiseifier (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014)). Preprocessed timeseries of all 

grayordinates are in HCP CIFTI grayordinates standard space and available in the surface-based 

CIFTI file for each participants for resting state and each of the seven tasks. 

 We used a custom-made Matlab script using the ft_read_cifti function (Fieldtrip toolbox 

(Oostenveld et al., 2011)) to extract the average timeseries of all the grayordinates in each region of 

the Schaefer parcellation, which are defined in the HCP CIFTI grayordinates standard space. 

Furthermore, the BOLD time series were transformed to phase space by filtering the signals in the 
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range between 0.008-0.08 Hz, where we chose the typical highpass cutoff to filter low-frequency 

signal drifts (Fox et al., 2005), and the lowpass cutoff to filter the physiological noise, which tends to 

dominate the higher frequencies (Cordes et al., 2001; Fox et al., 2005). We then applied the Hilbert 

transforms in order to obtain the phases of the signal for each brain node as a function of the time.   

 We computed the functional connectivity (FC) as the correlation between the BOLD timeseries in 

all 1000 regions in the Schaefer Parcellation. We then computed the global brain connectivity (GBC) 

as the node-level FC, or node strength, characterizing the average FC strength for each region 

(Demirtas et al., 2019; Yang et al., 2016). Thus, node strength is defined as
 
𝐺𝐵𝐶- =

.
/
∑ 𝐹𝐶-0/
01. . 

 

Structural connectivity using dMRI 

The Human Connectome Project (HCP) database contains diffusion spectrum and T2-weighted 

imaging data from 32 participants with the acquisition parameters described in details on the HCP 

website (Setsompop et al., 2013). The freely available Lead-DBS software package (http://www.lead-

dbs.org/) provides the preprocessing which is described in details in Horn and colleagues (Horn et 

al., 2017) but briefly, the data was processed using a generalized q-sampling imaging algorithm 

implemented in DSI studio (http://dsi-studio.labsolver.org). Segmentation of the T2-weighted 

anatomical images produced a white-matter mask and co-registering the images to the b0 image of 

the diffusion data using SPM12. In each HCP participant, 200,000 fibres were sampled within the 

white-matter mask. Fibres were transformed into MNI space using Lead-DBS (Horn and 

Blankenburg, 2016). We used the standardized methods in Lead-DBS to produce the structural 

connectomes for the Schaefer 1000 parcellation Scheme (Schaefer et al., 2018). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Schaefer parcellation 

Schaefer and colleagues created a publicly available population atlas of cerebral cortical parcellation 

based on estimation from a large data set (N = 1489) (Schaefer et al., 2018). They provide 

parcellations of 400, 600, 800, and 1000 areas available in surface spaces, as well as MNI152 

volumetric space. We used here the Schaefer parcellation with 1000 areas and estimated the 

Euclidean distances from the MNI152 volumetric space and extracted the timeseries from HCP using 

the HCP surface space version. 
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Analysis using Kolmogorov’ structure function concept 

We adapted Kolmogorov’s concept of structure functions of a variable u, which in turbulence is 

usually a transversal or longitudinal velocity but here is given by the BOLD signal of the data: 

 𝑆(r) = 〈(𝑢(𝑥̅ + 𝑟) − 𝑢(𝑥̅))!〉 = 2[𝐵(0) − 𝐵(r)] (1) 

In Equation 1, the basic spatial correlations of two points separated by an Euclidean distance r, given 

by: 

 𝐵(𝑟) = 〈𝑢(𝑥̅ + 𝑟)𝑢(𝑥̅)〉 (2) 

where the symbol 〈 〉 refers to the average across the spatial location 𝑥̅ of the nodes and time.  

 

Whole-brain model 

The link between anatomical structure and functional dynamics, introduced more than a decade ago 

is at the heart of whole-brain network models (Deco et al., 2013; Deco and Kringelbach, 2014). 

Typically, the anatomy is represented by the structural connectivity (SC) of an individual or average 

brain, measured in vivo by diffusion MRI (dMRI) combined with probabilistic tractography. The 

spatial resolution is in the order of 1-2 mm, but with ultra-high field MRI resolutions 0.4 mm can be 

reached. The structural connectome denotes the wire-diagram of the connections between cortical 

regions as ascertained from dMRI tractography. The functional global dynamics result from the 

mutual interactions of local node dynamics coupled through the underlying empirical anatomical SC 

matrix. Whole-brain models aim to balance between complexity and realism in order to describe the 

most important features of the brain in vivo (Breakspear, 2017). The most successful whole-brain 

computational models have taken their lead from statistical physics where it has been shown that 

macroscopic physical systems obey laws that are independent of their mesoscopic constituents. The 

emerging collective macroscopic behaviour of brain models has been shown to depend only weakly 

on individual neuron behaviour. This theoretical framework has been successful in explaining the 

pattern of inter-regional activity correlation measured with fMRI, so called resting-state-networks. 

