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Abstract  
Despite longstanding appreciation of gene expression heterogeneity in isogenic bacterial 
populations, affordable and scalable technologies for studying single bacterial cells have been 
limited. While single-cell RNA sequencing (scRNA-seq) has revolutionized studies of 
transcriptional heterogeneity in diverse eukaryotic systems, application of scRNA-seq to 
prokaryotic cells has been hindered by their low levels of mRNA, lack of mRNA polyadenylation, 
and thick cell walls. Here, we present Prokaryotic Expression-profiling by Tagging RNA In Situ 
and sequencing (PETRI-seq), a high-throughput prokaryotic scRNA-seq pipeline that 
overcomes these obstacles. PETRI-seq uses in situ combinatorial indexing to barcode 
transcripts from tens of thousands of cells in a single experiment. We have demonstrated that 
PETRI-seq effectively captures single cell transcriptomes of Gram-negative and Gram-positive 
bacteria with high purity and little bias. Although bacteria express only thousands of mRNAs per 
cell, captured mRNA levels were sufficient to distinguish between the transcriptional states of 
single cells within isogenic populations. In E. coli, we were able to identify single cells in either 
stationary or exponential phase and define consensus transcriptomes for these sub-populations. 
In wild type S. aureus, we detected a rare population of cells undergoing prophage induction. 
We anticipate that PETRI-seq will be widely useful for studying transcriptional heterogeneity in 
microbial communities.  
 
Background 

Bacterial communities, including genetically homogenous populations, are typically 
composed of cells in non-identical gene expression states [1, 2]. Gene expression heterogeneity 
underlies many fundamental bacterial phenomena including communication [3], pathogenicity 
[4], competence [2], biofilm formation [5, 6] and antibiotic persistence [7]. Elucidation of these 
processes at a single-cell level could substantially improve our understanding of bacterial 
evolution and community structures and guide rational development of anti-microbial strategies. 
However, conventional bacterial single-cell methodologies, such as in situ hybridization [8, 9] 
and fluorescent reporters [10], allow only a few genes to be monitored at a time. There is a 
pressing need to develop methods capable of profiling global molecular signatures of single 
bacterial cells.   

 
Recent developments in high-throughput single-cell RNA sequencing (scRNA-seq) 

technology have enabled rapid characterization of cellular diversity within complex eukaryotic 
tissues [11-22]. Despite these advances, comparable tools to study the transcriptomes of 
individual bacterial cells remain limited (Figure S1). Existing bacterial techniques are low 
throughput, involving manual isolation of single cells followed by reverse transcription (RT) and 
amplification reactions for one cell at a time. In 2011, the first single-cell microarray study was 
described for a few Burkholderia thailandensis cells [23], each containing 2 pg of RNA, orders of 
magnitude more than many bacterial species of interest [24]. More recent reports described 
sequencing of six Synechocystis sp. PCC6803 cells [25] and three Porphyromonas somerae 
cells [26], each of which contains 1-5 fg of RNA. These methods comprehensively characterized 
the transcriptomes of a few single cells. However, they are prone to contamination and not 
equipped to study highly heterogeneous bacterial communities and rare populations like 
persisters [27] across thousands of cells. 

 
 Development of high-throughput bacterial scRNA-seq has lagged behind due to 
numerous technical challenges. Current massively parallel eukaryotic scRNA-seq methods 
typically require custom microfluidics to co-encapsulate a single cell with a uniquely barcoded 
bead in a compartment, often a droplet [15, 16, 18] or microwell [14, 17]. These approaches rely 
on two key properties of many eukaryotic cells, specifically that they are easily lysed with 
detergent to release their RNA and that their poly-adenylated mRNAs can be effectively 
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captured by beads coated with poly(T) primers. Adaptation of these approaches for bacteria is 
thwarted by the presence of thick prokaryotic cell wall [28], which makes lysis challenging, and 
the lack of poly-adenylated mRNAs for effective capture. 
 

Given these considerations, we identified in situ combinatorial indexing [29] as an 
alternative basis upon which to develop a method for high-throughput prokaryotic scRNA-seq. 
Two conceptually similar eukaryotic methods, single-cell combinatorial indexing RNA 
sequencing (sci-RNA-seq) [19, 20] and split-pool ligation-based transcriptome sequencing 
(SPLiT-seq) [21], rely on cells themselves as compartments for barcoding, which abrogates the 
need for cell lysis in droplets or microwells. These methods are also amenable to RT with 
random hexamers instead of poly(T) primers [21]. With just pipetting steps and no complex 
instruments, individual transcriptomes of hundreds of thousands of fixed cells are uniquely 
labeled by multiple rounds of splitting, barcoding, and pooling in microplates.  

 
Here, we present Prokaryotic Expression-profiling by Tagging RNA In situ and 

sequencing (PETRI-seq), a high-throughput, affordable, and easy-to-perform scRNA-seq 
method capable of distinguishing the transcriptional states of tens of thousands of wild type 
Gram-positive (S. aureus USA300) and Gram-negative (E. coli MG1655) cells. Our approach 
captures mRNA with little bias, approaching bulk expression levels when cell transcriptomes are 
aggregated. Although bacteria only express thousands of mRNAs per cell [1, 30, 31] in contrast 
to hundreds of thousands in mammalian cells [32], our results show that captured transcript 
levels are sufficient to distinguish sub-populations at different growth stages and gain novel 
insights into rare cell sub-populations. PETRI-seq has the potential to elucidate various bacterial 
phenotypes, including persistence, biofilm formation, and host-pathogen interactions. PETRI-
seq could also ultimately enable high-resolution capture of transcriptional dynamics in microbial 
communities, including unculturable components, a major current challenge in microbiology 
[33]. 

 
Results 
 
A Method for Single-Cell RNA Sequencing of Prokaryotic Cells 
 
 PETRI-seq (Figure 1) consists of three experimental components: cell preparation, split-
pool barcoding, and library preparation, which are detailed in Figure S2 and Methods. Cell 
preparation includes fixation to maintain cell integrity, cell wall permeabilization to allow reagent 
diffusion into cells, and DNase treatment to remove genomic background. As cell preparation is 
critical to the success of PETRI-seq, we had to optimize key parameters to establish a working 
protocol for E. coli. Cells were briefly pelleted before fixation with 4% formaldehyde, as adding 
formaldehyde directly to the cell culture without pelleting reduced RT efficiency (Figure S3A), 
possibly due to excess cross-linking with media components. We confirmed that fixation did not 
alter the bulk transcriptome (Figure S3B). Cells were next resuspended in 50% ethanol, which 
has been used previously for prokaryotic in situ PCR as a storage solution [34], though we have 
yet to test cellular and RNA integrity after long-term storage. Ethanol did not significantly change 
the cDNA yield from in situ RT (Figure S3C). Lysozyme was subsequently added to 
permeabilize cells for in situ RT (Figure S3D). Cells were next treated with DNase to remove 
background genomic DNA, and DNase was inactivated by mild heat treatment. We confirmed in 
situ DNase activity by qPCR (Figure S3E) and verified DNase inactivation (Figure S3F,G). 
Before proceeding to RT, cells were imaged to confirm they were intact (Figure S3H) and 
counted. 
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 In the next stage, we performed split-pool barcoding. Cells were distributed across a 
microplate for RT, with different short DNA barcodes in each well. After RT, cells were pooled 
and redistributed across new microplates for two rounds of barcoding by ligation to the cDNA. 
We reduced the length of the overhang for each ligation relative to the eukaryotic protocol [21], 
which made it possible to use only 75 cycles of sequencing instead of 150 cycles and decrease 
the sequencing cost by almost 50% (Table S1B). We demonstrated effective barcode ligation 
with this modification (Figure S3I). After three rounds of barcoding, cells contained cDNA 
labeled with one of nearly one million possible three-barcode combinations (BCs). We counted 
the cells and lysed roughly 10,000 cells for library preparation. The number of cells was chosen 
to ensure a low multiplet frequency, which is the percent of non-empty BCs containing more 
than one cell [35].  For a library of 10,000 cells, the expected multiplet frequency based on a 
Poisson distribution is 0.56%.  
 

Finally, cDNA was prepared for Illumina sequencing. We used AMPure XP beads to 
purify cDNA from cell lysates (Figure S3J). AMPure purification is faster and less expensive 
than streptavidin purification used previously in eukaryotic SPLiT-seq [21]. Importantly, primer 
biotinylation is a significant initial expense, which is avoided by AMPure purification (Table 
S1C). To make double-stranded cDNA, we compared second-strand synthesis [36] and limited-
cycle PCR after template switching [12]. We found that the former had a significantly higher 
yield (Figure S3K,L). We then performed tagmentation followed by PCR using the transposon-
inserted sequence and the overhang upstream of the third barcode as primer sequences, 
thereby preventing amplification of any undigested genomic DNA. The libraries were sequenced 
and analyzed using the pipeline detailed in Figure S4 and Methods. BCs with at least 40 total 
transcripts, or unique molecular identifiers (UMIs) [37], were considered for further analysis 
(Figure S4E,F,G). 
 
