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Abstract6

What determines whether or not a species is a generalist or a specialist? Evidence that the7

environment can influence species interactions is rapidly accumulating. However, a systematic link8

between environment and the number of partners a species interacts with has been elusive so far.9

Presumably, because environmental gradients appear to have contrasting effects on species depending10

on the environmental variable. Here, we test for a relationship between the stresses imposed by11

the environment, instead of environmental gradients directly, and species specialisation using a12

global dataset of plant-pollinator interactions. We found that the environment can play a significant13

effect on specialisation, even when accounting for community composition, likely by interacting14

with species’ traits and evolutionary history. Species that have a large number of interactions are15

more likely to focus on a smaller number of, presumably higher-quality, interactions under stressful16

environmental conditions. Contrastingly, the specialists present in multiple locations are more likely17

to broaden their niche, presumably engaging in opportunistic interactions to cope with increased18

environmental stress. Indeed, many apparent specialists effectively behave as facultative generalists.19

Overall, many of the species we analysed are not inherently generalist or specialist. Instead, species’20

level of specialisation should be considered on a relative scale depending on where they are found21

and the environmental conditions at that location.22

Keywords: eltonian niche, environmental effects, generalisation & specialisation, species degree,23

species interactions, and throphic niche24
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Introduction25

Species interactions are known to vary widely across space and time. There are multiple examples of26

species that interact with a large number of partners in a particular community or season, but with27

fewer in another. Some of this variation can be attributed to environmental drivers. However, how28

exactly the environment, specifically the stress it imposes on species, affects whether two species29

interact or not, and ultimately the species’ specialisation. Understanding how the environment30

drives the number of partners is crucial because it underpins the species’ role in its community and31

shapes the structure of the network of interactions. This structure, in turn, determines ecosystem32

function and stability.33

Species interactions are determined in part by niche processes (the matching of traits) and partly34

by neutral processes (more abundant species are more likely to encounter each other and, thus,35

interact). The environment can influence both of these processes. It is, therefore, not surprising36

that, despite limitations on the spatial extent or the number of environmental gradients considered,37

multiple studies have been able to show how changes to interactions can be related to environmental38

change (Tylianakis and Morris 2017). For instance, some studies suggest that the strength of some39

trophic interactions, like predation (McKinnon et al. 2010; Vucic-Pestic et al. 2011) and herbivory40

(Baskett and Schemske 2018), can increase with temperature but might decrease with precipitation41

(Pires et al. 2016). Some other studies, however, have shown either no effect (on average) or42

non-linear effects of temperature or precipitation on plant-pollinator interactions (Devoto, Medan,43

and Montaldo 2005; Gravel et al. 2018). Overall, while it looks clear that pairwise interactions44

respond to environmental drivers, there is high variability in the response (Tylianakis et al. 2008).45

One possible explanation for the seemingly contradictory evidence is that different bioclimatic factors46

(like temperature or precipitation) can have contrasting effects on species and their partners. Here we47

attempt to simplify this situation by reducing multiple factors into a single measure of environmental48

stress. Previous research suggests that environmental stress may affect the number of partners in49

different ways depending on its role in the community (for example its trophic guild) or even the50

species itself. Specifically, we propose two alternative hypotheses of how environmental stress may51

affect specialisation (Tylianakis and Morris 2017). On the one hand, it is possible that when species52
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are under environmental stress, they might be “pressured” to focus on partners with which they are53

best adapted to interact. For instance, Hoiss et al. (2012) found increased phylogenetic clustering54

between plants and pollinators at higher altitudes; while Peralta et al. (2015) found that parasitoids55

in plantation forest, where environmental stress was higher than in native forests, were constrained56

to interact with hosts, they were best adapted to attack. Similarly, Lavandero and Tylianakis (2013)57

showed that environmental stress due to higher temperature reduced the trophic niche breadth of58

parasitoids suggesting higher specialisation.59

On the other hand, it is also possible that when species are under environmental stress, they are60

forced to be more flexible in their interactions. Higher environmental stress is likely to be reflected61

in greater energetic or reproductive costs. Therefore they might not be able to sustain encounter62

rates with their preferred partners at sufficient levels. In line with this hypothesis, Hoiss, Krauss,63

and Steffan-Dewenter (2015) found that the specialisation of plant-pollinator networks decreased64

both with elevation and after extreme drought events. Likewise, Pellissier et al. (2010) found a65

positive relationship between niche breadth and environmental stress: disk- or bowl-shaped blossoms66