Recent developments have shown that whole-brain models are able to describe not only static FC 

(averaged over all time points), but also dynamical measurements like the temporal structure of the 

activity fluctuations, the so-called functional connectivity dynamics (FCD) (Deco et al., 2017c; 

Hansen et al., 2015). 

 Here, we use the Hopf model and assume that the underlying anatomy fulfil the Exponential 

Distance Rule derived from exhaustive massive retrograde tract tracing in non-human primates 

(Ercsey-Ravasz et al., 2013). Mathematically this can expressed as an exponential decay function, 
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  C&' = e$((*(&,'))  (3) 

where r(n, p) is the Euclidean distance between the regions n and p, and the decay, λ. Here we 

estimate λ by fitting the dMRI tractography and obtain λ = 0.18mm-1.  

 The Hopf whole-brain model consists of coupled dynamical units (ROIs or nodes) representing 

the N cortical brain areas from a given parcellation (Deco et al., 2017c). For the first analysis, we 

take all 1000 cortical nodes in the Schaefer parcellation. The local dynamics of each brain region is 

described by the normal form of a supercritical Hopf bifurcation, also known as the Landau-Stuart 

Oscillator, which is the canonical model for studying the transition from noisy to oscillatory dynamics 

(Kuznetsov, 1998). Coupled together with the brain network architecture, the complex interactions 

between Hopf oscillators have been shown to reproduce significant features of brain dynamics 

observed in electrophysiology (Freyer et al., 2011; Freyer et al., 2012), MEG (Deco et al., 2017b) 

and fMRI (Deco et al., 2019; Kringelbach et al., 2020). 

 The dynamics of an uncoupled brain region n is given by the following set of coupled dynamical 

equations, which describes the normal form of a supercritical Hopf bifurcation in Cartesian 

coordinates: 

 23!
24
= a&x& + [x&! + y&!](𝛽y& − x&) − ω&y& + 	νη&(t) (4) 

 25!
24
= a&y& − [x&! + y&!](𝛽x& + y&) − ω&x& + 	νη&(t) (5) 

 

where η&(t) is additive Gaussian noise with standard deviation ν, and β is the so-called shear factor 

(where β=0, except in results presented in Figure S2, where we systematically explore the influence 

of this parameter). This normal form has a supercritical bifurcation a&=0, so that if a&>0, the system 

engages in a stable limit cycle with frequency 𝑓6 = ω&/2𝜋. On the other hand, when a&<0, the local 

dynamics are in a stable fixed point representing a low activity noisy state. Within this model, the 

intrinsic frequency ω& = ω7
& + 𝛽, where ω7

&	is estimated from the empirical data as the peak of the 

power spectrum. Here, the subindex n denotes the region taken from (1..N), where N is the total 

number regions.  

 The whole-brain dynamics was defined by the following set of coupled equations: 

 23!
24
= a&x& + [x&! + y&!](𝛽y& − x&) − ω&y& + G∑ C&'8

'1. Ex'(t) − x&F + 𝜈6η&(t) (6) 

 25!
24
= a&y& − [x&! + y&!](𝛽x& + y&) − ω&x& + G∑ C&'8

'1. Ey'(t) − y'F + 𝜈6η6(t) (7) 

 

where the noise was fixed 𝜈 =0.01. The local bifurcation parameters, a& = −0.02 , are at the brink 

of the local bifurcations which is where the best fitting were demonstrated to be achieved. We 

estimated the intrinsic frequencies from the empirical data, as given by the averaged peak frequency 
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of the narrowband BOLD signals of each brain region. The variable x& emulates the BOLD signal of 

each region n. To model the whole-brain dynamics we added an additive coupling term representing 

the input received in region n from every other region p, which is weighted by the corresponding 

structural connectivity. In this term, G denotes the global coupling weight, scaling equally the total 

input received in each brain area. All the measures related to whole-brain model were estimated for 

each global coupling work point, G, running the simulations a 200 times and averaging the results. 