PETRI-Seq Captures Transcriptomes of Single Cells 
 
 To demonstrate the ability of PETRI-seq to capture transcriptomes of single cells, we 
performed a species-mixing experiment involving three populations of cells: GFP- and RFP-
expressing E. coli and wild type S. aureus (Figure 2A). From 9,642 sequenced BCs, we 
observed that BCs were highly species-specific with 99.6% clearly assigned to one species 
(Figure 2B). We calculated an overall multiplet frequency of 1.8% after accounting for multiplets 
of the same species and non-equal representation of the two species [35]. Though this 
frequency exceeds the Poisson expectation of 0.56%, it is comparable to existing eukaryotic 
methods [18, 20]. Within the E. coli population, we included a population of cells constitutively 
expressing GFP [10] and another population expressing RFP induced by anhydrotetracycline 
(aTc) [38]. E. coli BCs were highly strain-specific with 98.6% assigned to a single population 
(Figure S5A). With this confirmation that PETRI-seq successfully captured single-cell 
transcriptomes, we were able to quantify the number of transcripts per cell. We captured a 
mean of 52.6 and median of 41 mRNAs per GFP-containing E. coli cell (Figure 2C). From these 
same cells, we captured a mean of 384 and median of 292 total RNAs per cell (Figure S5B). We 
captured fewer mRNA transcripts per RFP-expressing E. coli cell (Figure S5C), likely due to 
their reduced growth rate during aTc induction (Figure S5D). There were also 204 ambiguous 
cells, which could not be assigned to the RFP or GFP population because they did not contain 
any plasmid transcripts. By excluding these ambiguous cells, we risked over-estimating the true 
levels of mRNA captured per cell in each population. We thus considered the extreme cases 
where all ambiguous cells were part of one population or the other (Figures 2C,S5C). The 
broader population of 875 ambiguous and GFP-expressing cells contained a mean of 44.5 and 
median of 33 mRNAs per cell. Based on estimates that single E. coli cells contain 2000-8000 
mRNAs [1, 30, 31], we estimate our capture rate to be roughly 0.5-2%. In the S. aureus 
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population, we captured a mean of 20.6 and median of 18 mRNAs per cell (Figure 2D). S. 
aureus cells may contain fewer mRNAs than E. coli cells because of their smaller cell size and 
genome [39], though there may also be technical differences affecting capture. 
 
 Performing molecular reactions inside of cells raises the possibility that RNA capture 
could be biased by specific cellular contexts. Prior results in eukaryotic cells revealed a bias 
against rRNA transcripts during in situ RT [21], which is mildly recapitulated in our data (Figure 
S5E). 87% of sense E. coli transcripts were mapped to rRNA, while previous reports [40] and 
our own bulk data (not shown) found closer to 96% rRNA. Importantly, we observed strong 
correlations between combined single-cell transcriptomes from PETRI-seq and cDNA libraries 
prepared by standard RT for both E. coli and S. aureus (Figure 2E,F), despite the capture bias 
against rRNA. Our single-cell transcriptomes were reproducible, as shown by the strong 
correlation between the aggregated transcriptomes of GFP-expressing E. coli cells from two 
independent libraries (Figure 2G).  
 
PETRI-Seq Classifies Single Cells by Growth Stage 
 

We next sought to determine the capacity of PETRI-seq to distinguish between cells in 
different growth states. As a proof-of-concept, we mixed E. coli cells in two well-characterized 
growth phases to create a population resembling naturally arising transcriptional heterogeneity. 
Specifically, we implemented PETRI-seq on a combined population of GFP-expressing 
exponential and aTc-induced RFP-expressing stationary E. coli (Figure 3A). We applied 
unsupervised dimensionality reduction (Principal Component Analysis—PCA [41]) to visualize 
the low-dimensional structure underlying the diversity of transcriptional states. For the PCA 
calculation, we considered only cells containing at least 15 mRNAs to avoid spurious effects 
from cells with extremely low mRNA content. Without considering plasmid genes, we observed 
robust separation of two populations along principal component 1 (PC1). We used the plasmid 
genes to classify these populations as RFP-containing stationary and GFP-containing 
exponential cells (Figure 3B, bottom). We assigned a threshold value for PC1 to distinguish 
between the two populations and found that 99% of plasmid-containing cells below the 
threshold expressed the GFP plasmid, and 95% of plasmid-containing cells above the threshold 
expressed the RFP plasmid. Overall, 98% of all plasmid-containing cells were on the expected 
side of the threshold line. Of the 7374 cells analyzed, 61% did not contain any plasmid 
transcripts, so their growth state was at first ambiguous (grey points in PCA). However, we used 
the PC1 threshold to predict the states of the ambiguous cells and found that 89% were 
stationary cells. Over-representation of stationary cells in the ambiguous population was not 
surprising as plasmid expression in stationary cells was generally lower than in exponential 
cells. Further analysis of the populations determined by the PC1 threshold revealed a mean of 
69.2 and median of 51.0 mRNAs per exponential cell, while each stationary cell contained a 
mean of 34.9 and median of 29.0 mRNAs (Figure 3C). Previous reports have found that 
stationary cells express fewer mRNAs than exponential cells [42]. The discrepancy in our data 
also may be due to reduced mRNA levels upon RFP induction by aTc. Lastly, we showed that 
separation of the two transcriptional states was similarly robust in another biological replicate 
(Figure S6A) or when operon counts were normalized using sctransform [43], an alternative 
method (Figure S6B).  
 
 We investigated expression patterns for operons and gene ontology (GO) terms for the 
two biologically distinct populations. We confirmed that rpoS, the stationary phase sigma-factor 
[44], and dps, a DNA-binding protein essential for cellular transition into stationary phase [45], 
were upregulated along PC1, as expected in the direction of stationary cells (Figure 3B, middle). 
Consistent with induction of the stringent response [46], stationary cells showed a large-scale 
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reduction in ribosomal protein expression as well as an increase in expression of amino acid 
biosynthetic operons (Figure 3B, Top; Figure 3D). oppABCDF, a highly expressed operon 
encoding the oligopeptide permease, was most strongly correlated with the transition to 
stationary phase, based on its PC1 loading (Figure 3D), and has been previously shown to be 
induced during phosphate starvation [47]. Cytochrome oxidase expression also informed the 
identification of exponential and stationary phase cells. While stationary E. coli cells expressed 
higher levels of cytochrome D (cydAB), exponential cells expressed more cytochrome O 
(cyoABCDE). This shift in cytochrome oxidase expression based on growth phase has been 
well-characterized [48].  
 
 Though PETRI-seq captured ~50 mRNAs per bacterial cell, it was sufficient to identify 
groups of single cells in the same gene expression state. We hypothesized that transcriptomes 
from similar cells could be combined to define a consensus state for a particular sub-population 
and that this characterization could be continuously improved by increasing the number of cells 
in the library. To test this hypothesis, we generated exponential or stationary phase 
transcriptomes by aggregating the expression counts for single cells of either type as 
determined by the first principal component of our PCA (Figure 3B, Bottom) and determined the 
correlations between these aggregated transcriptomes and independently prepared bulk 
libraries (Figure S7A,B). We repeated this calculation 1,000 times after sampling different 
numbers of cells ranging from 50 to 7374 cells (Figure S7C,D). Our analysis confirmed the 
expectation that as more cells were included in the library, the correlation with an independently 
prepared bulk library from cells in the same growth state increased. It also appeared that the 
correlations would continue to increase if more cells were sequenced. Notably, the correlation of 
either single cell type with both bulk libraries increased as cells were added, but the correlations 
were stronger and increasing at a greater rate for single-cell/bulk libraries of cells in the same 
state (colored curves in Figure S7C,D), indicating that the aggregated single cells were 
approaching a transcriptome reflecting their growth state. This analysis demonstrated that by 
aggregating many cells with similar expression profiles, PETRI-seq could be used to 
characterize the transcriptomes of sub-populations that might be otherwise difficult to isolate 
from bulk RNA-seq.  
 