(which allow a large number of potential pollinator species to access pollen and nectar rewards)67

dominated at high altitude flower communities.68

Here, we investigate whether and how environmental stress can systematically affect specialisation.69

Our main aim is to test the two hypotheses mentioned above that relate environmental stress and70

species’ number of partners and investigate whether this changes across species or between trophic71

guilds. We propose that specialist species can become “facultative” generalists to reduce their72

vulnerability to the absence of preferred partners (for example, when variations in climate decouple73

phenologies; Benadi et al. 2014). In other words, we expect that, as environmental stress increases,74

specialists should be more likely to engage with more partners. Species with a large number of75

partners, on the other hand, should have a larger pool of available partners and might, therefore,76

be more likely to specialise under environmental stress and focus on the most beneficial partners.77

Importantly, when testing these hypotheses, we control for the potential effects of the environment78

in community composition (which has been previously shown to be a determinant factor; Gravel et79

al. 2018). We test these hypotheses using data on plant-pollinator interactions. These interactions80

provide a particularly interesting system to test these hypotheses because, due to the multiple81
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Figure 1: Frequency distribution of the number of locations in which a species is present. The most
common pollinator species was Apis mellifera, which was sampled at 42 locations, while the most
common plant species was Trifolium repens, which was sampled at 11 locations.

trade-offs involved in the pollination service, there are multiple intuitive ways in which we could82

imagine species respond to environmental stress given the available partners. We estimate the83

stress species might experience in their community by calculating the bioclimatic suitability of their84

communities given the species’ patterns of global occurrence.85

Methods86

We retrieved plant-pollinator networks from the Web of Life database (Fortuna, Ortega, and87

Bascompte 2014). This database contains datasets originating from 57 studies published in the88

primary literature between 1923 and 2016. Calculating the environmental stress of species in89

their community and their potential partners required us to reduce both the taxonomic and90

distributional/locational uncertainty. A critical step towards reducing this uncertainty is to ensure91

that the names used to identify species are valid and unambiguous, which in turn allow us to92

obtain further information from biological databases and accurately match species across studies.93

Therefore, our first step was to ensure consistent spelling and standardisation of species names94

synonyms (see Supplementary Methods). The cleaning process resulted on a total of 2,555 plants95

and 8,406 pollinator species distributed across 73 locations arround the globe (Figure 1 and S1).96

After matching species across studies as accurate as possible, we carried on two more steps. First,97

we calculated the environmental stress of species in their communities. Second, we relate the species98
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stress in their community with the number of partner species it has as a metric of their level of99

specialisation.100

Environmental stress101

We calculated the environmental stress of species in their communities. We assume that stress102

a species experiences in a particular location is inversely related to the suitability of the average103

environmental conditions in that place. As we aim to compare specialisation levels for different levels104

of environmental stress, we only calculate bioclimatic suitability for species that were present in at105

least two communities. To calculate the bioclimatic suitability of a species in a particular location,106

we used a niche-factor analysis (Hirzel et al. 2002; Broennimann et al. 2012). This approach is107

based on the probability density function of species distribution in an environmental variable space.108

Habitats are characterised by a collection of environmental variables. In a nutshell, those habitats109

in which the species occurs more often are deemed to be more suitable for the species than habitats110

in which the species has never been observed. As bioclimatic suitability is calculated in a scale from111

zero to one following the niche-factor analysis, for simplicity, we define environmental stress as one112

minus suitability.113

The niche factor analysis requires two critical pieces of information. First, it requires information114

about the occurrences of the species of interest. Second, the method requires information about the115

environmental conditions for all the locations in which the species occurs. We retrieved 38.1 million116

occurrences from the Global Biodiversity Information Facility (GBIF; https://www.gbif.org). Issues117

with data quality are a central issue hampering the use of publicly available species occurrence118

GBIF data in ecology and biogeography (Jetz et al. 2019). We, therefore, followed a series of filters119

and geographic heuristics to correct or remove erroneous and imprecise referencing records (see120

supplementary methods; Zizka et al. 2019) which allowed us to identify and remove 7.5 million121

potentially problematic occurrences from further analysis. We integrated the occurrences from our122

plant-pollinator communities to the cleaned occurrences retrieved from GBIF.123

We retrieved environmental data from WorldClim V2.0, which includes 19 bioclimatic variables124

commonly used in species distribution modelling (Fick and Hijmans 2017). We then complemented125
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data obtained from WorldClim with data from Envirem (Title and Bemmels 2017), which includes126