 

Measure of amplitude turbulence 

We measure amplitude turbulence by first defining the Kuramoto local order parameter and then 

taking the standard deviation of the modulus across time and space (similar to (Kawamura et al., 

2007)). First, we define the amplitude turbulence, 𝑅6(t), as the modulus of the local order parameter 

for a given brain node as a function of the time: 

 𝑅6(t)𝑒-9"(:) = ∑ a ;"#
∑ ;"$$

b= e>?#(4) (8) 

where 𝜑=(t) are the phases of the BOLD time series and 𝐶6= the anatomical exponential distance rule 

connectivity matrix (see Equation 3). The BOLD fMRI time series were transformed to phase space 

by first filtering the signals in the range between 0.008-0.08 Hz and using the Hilbert transforms to 

extract the evolution of the phases of the signal for each brain node over time.  

We then measure the amplitude turbulence, 𝐷, as the standard deviation across time and space of 𝑅: 

 𝐷 = 〈𝑅!〉 − 〈𝑅〉! (9) 

where the brackets 〈 〉 denotes average across space and time. In order to normalise this measure, 

we shift D with respect to its value when using a global coupling of G=0, which corresponds to a 

non-coupled system of oscillators, i.e. random. 

 

Measure of susceptibility 

We define the susceptibility of a whole-brain model as the sensitivity of the brain to the processing 

of external stimulations. We perturb the Hopf whole-brain model at each G by randomly changing 

the local bifurcation parameter, a& , in the range [-0.02:0]. We estimate the sensitivity of these 

perturbations on the spatiotemporal dynamics by measuring the modulus of the local Kuramoto order 

parameter, i.e. 𝑅e6
(@)(t) for the perturbed case, and 𝑅6

(@)(t)  for the unperturbed case. We define 

susceptibility in the following way: 

 𝜒 = 〈〈〈𝑅e6
(@)(t)〉: − 〈𝑅6

(@)(t)〉:)〉:A-BCD〉D (10) 
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where 〈 〉:, 〈 〉:A-BCD and 〈 〉D are the mean averages across time, trials and space, respectively. 

 

Measure of information capability 

Moving beyond susceptibility, we define the information capability of the whole-brain model as a 

measure to capture how different external stimulations are encoded in the dynamics. Specifically, we 

perturb the model as above, but here the information capability Ι is defined as the standard deviation 

across trials of the difference between the perturbed and unperturbed mean of the modulus of the 

local order parameter across time, averaged over all brain nodes n, i.e.:  

Ι = 〈〈(〈𝑅e6
(@)(t)〉: − 〈𝑅6

(@)(t)〉:)!〉:A-BCD − 〈(〈𝑅e6
(@)(t)〉: − 〈𝑅6

(@)(t)〉:)〉:A-BCD! 〉D  (11) 

where the averages (〈 〉:, 〈 〉:A-BCD and 〈 〉D) are defined as above.  

 

Measure of integration 

As a measure of integration we used the mean value of all functional correlation pairs i and j, i.e.  

 I = .
E
∑ 𝐹-0-,0F- = 〈𝑢-𝑢0〉: (12) 

where k is the number of upper triangular elements in the functional connectivity matrix 𝐹, whose 

elements are defined as the temporal average of the z-scored functional signals 𝑢 between nodes i 

and j. 

 

Segregation 

As a complement of the integration, we used the modularity measure (Rubinov and Sporns, 2011) as 

a measure of segregation. Following Rubinov and Sporns (2011), modularity is defined as a measure 

of the goodness with which a network is optimally partitioned into functional subgroups, i.e. a 

complete subdivision of the network into non-overlapping modules, and supported by densely 

connected network communities. We consider the modularity of our FC matrix. Our measure of 

modularity is given by, 

 𝑆 = .
G%
∑ (𝑤-0H − 𝑒-0H)𝛿I&I'-0  (13) 

Where the total weight, v+ = ∑ijwij+, is the sum of all positive or negative connection weights (counted 

twice for each connection), being wij+ ∈ (0,1] the weighted connection between nodes i and j. The 

chance-expected within-module connection weights 𝑒-0H =
D&
%D'

%

G%
 , where the strength of node i, si+ = 

∑jwij+, is the sum of positive or negative connection weights of i. The δMiMj = 1 when i and j are in 
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the same module and δMiMj = 0, otherwise (Newman, 2006). For a complete description see (Sporns, 

2010). 

 

 

 
 

Supplementary Videos S1-S5. Spatiotemporal evolution of amplitude turbulence in empirical and 

simulated data. The videos visualise the change over time and space of the local Kuramoto order 

parameter, R, reflecting amplitude turbulence in the brain. The videos show the inflated 3D side and 

midline views as well as flat maps of the hemispheres over the 1200 timepoints of the full resting state 

session. Video S1 shows the empirical data from a representative single participant, while Videos S2-

S5 show the amplitude turbulence for four different values of the global coupling G in the whole-

brain model (G=0.8 [optimal], G=0, G=0.4, G=3.0). Related to Figures 2 and 4.  
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