PETRI-Seq Discovers A Rare Sub-Population Undergoing Prophage Induction in S. 
aureus 
 
 scRNA-seq enables characterization of rare populations exhibiting distinct gene 
expression programs and phenotypes. We applied PCA to 5,604 S. aureus single-cell 
transcriptomes generated by PETRI-seq (Figure S8A) and found that the eight operons most 
highly correlated with PC1 (Figure S8B) were lytic genes of prophage ϕSA3usa (Figure S8C, 
red arrows) [49, 50]. Cells expressing these operons diverged from the rest of the population 
along PC1 (Figure S8A, red points), indicating that PC1 might be capturing rare prophage 
induction in the S. aureus culture. Within the small population, 3 cells exhibited dramatic 
upregulation of phage lytic transcripts reaching roughly 80% of these single-cell transcriptomes 
(Figure S8D). The remaining 18 cells contained fewer than 10% phage transcripts. In further 
analysis of the heterogeneity in gene expression across the entire S. aureus population, we 
found that for most operons, transcriptional noise (!"/$") [1] inversely scaled with mean 
expression ($) and followed a Poisson distribution ($	 = 	!"), which has been described in other 
single cell studies [51, 52]. SAUSA300_1933-1925, a phage lytic operon encoding putative 
phage tail and structural genes, clearly diverged and exhibited higher noise than expected from 
the mean (Figure S8E), which recapitulated its hypervariability in expression as found by PCA. 
As such, we have demonstrated that PETRI-seq can detect rare cells occupying distinct 
transcriptional states like prophage induction.  
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Discussion 
 
 In this work, we developed PETRI-seq, an affordable method for high-throughput in situ 
combinatorial indexing and scRNA-seq of bacterial cells. Prokaryotic scRNA-seq tools have 
lagged behind eukaryotic methods because of the low mRNA content per cell and technical 
barriers including the thick cell wall and lack of mRNA poly-adenylation. Using PETRI-seq, we 
characterized single-cell transcriptional states of both Gram-positive and Gram-negative 
bacterial species. We cost-effectively (Table S1) sequenced ~20,000 single cells, a dramatic 
improvement in throughput over existing methods, which typically sequence fewer than ten 
cells. PETRI-seq captured 30-70 mRNAs per average E. coli cell, corresponding to 0.5-2% of 
total mRNAs. Aggregated transcriptomes from single cells were highly correlated with bulk 
RNA-seq libraries. Using fluorescently labeled cells, we showed that PETRI-seq assigned >98% 
of single cells to the correct growth phase (i.e. stationary or exponential) and defined consensus 
transcriptomes for these growth phases. PETRI-seq also detected rare prophage-induced cells 
that were present in 0.4% of the S. aureus population. The introduction of PETRI-seq 
represents a major advance in high-throughput single-cell microbiology. 
 
 Further optimization has the potential to increase the capture rate of PETRI-Seq and 
improve its sensitivity. During the library preparation step of PETRI-seq, double-stranded cDNA 
was subjected to conventional tagmentation with both N5 and N7 adaptors (Illumina Nextera 
XT). However, only one of the adaptors (N7 in our case) could be subsequently amplified. 
Modified tagmentation using a commercially available and customizable Tn5 (Lucigen) could 
increase capture by 2-fold [20]. Capture might be further improved by increasing primer and 
enzyme concentrations during the RT and ligation steps and/or using a hairpin ligation [20] 
instead of an inter-molecular linker. Given that rRNAs comprise >95% of total RNA species in 
many bacteria, we reason that mRNA capture might be additionally improved by designing RT 
primers with sequences biased against rRNA [53], thereby directing reagents preferentially 
toward mRNA. Alternatively, in situ 5’-phosphate-dependent exonuclease treatment could be 
used to preferentially degrade processed RNAs, the majority of these being rRNAs [54], prior to 
RT. If successful, these modifications would reduce the fraction of sequencing reads mapped to 
rRNA. Although sequencing depth is not limiting at the current capture rate, it may be necessary 
to deplete rRNA if overall capture is improved so that libraries can be comprehensively 
sequenced. For this purpose, abundance-based normalization by melting and rehybridization of 
double-stranded cDNA followed by duplex-specific nuclease treatment [55] may also be 
considered.   

 
PETRI-seq detected a rare sub-population undergoing prophage induction in S. aureus, 

which has important clinical implications, as prophage induction is intimately linked to bacterial 
pathogenesis. Mobile genetic elements such as temperate phages routinely carry virulence 
factors, and it has been shown that prophage induction can lead to co-expression of these 
factors [56, 57]. The high throughput capacity of PETRI-seq was vital for identifying such a rare 
event, and the dominance of phage lytic transcripts in cells undergoing prophage induction 
made these cells readily detectable. Future studies could use PETRI-seq to further probe the 
dynamics of prophage induction and lytic phage infection. It will additionally be of interest to 
gauge the sensitivity of PETRI-seq to characterize other rare, clinically important populations, 
such as persisters. Persisters are antibiotic-tolerant cells that typically comprise <1% of an 
otherwise susceptible bacterial population [58]. The underlying transcriptional state of persisters 
remains poorly understood. More generally, PETRI-seq could be used to study a wide range of 
bacterial phenotypes far beyond the examples shown here. We hope that widespread 
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implementation of PETRI-seq to study diverse bacterial species and phenotypes will facilitate 
greater understanding of single-cell phenomena within bacterial populations. 
 
Methods 
 
Experimental Methods 
 
Bacterial Strains and Growth Conditions 

E. coli MG1655 was routinely grown in MOPS EZ Rich defined medium (M2105, 
Teknova, Hollister, CA). pBbE2A-RFP was a gift from Jay Keasling [38] (Addgene plasmid # 
35322). RFP was induced with 20 nM anhydrotetracycline hydrochloride (233131000, Acros 
Organics, Geel, Belgium). GFP was expressed from prplN-GFP [10]. Plasmid-containing cells 
were grown in appropriate antibiotics (50 μg/mL kanamycin, 100 μg/mL carbenicillin). S. aureus 
USA300 [49] was routinely grown in trypticase soy broth (TSB) medium (211825, BD, Franklin 
Lakes, NJ). All bacterial strains were grown at 37°C and shaken at 300 rpm.  
 
Custom Primers Used in this Study 

All single-tube primers are shown in Table S2. All primer sequences for 96-well split-pool 
barcoding are shown in Table S3. Primers were purchased from Integrated DNA Technologies 
(IDT, Coralville, IA).  

 
Preparation of Ligation Primers 

Round 2 and Round 3 ligation primers (Table S3) were diluted to 20 μM. Linkers SB80 
and SB83 were also diluted to 20 μM. To anneal barcodes to linkers, 96-well PCR plates 
(AB0600, Thermo Scientific) were prepared with 4.4 μL of 20 μM linker, 0.8 μL water, and 4.8 
μL of each barcode. Primers were annealed by heating the plate to 95°C for 3 minutes then 
decreasing the temperature to 20°C at a ramp speed of -0.1°C/second.  

Primers SB84 and SB81 were also annealed (to form an intramolecular hairpin) prior to 
blocking by heating 50 μL or 80 μL, respectively, of each 100 μM primer to 94°C and slowly 
reducing the temperature to 25°C.  

 
Cell Preparation for PETRI-Seq 

For sequencing and qPCR measurements, cells were grown overnight then diluted into 
fresh media (1:100 for S. aureus and prplN-GFP E. coli, 1:50 for pBbE2A-RFP E. coli) with 
inducer and antibiotics when applicable. For exponential cells, E. coli and S. aureus cultures 
were grown for approximately 2 hours until reaching an OD600 of 0.4 or 0.9, respectively. 
Exponential E. coli cells were used for all qPCR optimization experiments. For stationary cells, 
pBbE2A-RFP E. coli cells were grown an additional 3 hours until the culture reached an OD600 
of 4. For the combined exponential E. coli library, 3.5 mL of exponential GFP E. coli was 
combined with 3.5 mL of exponential RFP E. coli. The S. aureus library was prepared 
separately from 7 mL of exponential cells. For the 2 libraries of exponential GFP E. coli 
combined with stationary RFP E. coli, 3 mL of exponential GFP cells was added to ~300 μL of 
stationary RFP cells. Before fixation, cells were pelleted at 5,525xg for 2 minutes at 4°C. Spent 
media was removed, and cells were resuspended in 7 mL of ice-cold 4% formaldehyde (F8775, 
Millipore Sigma, St. Louis, MO) in PBS (P0195, Teknova). This suspension was rotated at 4°C 
for 16 hours on a Labquake Shaker (415110, Thermo Scientific)  