16 extra bioclimatic and two topographic variables. The additional set of variables from Envirem127

are relevant to ecological or physiological processes and thus have the potential to improve our128

suitability estimation (Title and Bemmels 2018). We obtained all environmental data as rasters129

composed by cells of 2.5 arc-minutes. We chose this resolution because it provides a reasonable130

match to the locational accuracy of the species occurrences found in GBIF, particularly those that131

originate from preserved specimens in museum collections.132

After obtaining information about species occurrence and the environment, we then merged these two133

datasets such that a vector with details of our 37 bioclimatic and topographic variables characterised134

the location of each occurrence. Sets of occurrence data tend to be spatially aggregated due to135

sample bias (tendency to collect close to cities, certain countries). Moreover, spatial autocorrelation136

arises in ecological data because geographically clumped records tend to be more similar in physical137

characteristics and/or species abundances than do pairs of locations that are farther apart. To138

account for such spatial dependency in occurrence data, we only included one occurrence record139

if a species had more than one within a cell of the bioclimatic raster. We did this to avoid giving140

more weight to areas with a high number of occurrences, a common scenario in occurrence records141

collected opportunistically as the ones we use here. In this step we removed 85.4% of the occurrences142

which resulted in a total of 4.5 million occurrences used in our niche analysis.143

A common issue of terrestrial bioclimatic datasets is that the boundaries of the cells with information144

do not precisely match the landmass boundaries. The result of this missmatch is that not all145

environmental variables were available for 3,273 of the raster cells with occurrences (0.8% of the146

total). As expected, the vast majority of these problematic cells were close to the shore. To address147

this issue, we calculated the average value of environmental variables within a 5km buffer of the148

centre of the cell where the variable was missing and used it to approximate the value of the variable149

in that cell. Using this procedure, we were able to fill environmental variables for 89.3% of the cells150

where they were missing. To fill the remaining 350 cells, we repeated the aforementioned procedure151

but instead using a 10km buffer. We removed from further analysis occurrences located within the152

135 cells for which we were unable to fill environmental variables (0.03% of the total).153

Next, we calculated the probability density function of the species distribution in environmental space.154
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To determine the environmental space, we used the first two components from a principal component155

analysis of the 37 bioclimatic variables associated with the species occurrences. Specifically we used156

the dudi.pca function from the R package ade4 1.7.13 (Dray and Dufour 2007) and center and157

scale all bioclimatic variables to have a mean of zero and a unit variance. We then determined the158

position of species occurrences in the environmental space and estimate their bivariate probability159

density function. We used a kernel method to estimate this density and normalised it such that160

it ranges between zero and one. We used the kernel density method in the niche-factor analysis161

(Broennimann et al. 2012) rather than the distance from the mode (Hirzel et al. 2002) (as it has162

been proposed earlier) because it has been shown to reduce the procedure’s sensitivity to sampling163

effort and the resolution of the environmental space. Specifically, to calculate the probability density164

function we used ecospat.grid.clim.dyn from the R package ecospat 3.0 (Broennimann, Di165

Cola, and Guisan 2018) with a grid resolution of 200. We then determined the location in the166

environmental space of the plant-pollinator communities using the function suprow from ade4. The167

normalised density at that particular location (which we calculated using the R package raster168

2.8.19; Hijmans 2019) corresponds the bioclimatic suitability. The result of all these steps is the169

environmental stress which corresponds to one minus the bioclimatic suitability for a species of a170

particular location.171

We used a sensitivity analysis to determine the minimum number of occurrences that are necessary172

to have robust environmental stress estimations. For that we used the species with most occurrences173

available, Archilochus colubris, and calculated the mean absolute error of the bioclimatic suitability174

values obtained with one thousand subsamples from the 74,791 occurrences available from GBIF.175