 
Fixed cells were centrifuged at 5525xg for 10 minutes at 4°C. The supernatant was 

removed, and the pellet was resuspended in 7 mL PBS supplemented with 0.01 U/μL 
SUPERase In RNase Inhibitor (AM2696, Invitrogen, Carlsbad, CA), hereafter referred to as 
PBS-RI. Cells were centrifuged again at 5525xg for 10 minutes at 4°C then resuspended in 700 
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μL PBS-RI. Subsequent centrifugations for cell preparation were all carried out at 7000xg for 8-
10 minutes at 4°C. Cells were centrifuged, then resuspended in 700 μL 50% ethanol (2716, 
Decon Labs, King of Prussia, PA) in PBS-RI. Cells were next washed twice with 700 μL PBS-RI, 
then resuspended in 105 μL of 100 μg/mL lysozyme (90082, Thermo Scientific, Waltham, MA) 
or 40 μg/mL lysostaphin (LSPN-50, AMBI, Lawrence, NY) in TEL-RI (100 mM Tris pH 8.0 
[AM9856, Invitrogen], 50 mM EDTA [AM9261, Invitrogen], 0.1 U/μL SUPERase In RNase 
inhibitor [10x more than in PBS-RI]). Cells were permeabilized for 15 minutes at room 
temperature (~23°C). After permeabilization, cells were washed with 175 μL PBS-RI then 
resuspended in 175 μL PBS-RI. 100 μL was taken for subsequent steps and centrifuged, while 
the remaining 75 μL was discarded. Cells were resuspended in 40 μL DNase-RI buffer (4.4 μL 
10x reaction buffer, 0.2 μL SUPERase In RNase inhibitor, 35.4 μL water). 4 μL of DNase I 
(AMPD1, Millipore Sigma) was added, and cells were incubated at room temperature for 30 
minutes. To inactivate the DNase I, 4 μL of Stop Solution was added, and cells were heated to 
50°C for 10 minutes with shaking at 500 rpm (Multi-Therm, Benchmark Scientific, Sayreville, 
NJ). After DNase inactivation, cells were pelleted, washed twice with 100 μL PBS-RI, then 
resuspended in 100 μL 0.5x PBS-RI. Cells were counted using a hemocytometer (DHC-S02 or 
DHC-N01, INCYTO, Chungnam-do, Korea).  

 
Split-Pool Barcoding for PETRI-Seq 

For RT, Round 1 primers (Table S3) were diluted to 10 μM then 2 μL of each primer was 
aliquoted across a 96-well PCR plate. A mix was prepared for RT with 240 μL 5x RT buffer, 24 
μL dNTPs (N0447L, NEB, Ipswich, MA), 12 μL SUPERase In RNase Inhibitor, and 24 μL 
Maxima H Minus Reverse Transcriptase (EP0753, Thermo Scientific). 3 * 107 cells were added 
to this mix. For species-mixed libraries, E. coli and S. aureus cells were combined at this point. 
Water was added to bring the volume of the reaction mix to 960 μL. 8 μL of the reaction mix was 
added to each well of the 96-well plate already containing RT primers. The plate was sealed 
and incubated as follows: 50°C for 10 minutes, 8°C for 12 seconds, 15°C for 45 seconds, 20°C 
for 45 seconds, 30°C for 30 seconds, 42°C for 6 minutes, 50°C for 16 minutes, 4°C hold. After 
RT, the 96 reactions were pooled into one tube and centrifuged at 10,000xg for 20 minutes at 
4°C. The supernatant was removed. 

 
For the first ligation, cells were then resuspended in 600 μL 1x T4 ligase buffer (M0202L, 

NEB). The following additional reagents were added to make a master mix: 7.5 μL water, 37.5 
μL 10x T4 ligase buffer, 16.7 μL SUPERase In RNase Inhibitor, 5.6 μL BSA (B14, Thermo 
Scientific), and 27.9 μL T4 ligase. 5.76 μL of this mix was added to each well of a 96-well plate 
containing 2.24 μL of annealed Round 2 ligation primers. Ligations were carried out for 30 
minutes at 37°C. After this incubation, 2 μL of blocking mix (37.5 μL 100 μM SB84, 37.5 μL 100 
μM SB85, 25 μL 10x T4 ligase buffer, 150 μL water) was added to each well, and reactions 
were incubated for an additional 30 minutes at 37°C. Cells were then pooled into a single tube. 

 
The following reagents were added to the pooled cells for the third round of barcoding: 

15.6 μL water, 48 μL 10x T4 ligase buffer, and 13.2 μL T4 ligase. 8.64 μL of this mix was added 
to each well of a 96-well plate containing 3.36 μL of annealed round 3 ligation primers. The 
plate was incubated for 30 minutes at 37°C. 10 μL of round 3 blocking mix (72 μL 100 μM SB81, 
72 μL 100 μM SB82, 120 μL 10x T4 ligase buffer, 336 μL water, 600 μL 0.5 M EDTA) was 
added to each well. Cells were then pooled into a single tube and centrifuged at 7000xg for 10 
minutes at 4°C. The supernatant was removed, and the pellet was resuspended in 50 μL TEL-
RI to wash the pellet. This suspension was centrifuged at 7000xg for an additional 10 minutes at 
4°C, the supernatant was removed, and the cells were resuspended in 30 μL TEL-RI. Cells 
were counted using a hemocytometer. Aliquots of 10,000 cells were taken and diluted in 50 μL 
lysis buffer (50 mM Tris pH 8.0, 25 mM EDTA, 200 mM NaCl [AM9759, Invitrogen]). 5 μL of 
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proteinase K (AM2548, Invitrogen) was added to the cells in lysis buffer. Cells were lysed for 1 
hour at 55°C with shaking at 750 rpm (Multi-Therm). Lysates were stored at -80°C. 

 
Library Preparation for PETRI-Seq 

Lysates were purified with AMPure XP beads (A63881, Beckman Coulter, Brea, CA) at a 
1.8x ratio (~99 μL). cDNA was eluted in 20 μL water. 14 μL water, 4 μL NEBNext Second 
Strand Synthesis Reaction Buffer, and 2 μL NEBNext Second Strand Synthesis Enzyme Mix 
(E6111S, NEB) were added to the purified cDNA. This reaction was incubated at 16°C for 2.5 
hours. The resulting double-stranded cDNA was purified with AMPure XP beads at a 1.8x ratio 
(~72 μL). cDNA was eluted in 20 μL water and used immediately for tagmentation or stored at   
-20°C. 

 
 cDNA was tagmented and amplified using the Nextera XT DNA Library Preparation Kit 
(FC-131-1096, Illumina, San Diego, CA). The manufacturer’s protocol was followed with the 
following modified reagent volumes and primers: 25 μL TD, 20 μL cDNA, 5 μL ATM, 12.5 μL NT, 
2.5 μL N70x (Nextera Index Kit v2 Set A, TG-131-2001, Illumina), 2.5 μL i50x (E7600S, NEB), 
20 μL water, 37.5 μL NPM. Libraries were amplified for 8 cycles according to the manufacturer’s 
protocol. After 8 cycles, 5 μL was removed, added to a qPCR mix (0.275 μL EvaGreen [31000, 
Biotium, Fremont, CA], 0.11 μL ROX Low Reference Dye [KK4602, Kapa Biosystems, 
Wilmington, MA], 0.115 μL water), and further cycled on a qPCR machine. qPCR amplification 
was used to determine the exponential phase of amplification, which occurred after 11 cycles for 
all libraries presented here. The remaining PCR reaction (not removed for qPCR) was 
thermocycled an additional 11 cycles, resulting in a total of 19 PCR cycles. Products were 
purified with AMPure XP beads at a 1x ratio and eluted in 30 μL water. The concentration of the 
library was measured using the Qubit dsDNA HS Assay Kit (Q32854, Invitrogen) and the Agilent 
Bioanalyzer High Sensitivity DNA kit (5067-4626, Agilent, Santa Clara, CA). 
 
 Libraries were sequenced for 75 cycles with the NextSeq 500/550 High Output Kit v2.5 
(20024906, Illumina). Cycles were allocated as follows: 58 cycles read 1 (UMI and barcodes), 
17 cycles read 2 (cDNA), 8 cycles index 1, 8 cycles index 2.  
 
Modifications Tested to Optimize PETRI-Seq 
 To test fixing cells immediately from cultures without centrifugation, ice-cold 5% 
formaldehyde in PBS was added directly to cells in spent media to bring the final concentration 
of formaldehyde to 4%. Cell preparation with no lysozyme or no DNase was carried out by 
simply omitting the enzyme and using water to replace that volume.  
 
 Template switching was carried out by adding 2.5 μL 100 μM SB14, 20 μL Maxima H 
Minus 5x Buffer, 10 μL dNTPs, 2.5 μL SUPERase In RNase Inhibitor, 2 μL Maxima H Minus 
Reverse Transcriptase, 3 μL water, and 20 μL betaine (J77507VCR, Thermo Scientific) to 40 μL 
of AMPure purified lysate. SB14 was heated to 72°C for 5 minutes prior to combining the above 
reagents. The reaction was incubated at 42°C for 90 minutes then heat inactivated at 85°C for 5 
minutes. The reaction was purified with AMPure XP beads at a 1.8x ratio and eluted in 30 μL. 
The purified cDNA was then amplified by setting up the following PCR: 10 μL 5x PrimeSTAR 
GXL Buffer, 0.1 μL 10 μM SB86, 0.1 μL 10 μM SB15, 1 μL PrimeSTAR GXL Polymerase 
(R050B, Takara Bio, Kusatsu, Japan), 1 μL dNTPs, and 8 μL water. The reaction was heated to 
98°C for 1 minute and then thermocycled 10 times (98°C 10 seconds, 60°C 15 seconds, 68°C 6 
minutes). The products were purified by AMPure XP beads at a 1.8x ratio and eluted in 30 μL. 
The DNA concentration was measured using the Qubit dsDNA HS Assay Kit, and tagmentation 
was performed according to the manufacturer’s protocol using the appropriate primers 
(described above for standard PETRI-seq).  
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qPCR Quantification After In Situ DNase or In Situ RT 

For qPCR quantification after in situ RT, cells were counted prior to RT, and then the in 
situ RT reaction described above (scaled to one 50 μL reaction) was set up with equal cell 
numbers for each condition and technical replicate. A random hexamer (SB94) or a gene-
specific primer (SB10) was used as an RT primer. After RT, cells were centrifuged at 7,000xg 
for 10 minutes then washed in 50 μL PBS-RI. After one wash, cells were resuspended in 50 μL 
lysis buffer, and 5 μL of proteinase K was added. Cells were lysed for 1 hour at 55°C with 
shaking at 750rpm. For qPCR quantification after in situ DNase treatment, cells were washed 
twice after DNase treatment, as described for PETRI-seq cell preparation, then lysed.  

 
 Unpurified lysates were diluted 50x (except for ethanol vs. no ethanol, which were 
diluted 10x) in water and heated to 95°C for 10 minutes to inactivate proteinase K. Diluted 
lysates were then used directly in qPCR with either Kapa 2x MasterMix Universal (KK4602, 
Kapa Biosystems) or Power SYBR Green Master Mix (4368706, Applied Biosystems, Foster 
City, CA). For quantification of genomic DNA after DNase treatment or quantification of cDNA 
after RT with random hexamers, qPCR primers SB5 and SB6 were used, and relative 
abundances were calculated based on an experimentally determined amplification efficiency of 
88%, which corresponded to an amplification factor of 1.88. Relative abundance thus referred to 
1.88-ΔCt, where ΔCt was the difference between the Ct value of each sample and a calibrator Ct. 
For RT with the gene-specific primer, qPCR primers SB12 and SB13 were used, as SB12 
anneals to the gene-specific primer (SB10). The experimentally determined amplification factor 
for these primers was 1.73. To quantify cDNA yield, the abundance of a matched sample with 
no RT (processed equivalently but RT enzyme omitted) was subtracted from each 
measurement. All replicates were technical replicates, which were treated independently during 
and after the condition tested.  
 
qPCR Quantification of Ligation Efficiency 
 To test barcode ligation with a 16-base linker relative to a 30-base linker, approximately 
1 μg of purified RNA (bulk) was used for RT with either SB110 or SB114 (used as a positive 
control). RT was carried out as described for in situ RT, scaled to 50 μL. cDNA was then purified 
with AMPure XP beads. SB113, the primer to be ligated, was annealed either to SB111 (30 
bases) or SB83 (16 bases). 2.24 μL of the annealed primers was then used in a 10 μL ligation 
reaction. The products were purified with AMPure XP beads. To quantify the proportion of 
ligated product, qPCR was performed with SB86 and SB13, which amplifies only the ligated 
product, as SB86 anneals to the ligated overhang, or SB115 and SB13, which amplifies all RT 
product, as SB115 anneals to the RT primer overhang. ΔΔCt was calculated for the two primer 
sets with RT product from SB114 as a reference [ΔΔCt = ΔCt(experimental, ligated) - 
ΔCt(control, SB114 RT), ΔCt = Ct(SB86,SB13) - Ct(SB115,SB13)]. SB114 includes primer sites 
for both SB86 and SB115, so it mimics ligation with 100% efficiency.  
 
Test of DNase Inactivation by Incubating Cells with Exogenous DNA 
 After DNase treatment, inactivation, and two PBS-RI washes (described above), cells 
were resuspended in 20 μL PBS-RI. 6 μL was removed and added to 1 μL DNase reaction 
buffer, 1 μL water, and 2 μL of a 775 bp PCR product (800 ng). As a control, 1 μL DNase I was 
added instead of 1 μL water. The reactions were incubated for 1 hour, after which 1 μL of stop 
solution was added. The cells were centrifuged for 10 minutes at 7,000xg. The supernatants 
were then heated to 70C for 10 minutes to inactivate DNase. 5 μL of each reaction was run on a 
gel.  
 
Bulk Library Preparation 
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 For preparation of bulk samples from fixed cells, 25 μL of cells was taken after PETRI-
seq cell preparation and just prior to in situ RT. These cells were centrifuged and resuspended 
in 50 μL lysis buffer supplemented with 5 μL proteinase K. Cells were lysed at 55°C for 1 hour 
with shaking at 750 rpm (Multi-Therm). RNA was then purified from lysates with the Norgen 
Total RNA Purification Plus Kit (48300, Norgen Biotek, Ontario, Canada). 300 μL buffer RL was 
added to the lysate before proceeding to the total RNA purification protocol. Alternatively, the 
standard bulk RNA sample (shown in Figure S3B) was prepared by centrifuging a cell culture at 
5525xg for 2 minutes at 4°C then resuspending cells in 1mL of PBS-RNAprotect (333 μL 
RNAprotect Bacteria Reagent [76506, Qiagen, Hilden, Germany], 666 μL PBS). Resuspended 
cells were then pelleted, and RNA was prepared with the Norgen Total RNA Purification Plus Kit 
according to the manufacturer’s instructions for Gram-negative bacteria.  
 
 Purified RNA from either protocol was treated with DNase I in a 50 μL reaction 
consisting of 2-5 μg RNA, 5 μL DNase Reaction Buffer, 5 μL DNase, and water. Reactions were 
incubated at room temperature for 30-40 minutes. Reactions were purified by adding 300 μL 
buffer RL and proceeding according to the Norgen total RNA purification protocol. Total RNA 
was depleted of rRNA using the Gram-Negative Ribo-Zero rRNA Removal Kit (MRZGN126, 
Illumina), purified by ethanol precipitation, and resuspended in 10 μL water. For RT, 6 μL RNA 
was combined with 4 μL Maxima H Minus 5x Buffer, 2 μL dNTPs, 0.5 μL SUPERase In RNase 
Inhibitor, 1 μL SB94, 0.5 μL Maxima H Minus Reverse Transcriptase, 4 μL betaine, and 2 μL 
water. The reaction was thermocycled as follows: 50°C for 10 minutes, 8°C for 12 seconds, 
15°C for 45 seconds, 20°C for 45 seconds, 30°C for 30 seconds, 42°C for 6 minutes, 50°C for 
16 minutes, 85°C 5 minutes, 4°C hold. For second strand synthesis, 14 μL water, 4 μL NEBNext 
Second Strand Synthesis Reaction Buffer, and 2 μL NEBNext Second Strand Synthesis 
Enzyme Mix were added directly to the RT mix. This reaction was incubated at 16°C for 2.5 
hours. Double-stranded cDNA was purified with AMPure XP beads at a 1.8x ratio (~72 μL 
beads) and eluted in 30 μL water. Purified cDNA was used for tagmentation with the Nextera XT 
kit according to the manufacturer’s protocol. Bulk libraries were purified twice with AMPure XP 
beads at a 0.9x ratio. The resulting libraries were quantified and sequenced as described for 
PETRI-seq libraries above. 
 
Growth Curves 
 Overnight cultures were grown as described above and then diluted 1:100 into 1 mL EZ 
Rich Defined Media with or without 20 nM aTc. Antibiotics were added for plasmid-containing 
strains. For each condition, 100 μL of diluted cells were aliquoted into 4 wells of a 96-well plate. 
The plate was incubated at 37°C with shaking on the plate reader (Synergy Mx, Biotek, 
Winooski, VT). OD600, GFP, and RFP were measured every 10 minutes.  
 