Data analysis176

We then used a set of Bayesian multilevel models to evaluate the impact of environmental stress177

on species specialisation. Specifically, we use the normalised degree of species as our response178

variable; that is, the number of species it interacts with given the number of species in the opposite179

guild (Martín González, Dalsgaard, and Olesen 2010). The normalised degree was modelled using180

a logit link function, and a binomial distribution in which the number of partner species a focal181

interacts with is the number of successes, and the number of species in the opposite guild is the182
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number of trials. We are aware that whether species interact or not is not a Bernoulli process as183

species interactions are not strictly independent from each other. However, the use of a binomial184

distribution allows us to account for the differences in species richness across communities indirectly.185

Importantly, results are qualitatively similar when we model species degree directly using a Poisson186

distribution and a logarithmic link function.187

We evaluated four models to assess the relative importance of suitability. A first model, our baseline188

model, included five variables. The predictors in the baseline model were the environmental stress,189

its number of known possible partners in the community, and both the species guild (plant or a190

pollinator) and its interaction with environmental stress. We included the number of known possible191

partners as a predictor in our models as it allows us to control for the effects of the environment192

on community composition, effectively accounting for species co-occurrence. We calculated this193

metric by determining the number of partners with which the species is known to interact in any194

other community. Controlling for the number of potential partners makes our model a particularly195

stringent test of our environmental-stress hypotheses because this variable could explain a large196

proportion of variance. Often, the potential and the actual number of partners is the same or very197

close to each other, especially for rare species present only in a few communities.198

We allowed the intercept and slope of the stress-specialisation relationship to vary among species.199

This approach allowed us to investigate two questions. First, it allows us to inspect the extent to200

which environmental stress affects species similarly. Second, by investigating the correlation between201

the intercept and the slope as a model parameter, it allowed us to inspect the extent by which202

species with a small or large number of partner species respond to increasing levels of environmental203

stress. To account for unmeasured differences between communities, like sampling effort, sampling204

method, or diversity, we also allowed the model intercept to be different for each community in our205

study. To facilitate model interpretation and convergence, we scaled all continuous variables to have206

a mean of zero and a unit variance.207

We compared this baseline model with three alternative models in which we removed one predictor208

at a time. To quantify the difference between models, in terms of their expected out-of-sample209

performance, we use the Wanatabe-Akaike information criterion (WAIC). All models were fitted210

under a Bayesian framework using the R package brms 2.8.0 (Bürkner 2017, 2018) as an interface211
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Figure 2: Sensitivity analysis of environmental stress error. The number of independent occurrences
retrieved from GBIF is inversely related to the error of bioclimatic suitability for our plant-pollinator
networks.The sensitivity analysis was performed by subsampling occurrences of Archilochus colubris
the species in our dataset with the largest number of occurrences in GBIF, which was recorded in
two of our communities.

for Stan (Carpenter et al. 2017). For each model, we used four Markov chains of 4,000 iterations212

each; we used half of the iterations for warmup. We used weakly informative priors for all model213

parameters. Specifically we used normal priors of mean zero and standard deviation ten for the214

population-level effects and the intercepts, a half-Cauchy prior with a location of zero and a scale of215

two for the standard deviations, and, when applicable, an LKJ-correlation prior with parameter216

ζ = 1 for the correlation matrix between group-level parameters.217

Results218

After performing our sensitivity analysis, we found that, for a species, we need roughly 18 independent219

occurrences for each community for which we aim to estimate the environmental stress. This is220

the number of occurrences necessary to maintain the mean absolute error of bioclimatic suitability221

below 0.1 (Fig. 2). We therefore removed from further analyses 286 species for which we did not222

have enough occurrences to obtain robust estimates.223

Our models performed relatively well. The Bayesian R2 for our baseline model was 0.89, which224

indicates our models were able to capture a large proportion of the variability on the data. Overall,225

we found that environmental stress does not have a consistent effect across species. Indeed, when226

looking at the fixed effects, stress has virtually no relationship with the normalised degree—our227
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Figure 3: Conditional effects of predictors in our baseline model. The shown values are based on
predictions for a hypothetical community with 76 plants and 33 pollinators. These values correspond
to the median number of species in each guild across communities. In each panel, we condition on
the mean value of the other predictor in the model. We indicate mean values for each predictor with
a vertical dashed line. For model fitting, we scaled all predictors to have a mean of zero and unit
variance; however, here we show the unscaled predictors to facilitate interpretation. To illustrate
the uncertainty around the fitted estimates, we plot the fits of 100 independent draws from the
posterior distribution. The thick lines indicate the mean values of the response distribution. As
there was no interaction between the guild and the number of possible interactions, we only show
the conditional effect of pollinators.