Computational Methods 
 
Barcode Demultiplexing, Cell Selection and Alignment 

Cutadapt [59] was used to trim low-quality read 1 and read 2 sequences with phred 
score below ten. Surviving read pairs of sufficient length were grouped based on their three 
barcode sequences using the cutadapt demultiplex feature. FASTQ files were first 
demultiplexed by barcode 1, requiring that matching sequences were anchored at the end of the 
read, overlapped at 8 positions (--overlap 8), and had no more than 1 mismatch relative to the 
barcode assignment (-e 0.2). For barcode 2 and then barcode 3, cutadapt was used to locate 
barcode sequences with the expected downstream linker, allowing no more than 2 mismatches 
(-e 0.2 --overlap 20/21). The final output after demultiplexing was a set of read 1 and read 2 
FASTQ files where each file corresponded to a three-barcode combination (BC). The “knee” 
method [15] was used to identify BCs for further processing. Briefly, each BC was sorted by 
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descending total number of reads, and then the cumulative fraction of reads for each BC was 
plotted. Because the yield per BC could be better assessed later after collapsing reads to UMIs, 
an inclusive threshold was used at this stage to select BCs for downstream processing, which 
allowed for more precise cell selection after downstream processing (Figure S4C). For selected 
BCs, umi_tools [60] was used in paired-end mode to extract the seven base UMI sequence from 
the beginning of read 1. Cutadapt was then used to trim and discard read 2 sequences 
containing barcode 1 or the linker sequence. Note that at this point all necessary information 
was contained in the read 2 FASTQ files, so further processing did not consider the read 1 files. 
Next, cDNA sequences were aligned to reference genomes using the backtrack algorithm in the 
Burrows-Wheeler Alignment tool, bwa [61], allowing a maximum edit distance of 1 for assigned 
alignments. 

 
Annotating Features and Grouping PCR Duplicates by Shared UMI 

FeatureCounts [62] was used to annotate operons based on the alignment position. 
Operon sequences were obtained from RegulonDB [63] and ProOpDB [64] for E. coli and S. 
aureus, respectively. Because featureCounts uses an “XT” sam file tag for annotation, the bwa 
“XT” tag was first removed from all sam files using a python script. The resulting bam files after 
featureCounts were used as input for the group function of umi_tools with the “--per-gene” 
option in directional mode [60]. The directional algorithm is a network-based method that 
identifies clusters of connected UMI sequences to group as single UMIs. The result was a set of 
bam files with UMI sequences corrected based on probable errors from sequencing or 
amplification. A python script was used to collapse reads to UMIs. Reads with the same BC, 
error corrected UMI, and operon assignment were grouped into a single count. Reads mapping 
to multiple optimal positions were omitted except rRNA alignments for which multiple alignments 
were expected. The distribution of number of reads per UMI for all UMI-BC-operon 
combinations was plotted to establish a threshold below which UMIs were excluded (Figure 
S4C). Filtered UMIs were used to generate an operon by BC count matrix. Anti-sense 
transcripts were removed. BCs with fewer than 40 total UMIs were then removed (Figure S4E). 
 
Bulk Sequencing Libraries 

For bulk sequencing libraries, only read 2 was used for alignment in order to mimic 
single-cell methods. Bulk sequencing libraries were pre-processed to remove adapters using 
cutadapt [59]. Trimmomatic [65] was then used to remove leading or trailing bases below quality 
phred33 quality 3 and discard reads shorter than 14 bases. Surviving reads were aligned using 
the backtrack algorithm in bwa [61] with a maximum edit distance of 1. Reads with more than 
one optimal alignment position were removed. FeatureCounts [62] was used to generate a 
matrix of operon counts for the bulk libraries. To compare single-cell libraries generated by 
PETRI-seq to bulk samples, the UMI counts for a given set of BCs (e.g. GFP-expressing E. coli) 
were summed for all operons. A count matrix was then generated as described for bulk libraries. 
To calculate TPM, raw counts were divided by the length of the operon in kilobases. Then, each 
length-adjusted count was divided by the sum of all adjusted counts divided by 1 million. 

 
Calculating Multiplet Frequency 
 The multiplet frequency was defined as the fraction of non-empty BCs corresponding to 
more than one cell. To calculate the predicted multiplet frequency, the proportion of predicted 
BCs with 0 cells was calculated based on a Poisson process: '(0) = +,

-!
∗ 01+, the proportion of 

BCs with 1 cell was calculated: '(1) = +3

4!
∗ 01+, and the proportion with greater than 1 cell was 

calculated: '(≥ 2) 	= 	1 − '(1) − '(0). Finally, the multiplet frequency was calculated: 8(9")	
:(4)

. ; 
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was the fraction of cells relative to total possible BCs – for example, 4-,---	=>??@

AB	∗	AB	∗	AB	CDE=FG>@
	=

	0.011	 = 	;. The experimental multiplet frequency was computed from the species-mixing 
experiment as described for populations with unequal representation of two species [35].  
 
Principal Component Analysis (PCA) 
 rRNA and all plasmid genes (RFP, GFP, AmpR, KanR, tetR) were first removed from the 
count matrix. Operons with 5 or fewer total counts in the library were also removed (except for 
Figure S7 in which all operons with >0 counts were included). Cells with fewer than 15 mRNAs 
were removed. Total operon counts for each cell were normalized by dividing each count by the 
total number of counts for that cell then multiplying the resulting value by the geometric mean 
[20] of the total mRNA counts for each cell. The scaled values were then log transformed after 
adding a pseudocount to each. For each operon, expression values were scaled to z-scores 
[66]. Principal components were computed using scikit-learn in python. 
 To normalize counts using sctransform in Seurat [43], first rRNA and all plasmid genes 
were removed from the count matrix. Operons with 10 or fewer total counts, and cells with fewer 
than 15 mRNAs were also removed. A Seurat object was created in R from the resulting matrix, 
and sctransform was applied. The resulting scaled counts were used as input for PCA.  
 
Computing Moving Averages of Gene Expression Along PC1 

Using a custom Python script, the cells in the normalized, log-transformed, z-scored 
gene matrix were sorted by PC1. The rolling function in the pandas package was then used to 
compute rolling averages of the size indicated for each figure. Win_type was set to “None”. The 
corresponding PC1 coordinate was the moving average of the PC1 values. Moving averages for 
GO terms were computed as described, except the z-scored sum of z-scored counts for all 
operons in the GO term was used to calculate the moving average instead of expression from a 
single operon. In cases where multiple genes from the same operon were included in a GO 
term, only one gene was included. Significance of expression trends was determined by the 
Spearman rank correlation between the operon or GO term expression and PC1, prior to 
calculating a moving average. FDR was determined by the Benjamini-Hochberg procedure [67]. 
 
Computing Operon Noise  
 Noise was defined as !"/$", where ! is standard deviation and $ is mean. Noise and 
mean were calculated for all operons with at least 5 raw counts (UMIs) in the dataset (either S. 
aureus or E. coli). Count matrices were normalized by cell (but not log-transformed) before 
computing noise and mean. To calculate a p-value for the divergence of SAUSA300_1933-
1925, a line was fit to the log-scaled noise vs log-scaled mean of the data. The residuals of the 
experimental data to the best-fit line were calculated and z-scored. The p-value was determined 
based on a normal distribution of the z-scored residuals.  
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Figure Legends 
 
Figure 1: Overview of PETRI-seq 
PETRI-seq includes three parts: cell preparation, split-pool barcoding, and library preparation. In 
cell preparation, cells are prepared for in situ reactions by fixation and permeabilization. During 
split-pool barcoding, cells are split across 96-well plates three times for three rounds of 
barcoding by reverse transcription and two ligations. After barcoding, cells are lysed to release 
cDNA, which is subsequently prepared for paired-end Illumina sequencing. Each cDNA 
fragment in the library includes a unique molecular identifier (UMI) and 3 barcodes, which are all 
sequenced in Read 1. The UMI is a sequence of 7 degenerate nucleotides that can distinguish 
unique transcripts from PCR duplicates. The 3 barcodes comprise a barcode combination (BC), 
which allows reads to be grouped by their cell of origin. In Read 2, the cDNA is sequenced. 
 
Figure 2: PETRI-Seq Captures Transcriptomes of Single E. coli and S. aureus Cells  
(A) Schematic of species-mixing experiment. S. aureus and E. coli cells were grown separately 
then mixed for PETRI-seq. E. coli cells included two populations, grown separately, containing 
either an RFP plasmid or a GFP plasmid. (B) Species mixing plot for E. coli and S. aureus 
based on total UMIs per BC, including rRNA. BCs were assigned to a single species if more 
than 90% of UMIs mapped to that species. Histograms (top, right), show the number of S. 
aureus or E. coli cells (respectively) with the corresponding number of total UMIs. BCs with 
fewer than 40 total UMIs are omitted. (C) Distributions of mRNAs (left) and operons (right) per 
E. coli cell in three sub-populations: GFP cells (contain GFP plasmid transcripts, top), 
ambiguous cells (contain no plasmid transcripts, bottom), and both GFP cells and ambiguous 
cells (middle). (D) Distribution of mRNAs (left) and operons (right) per S. aureus cell. 8380 cells 
are included. (E) Correlation between mRNA abundances from PETRI-seq vs. a bulk library 
prepared from fixed E. coli cells. The Pearson correlation coefficient (r) was calculated for 1851 
out of 2617 total operons, excluding those with zero counts in either library (grey points). If all 
operons are included, r = 0.77. (F) Correlation between mRNA abundances from PETRI-seq vs. 
a bulk library prepared from fixed S. aureus cells. R was calculated for 1361 out of 1510 total 
operons, excluding those with zero counts in either library (grey points). If all operons are 
included, r = 0.88. (G) Correlation between two biological replicate libraries of exponential GFP-
expressing E. coli prepared by PETRI-seq. R was calculated for 1682 out of 2617 total operons, 
excluding those with zero counts in either library (grey points). If all operons are included, r = 
0.77. For all correlations (E,F,G), PETRI-seq TPM was calculated from UMIs, and bulk TPM 
was calculated from reads. 
 
Figure 3: Principal Component Analysis Distinguishes Exponential and Stationary E. coli 
by mRNA Expression Patterns 
(A) Schematic of experiment. Stationary RFP-expressing E. coli were mixed with exponential 
GFP-expressing E. coli for barcoding and sequencing by PETRI-seq. (B) Bottom: Cells 
containing UMIs from either the GFP plasmid or the RFP plasmid plotted on PC1 and PC2. The 
two populations are distinguishable along PC1. Grey points indicate ambiguous cells (no 
plasmid UMIs). 99% and 95% refer to the percent of plasmid-containing cells on either side of 
the threshold line expressing the correct plasmid (GFP on left, RFP on right). Distribution of all 
cells across PC1, including cells without any plasmid UMIs, is shown above. 7374 cells are 
included. Middle: Expression of GO terms associated with exponential to stationary transition. 
The moving average (size=1200 cells) of the z-scored expression of operons within the GO 
term is shown. Expression was z-score transformed for each gene and then for each GO term. 
Both GO terms are significantly correlated with PC1 prior to calculating moving averages 
(Spearman rank, p<10-90). Top: Expression of genes involved in exponential to stationary 
transition along PC1. The moving average (size=2400 cells) of the z-scored operon expression 
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is shown. Both operons are significantly correlated with PC1 prior to calculating moving 
averages (Spearman rank, dps: p=10-26, rpoS: p=0.002, FDR<0.01). (C) Distribution of mRNAs 
per cell on either side of the threshold line in (B). Grey cells are included. Only cells with greater 
than 14 mRNAs per cell were included, as cells with fewer mRNAs per cell were excluded from 
the PCA. 2794 cells are below the threshold, and 4580 cells are above the threshold. (D) 
Expression along PC1 of operons with the most positive or negative PC1 loadings (z-scored 
moving average, size=1000 cells). 
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Figure S1: Timeline of scRNA-seq Method Development
Timeline of key developments in eukaryotic and prokaryotic scRNA-seq detailing the number of cells 
sequenced in each experiment. Prokaryotic scRNA-seq has lagged significantly behind eukaryotic 
scRNA-seq due to technical challenges. The eukaryotic timeline is adapted from [1].  The timeline includes 
references [2-20].
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Figure S2: Detailed Schematic of PETRI-Seq. 
(A) Detailed schematic of steps for cell preparation. (B) Detailed schematic of steps for split-pool barcod-
ing. (C) Detailed schematic of steps for library preparation. 
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Figure S3: Development and Optimization of PETRI-Seq
(A) Fixation without media resulted in a higher yield (n=3, p=0.012, 2-sided t-test) of rpsB cDNA than 
fixation with media (formaldehyde added directly to culture). qPCR was done after in situ RT with random 
hexamers. (B) Fixation did not alter the E. coli transcriptome. Correlation is shown between RNA purified 
from fixed E. coli cells (“Fixed Bulk”) and RNA purified directly from growing cells (“Standard Bulk”). For both 
libraries, reverse transcription was done after purifying the RNA. 2617 operons are included. (C) We did not 
detect a significant change in yield of rpsB cDNA when cells were resuspended in 50% ethanol as part of 
cell preparation (n=2, p=0.35, 2-sided t-test). qPCR was done after cell preparation and in situ RT with 
gene-specific RT primer. (n=2) (D) Lysozyme treatment significantly improved the yield of rpsB cDNA (n=3, 
p=0.001, 2-sided t-test). qPCR was done after cell preparation and in situ RT with random hexamers. (E) 
qPCR after DNase treatment or incubation with DNase buffer only (“No DNase”) confirmed the efficacy of 
in situ DNase treatment (n=8, p=0.035, 2-sided t-test). (F) qPCR after cell preparation and RT with 
gene-specific rpsB RT primer confirmed that DNase was inactivated, as we did not detect a signficant 
change in the yield of rpsB cDNA with or without DNase treatment (n=2, p=0.84, 2-sided t-test). (G) Gel of 
775 bp PCR fragment after 1-hour incubation with cells prepared for in situ RT confirmed inactivation of 
DNase. For the lane that was not inactivated, DNase was directly added to the incubation of cells with the 
PCR product. (H) Microscope images after cell preparation of E. coli. (I) qPCR after bulk RT and ligation 
with a 16-base or 30-base linker confirmed that ligation was effective with a 16-base linker. We detected a 
mild increase in ligation efficiency with the 16-base linker (p=0.001, n=3, 2-sided t-test), though the 
fold-change between the conditions was minor (1.5x). ΔΔCt was calculated for ligated product relative to 
total RT product and normalized to cDNA prepared with an RT primer including the ligated sequence. (J) 
qPCR after cell preparation and in situ RT showed that cDNA was retained after AMPure purification (n=4, 
p=0.69, 2-sided t-test). (K, L) Number of mRNA UMIs (K) or operons (J) per BC after PETRI-seq with 
second strand synthesis or template switch used for library preparation. Second-strand synthesis resulted 
in significantly more mRNAs per cell (p < 10-300, 2-sided Mann-Whitney U) and operons per cell (p < 10-300, 
2-sided Mann-Whitney U). Libraries contained ~10,000 BCs and are shown here before further down-
stream filtering for likely single cells. These were prepared using an unoptimized protocol. 
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Demultiplex by barcode 1, barcode 2 
then barcode 3 using cutadapt (Figure S4B)

Plot reads per BC as histogram 
and “knee” plot (Figure S4C), choose 

BCs for downstream processing

Extract UMIs from beginning of read 1 
(umi_tools extract)

Align read 2 to genomes (bwa)

Annotate features on bam file (featureCounts)

Find consensus UMI sequences and label 
on bam file (umi_tools group)

Collapse reads based on UMI

Plot reads per UMI histogram and determine
 threshold number of reads to include a UMI (Figure S4D)

Filter UMIs based on threshold number of reads

Generate gene count matrix from filtered UMIs

Remove read 2 sequences containing
barcodes (cutadapt)
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Figure S4: Computational Pipeline for PETRI-Seq
(A) Schematic of computational steps, which are further detailed in Methods. (B) Structure of contig 
elements in read 1 after Illumina sequencing of PETRI-seq. To reduce the length of the sequence, barcodes 
overlap by one base with the adjacent linker sequence. (C) Representative “knee plot” used to select BCs 
for further analysis. The threshold line at 40,000 BCs is very inclusive to facilitate additional filtering down-
stream. (D) Representative histogram of reads per UMI. A threshold line was set for each library. For this 
library, only UMIs with more than 3 reads were kept for downstream analysis. Threshold line at log10(3). (E) 
Species mixing plot without filtering. BCs with fewer than 40 UMIs per cell were removed from further analy-
sis. Line segments at x=40 and y=40. (F) Distribution of E. coli BCs from species mixing plot in (D). BCs 
above the threshold line were used for further analysis and considered single E. coli cells. Threshold line at 
log2(40). (G) Distribution of S. aureus BCs from species mixing plot in (D). BCs above the threshold line 
were used for further analysis and considered single S. aureus cells. Threshold line at log2(40). 
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Figure S5: Further Evaluation of PETRI-Seq for E. coli and S. aureus. 
(A) Quantification of BC collisions within the E. coli population by plasmid mRNAs. Cells without plasmid 
genes are omitted. BCs were assigned to a single cell type when greater than 90% of plasmid UMIs 
matched a single plasmid. Histograms (top, right) show the number of GFP BCs or RFP BCs, respectively, 
with the corresponding number of plasmid UMIs. (B) Distribution of total RNAs per GFP-containing expo-
nential E. coli cell. 671 cells are included. (C) Distributions of mRNAs (left) and operons (right) per E. coli 
cell in three sub-populations, including RFP cells (contain RFP plasmid transcripts, top), ambiguous cells 
(contain no plasmid transcripts, bottom), both RFP cells and ambiguous cells (middle). (D) Left, growth 
curves for P

rplN
-GFP, P

tet
-RFP, and MG1655 (no plasmid) cells with and without aTc. Right, doubling times 

calculated from the growth curves. P
tet

-RFP had a significantly longer doubling time than all other 
strains/conditions when induced with aTc (n=4, p<10-4, 2-sided t-test). (E) Breakdown of total aligned UMIs 
per cell for exponential E. coli and S. aureus PETRI-seq libraries.
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Figure S6: Further Evaluation of Growth Phase Characterization by PETRI-Seq. 
(A) Biological replicate library shows that PETRI-seq can reproducibly distinguish between stationary and 
exponential cells by projecting cells onto the principal components calculated from the first library (bottom). 
2424 cells are included. 1208 cells are below the threshold, and 1216 cells are above the threshold. 
mRNAs captured per cell on either side of the threshold line are shown (top). (B) PCA as in Figure 3B, but 
UMI counts were normalized using sctransform [21]. (C,D) Noise (σ2/μ2) versus mean (μ) for operon expres-
sion in either exponential (D) or stationary (E) cells. Lines at y = -x indicates Poisson noise where σ2 = μ. 
Operon counts were normalized for each cell before plotting. Operons with fewer than 5 counts in the library 
were excluded, resulting in 1869 operons in (C) and 1898 operons in (D).