metric of specialisation (Figure 3a). However, environmental stress was still an important predictor228

in our model. The difference in WAIC between our baseline model and the model that did not229

include environmental stress was 489 ± 94 (Table 1). This apparent discrepancy can be explained230

by the variability of the specialisation-stress relationship across species.231

For some species, there is a strong negative relationship between stress and specialisation, while for232

others, there is a strong positive relationship (Figure 4a). Interestingly, the slope of this relationship233

correlates with the species’ intercept in the model (Figure 4b and c). Recall that the model estimates234

the intercept at the mean value for stress across communities (0.68). The mean correlation coefficient235

was 0.52 [0.33, 0.67]. Therefore, the slope of the stress-specialisation relationship was more likely to236

be positive for species with a large number of partners under average stress conditions (and negative237

for species with a smaller number of partners). Extrapolating to no-stress conditions: species that238
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Table 1: Comparison in out of sample predictive power of the baseline model (bold) and their
alternatives. We rank models by their expected log predictive density based on their Wanatabe-
Akaike information criterion (WAIC).

predictors WAIC SE

stress x guild + # possible partners 6,592 170
stress + # possible partners 6,595 166
guild + # possible partners 7,081 202
stress x guild 8,041 290

would interact with a small number of partners under no stress are more likely to interact with239

more partners as stress increases, whereas those that would interact with a large number of partners240

are more likely to interact with less.241

As expected, we found a strong and positive relationship between the number of possible interactions242

and the number of realised interactions in the community. There was also a large difference of WAIC243

between the model that included this predictor and that that excluded it. This result indicates244

that the availability of potential partners—this is, community composition—accounts for a large245

proportion of the variability in species degree. Importantly, our findings relating to the variability of246

the stress-specialisation relationship were qualitatively unchanged, whether we included this variable247

or not.248

The standard deviation (in the parameters scale) of the community intercepts was 1.02 [0.85, 1.23]249

which indicates the importance of the local context when determining specialisation. The standard250

deviation of the species intercept was 0.54 [0.48, 0.61], and that of the species’ stress slope was 0.38251

[0.32, 0.44] (95% credible intervals shown within square brakets).252

Discussion253

We set out to explore whether and how environmental stress can systematically affect specialisation.254

After accounting for the pool of potential partners, we found that environmental conditions contribute255

to determining whether a species is a generalist or a specialist in their community. We also found256

that the particular effect of the environment is strongly dependent on the species. Based on existing257

literature, we proposed two alternative hypotheses of how environmental stress may affect species’258

specialisation, and we found evidence for both of them. Species with a large number of partners259
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Figure 4: Species-level effects of environmental stress (a) Conditional effect of stress for individual
species. Each line corresponds to the median relationship for each species. Although we included in
the analysis of all species that are present in two or core communities, to facilitate visualisation here,
we show only species for which there is suitability information in at least six communities (10 plants
and 33 pollinators). As in the previous figure, fitted values assume a hypothetical community of
median size. In each panel, we highlight two species for which the relationship between environmental
suitability and the normalised degree was particularly strong. (b and c) The correlation between
the species’ intercept and the species’ slope of suitability was negative. The species’ intercept can
be interpreted as the relative difference between the number of partners a species has under mean
levels of environmental stress and the mean number of partners across all species. Positive values
of species’ slope indicate a positive relationship between stress and the number of partners and
vice-versa.
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in low-stress communities were more likely to have a negative relationship and hence reduce the260

number of partners as stress increases. Contrastingly, species in our datasets with a small number261

of partners in low-stress communities were more likely to have a larger number of partners in more262

stressful communities. In summary, environmental stress pushes species that are flexible enough to263

change their interaction partners towards intermediate levels of specialisation, a so-called “regression264

towards the mean”.265

Our results suggest that changes in community composition are indeed the primary channel through266

which the environment determines changes interaction probability. However, they also show that,267

for a large number of species, the environment may also play a substantial role in determining268

their level of specialisation. Previous research has recognised that environmental factors may help269

explain the changes in network structure along environmental gradients that cannot be explained by270

community composition (Tylianakis, Tscharntke, and Lewis 2007). However, how these two factors271

were linked had been elusive so far (Gravel et al. 2018). We believe that part of this difficulty272

could have arisen because species, and ultimately network structure, can respond in multiple, and273

contrasting, ways depending on the particular bioclimatic variable examined (e.g. temperature or274

precipitation). Using stress to summarise the effect on species of multiple environmental gradients275

allowed us to detect a clear signal of the environment in species’ interaction patterns.276