n = 2424
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Figure S7: Defining Consensus Transcriptional States of Sub-Populations Using PETRI-Seq. 
(A) Correlation between mRNA abundances from 2794 aggregated exponential cells (PETRI-seq, predict-

ed by PCA) vs. bulk preparation from fixed exponential E. coli cells. The Pearson correlation coefficient (r) 

was calculated for 2195 out of 2617 total operons, excluding plasmid operons and operons with zero counts 

in either library (grey points), or r was calculated for 2612 operons, including operons with zero counts. (B) 

Correlation between RNA abundances from 4597 aggregated stationary cells (PETRI-seq, predicted by 

PCA) vs. bulk preparation from fixed stationary E. coli cells. The Pearson correlation coefficient (r) was 

calculated for 2272 out of 2617 total operons, excluding plasmid operons and operons with zero counts in 

either library (grey points), or r was calculated for 2612 operons, including those with zero counts. Bulk 

libraries in (a,b) were prepared from different cultures (on different days) than PETRI-seq libraries. (C) 

Bottom: The correlation between the aggregated mRNA counts of single exponential cells (PETRI-seq) and 

an independently prepared bulk exponential population increases as more single cells are included. 

Correlations were calculated from log
10

(TPM+1) for each sample. Single cell transcriptomes were prepared 

by PETRI-seq, and cell states were predicted by PCA. Best fit line is shown behind original data points (y = 

ln(x) + b). Top: Difference between the y-values of the best-fit lines for the top curve and bottom curve in 

plot below. (D) Bottom: The correlation between the aggregated mRNA counts of single stationary cells 

(PETRI-seq) and an independently prepared bulk stationary population increases as more single cells are 

included. Correlations were calculated from log
10

(TPM+1) for each sample. Single cell transcriptomes were 

prepared by PETRI-Seq, and cell states were predicted by PCA. Best fit line is shown behind original data 

points (y = ln(x) + b). Top: Difference between the y-values of the best-fit lines for the top curve and bottom 

curve in plot below.
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Figure S8: PETRI-Seq Reveals Rare Prophage Induction in Sub-Population of S. aureus Cells
(A) S. aureus cells plotted on PC1 and PC2. 5,604 cells are included. A small population of 21 cells (red) 
expressed operons from the ϕSA3usa phage. (B) Distribution of PC1 loadings for all operons included in 
the S. aureus analysis. Eight operons from the ϕSA3usa phage have the highest PC1 loadings. (C) Map of 
genomic region surrounding ϕSA3usa in the genome of S. aureus strain USA300. Red arrows indicate 
phage operons upregulated along PC1. (D) Percent of mRNA UMIs mapping to the ϕSA3usa phage for the 
18 cells containing phage UMIs. Three cells are composed of >79% phage transcripts. (E) Noise (σ2/μ2) 
versus mean (μ) for operon expression within an S. aureus population of 5,604 cells. 959 operons are 
included, as operons with fewer than 6 total UMIs in the library were excluded. The circled operon (red) is 
SAUSA300_1933-1925, which deviated significantly from the rest of the distribution (z-score = 17.3, p = 
10-67). 
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A 

Item Supplier Approximate Cost Per Experiment 
(USD) 

Primers IDT 22 
Maxima H Minus Reverse 

Transcriptase Fisher Scientific 80 

TipOne Filter Tips USA Scientific 64 

T4 DNA Ligase NEB 42 

SUPERase·In RNase Inhibitor Fisher Scientific 35 
INCYTO C-Chip Hemocytometer, 

Semen Test Fisher Scientific 19 

dNTPs NEB 2 

DNase I Sigma 0.4 

BSA Fisher Scientific 0.3 

Lysozyme Fisher Scientific 0.1 
NEBNext mRNA Second Strand 

Synthesis Module NEB 7 

Nextera XT DNA Library Preparation Illumina 6 

Agencourt Ampure XP Beckman Coulter 27 

  Total: $305.80 

  Per Cell (10,000 Cells): $0.03 

 
B 

Sequencing Kit Supplier Cost (USD) 

NextSeq 500/550 High Output Kit v2.5 
(75 Cycles) 

Illumina 1570 

NextSeq 500/550 High Output Kit v2.5 
(150 Cycles) 

Illumina 3010 

 
C 

Item Supplier Approximate Initial Cost (USD) 

Barcodes Round 1 IDT 1121 

Barcodes Round 2 IDT 1158 

Barcodes Round 3 IDT 606 

   
Alternative: 

 Barcodes Round 3, Biotinylated 
 

IDT 2314 

 
Table S1: Cost Breakdown for PETRI-Seq 
(A) Approximate reagent costs for a single PETRI-seq experiment (2 cell preparations, 1 split-pool 
barcoding, 1 library preparation). (B) Sequencing costs for NextSeq 75 cycles vs 150 cycles. One PETRI-
seq library only needs ~40 million reads, or one tenth of a sequencing kit. (C) Startup costs for PETRI-seq. 
Barcoding primers are the most significant initial expense, but cost is significantly reduced by using non-
biotinylated round 3 barcodes.  
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Primer 
Name 

Description Sequence 

SB5 rpsB qPCR primer (with 
SB5) 

AAACCGTTCGTCAGTCCATC 
 

SB6 rpsB qPCR primer (with 
SB6) 

ATGTCTTTGATACCGCCCAG 
 

SB10 rspB-specific RT primer /5Biosg/ACAGACATGTGCTCTTCCAGCTGAGAACGGCCTTCAC 
 

SB12 SB10-binding rpsB qPCR 
primer (with SB13) 

ACAGACATGTGCTCTTCCAG 
 

SB13 rpsB qPCR primer (with 
SB12 or SB86 or SB115) 

ATACCAACTCTGATCCGGAC 
 

SB14 Template Switch Oligo AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG 
 

SB15 PCR Primer for After 
Template Switch (with 

SB86) 

AAGCAGTGGTATCAACGCAG 
 

SB80 Round 3 Linker GCGAAGCCAAGGACCW 
 

SB81 Round 3 Blocking 1 GCTTCGCTGCAATCGGACCTCGATTGCA 
 

SB82 Round 3 Blocking 2 WGGTCCTTGGCTTCGC 
 

SB83 Round 2 Linker STCTGGCGTAGGAGGW 
 

SB84 Round 2 Blocking 1 GCCAGASACGTTAGGCAGGACCTAACGT 
 

SB85 Round 2 Blocking 2 WCCTCCTACGCCAGAS 
 

SB86 PCR Primer for After 
Template Switch (with 

SB15 or SB13) 

AGAATACACGACGCTCTTCC 
 

SB94 Hexamer for RT Without 
Barcoding 

AGAATACACGACGCTCTTCCGATCTNNNNNN 
 

SB110 rpsB-specific RT Primer for 
Ligation Test 

/5Phos/GCCAGAGGCCAGGAATGAGAACGGCCTTCAC 

SB111 Linker for Ligation Test TTCCTGGCCTCTGGCGTAGGAGGTGGAAGA 
 

SB113 Ligated Primer for Ligation 
Test 

AGAATACACGACGCTCTTCCACCTCCTAC 

SB114 rpsB-specific RT Primer for 
Ligation Test, Positive 

Control 

AGAATACACGACGCTCTTCCACCTCCTACGCCAGAGGCCAGGAAT
GAGAACGGCCTTCAC 
 

SB115 qPCR Primer for Ligation 
Test (with SB13) 

AGAGGCCAGGAATGAGAAC 

 
Table S2: Oligonucleotides Used In This Study  
Name, description, and sequence of all single-tube (excluding 96-well barcode plates) oligonucleotides 
used in the study. 
 
 
Table S3: 96-Well Oligonucleotides Used for PETRI-Seq Barcoding (Separate File) 
Sequences of 96 round 1 RT primers, 96 round 2 ligation primers, and 96 round 3 ligation primers.  
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