Although both niche and neutral processes are relevant in determining species interactions, our model277

suggests that niche processes may be the predominant mechanism through which the environment278

systematically affects specialisation. First, it is unlikely that environmental stress correlates to local279

species abundances (Pearce and Ferrier 2001; Sagarin, Gaines, and Gaylord 2006). Second, even if280

there is a relationship between stress and abundances, a particular environmental gradient could281

have a positive effect on the abundance of some species and a negative effect on others. Indeed, we282

find that within a community there is a wide range of stress values, even for the relatively limited283

number of species we were able to include in our analysis.284

Recent research suggests that species are continuously changing their interaction partners wherever285

environmental conditions change in space or time (Raimundo, Guimarães, and Evans 2018). So far286

it appears that this rewiring is primarily driven by generalist species (Ponisio, Gaiarsa, and Kremen287

2017; Burkle, Marlin, and Knight 2013), presumably because generalist species are less sensitive288
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to trait matching of their interaction partners (CaraDonna et al. 2017). Our results add two289

important nuances to these findings. First, because “generalists” seem to focus on a smaller number290

of partners as environmental conditions deteriorate, we show that trait matching might still play a291

role in determining the interactions of generalist species. Second, and most importantly, our results292

suggest that only a small proportion of species are “true generalists” or “true specialists” this is,293

species that interact with a large or small number of partners regardless of the environmental stress,294

respectively. This pattern implies that rewiring is not exclusive of species with a large number of295

partners. Instead, at least a fraction of the species that appear to be specialist in their communities296

might be as flexible, if not more, than those with a large number of partners, effectively behaving297

as facultative generalists in the face of environmental change. These flexible “specialists” might298

therefore have a more significant role in network persistence than previously expected.299

In our model, we can roughly divide species between true specialists, true generalists, and flexible300

species. However, there is a fourth group that remained invisible to our model but has important301

implications for network persistence and stability. Species that can vary their interaction partners302

flexibly and their role in the network are more likely to persist in their community as environmental303

conditions vary (Gaiarsa, Kremen, and Ponisio 2019). We propose this fourth group is composed of304

true specialists that are constrained to interact with partners of high trait-matching and therefore305

were not likely to be found in more than one community. If species that are not flexible are306

unlikely to persist over temporal or spatial environmental gradients, we can expect specialised307

communities that are highly constrained by trait-matching (like some plant-hummingbird networks;308

Vizentin-Bugoni, Maruyama, and Sazima 2014; Maruyama et al. 2014) to be far more vulnerable to309

increased climate change-induced environmental stress and habitat degradation than communities310

where role and interaction flexibility are more prevalent.311

Similarly, if the patterns we see in our models have also played a role during the evolutionary312

history of pollination communities, our results also help explain why only a small fraction of313

plant-pollinator interactions show a strong signature of deep co-evolutionary history (Hutchinson,314

Cagua, and Stouffer 2017). The increases in the stress that species are predicted to experience due315

to rapid environmental change might further erode the co-evolutionary history of specialist species.316

Communities as a whole might be in a trajectory of even more diffuse co-evolution. For specialists,317
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at least, the longer-term benefits of being able to interact with multiple partners might be more318

important than the shorter-term benefits of interacting with partners of high trait matching.319

The structural implications of the “regression towards the mean” that environmental stress promotes320

are less clear. However, it is plausible to expect that nestedness, and therefore network stability,321

might be reduced in the face of rapid environmental change. Determining exactly how the changes in322

degree caused by environmental stress reflect on systematic changes in network structure would be323

an interesting avenue of research. Answering this question would require expanding our suitability324

analysis to all species in the community and compare the degree distribution of networks along a325

gradient of stress for the community as a whole.326

In conclusion, we show that the environment can affect the specialisation level of plants and327

pollinators in systematic ways beyond community composition. Species that are inflexible with their328

interaction partners are unlikely to persist under more stressful environmental conditions. However,329

we show that many species are flexible in regards to their specialisation levels and therefore are330

not inherently generalists or specialists. Instead, the species’ level of specialisation/generalisation331

should be considered on a relative scale depending on where they are found and the environmental332

conditions at that location.333
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