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ABSTRACT33

We collated publicly available single-cell expression profiles of circulating tumor cells (CTCs)
and showed that CTCs across cancers lie on a near-perfect continuum of epithelial to mesenchy-
mal (EMT) transition. Integrative analysis of CTC transcriptomes also highlighted the inverse
gene expression pattern between PD-L1 and MHC, which is implicated in cancer immunother-
apy. We used the CTCs expression profiles in tandem with publicly available peripheral blood
mononuclear cell (PBMC) transcriptomes to train a classifier that accurately recognizes CTCs
of diverse phenotype. Further, we used this classifier to validate circulating breast tumor cells
captured using a newly developed microfluidic systems for label-free enrichment of CTCs.

34

A staggering 90% of cancer deaths are attributable to metastases1. After detaching from solid35

tumors, cancer cells travel through the bloodstream to reach distant organs and seed the development36

of metastatic tumors2. Cancer cells under circulation are called circulating tumor cells (CTCs)3. As a37
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blood-based bio marker, CTCs offer unabated, real-time insights into tumor evolution and therapeutic38

responses. Despite these promises, the rareness of CTCs in the peripheral blood hinders their isolation39

and characterization3. Cancers in solid tissues develop from epithelial cells, which are typically densely40

packed in layers. However, dissemination and migration of cancer cells during metastasis require the41

acquisition of mesenchymal-like features. Transcendence of epithelial cancer cells into mesenchymal-like42

ones is popularly known as Epithelial to Mesenchymal Transition (EMT).43

It is widely understood that due to the loss of epithelial property only a fraction of CTCs can be44

expected to express canonical epithelial markers such as Epithelial Cell Adhesion Molecule (EpCAM).45

The only FDA approved CTC capture platform CELLSEARCH® uses epithelial surface marker EpCAM46

to detect CTCs in patient blood4. Controlled experiments involving cell-lines have shown that recovery47

of cells with EpCAM expression vary a lot and many canonical epithelial markers are down-regulated48

in CTCs, undergoing epithelial-mesenchymal transition (EMT)5. Therefore, marker-based enrichment49

techniques are sub-optimal for comprehensive charting of heterogeneous CTC sub-populations. Over the50

past few years, various CTC capture platforms exploiting biophysical characteristics of cancer cells have51

been developed6–8. CD45-based negative enrichment has also been adopted as an alternative strategy. The52

potential of such antigen-agnostic platforms have not been fully utilized since the chances of immune53

cell contamination cannot be completely ruled out6, 7. The recent advent of single-cell RNA sequencing54

(scRNA-seq) has allowed molecular profiling of single CTCs9, captured using microfluidic devices10–14.55

Almost all studies that reported molecular profiles of single CTCs resorted to marker based bioinformatic56

annotation of cell types or applied post-capture staining of CTCs using epithelial/cancer-specific molecular57

markers10, 15. In this study we collated published scRNA-seq datasets of human CTCs and peripheral blood58

mononuclear cells (PBMCs) to do an integrative analysis and build a machine-learning based classification59

system that accurately labels CTCs in a marker-agnostic manner and also present the ClearCell® Polaris™
60

workflow11, 16 that involves size-dependant enrichment of CTCs, followed by negative selection based on61

CD45.62

Results63

Integration of single cell expression datasets of circulating tumor cells64

We collected about 700 single CTC transcriptomes from 11 independent studies, representing five different65

cancer types i.e breast, prostate, lung, pancreas, and melanoma (Fig 1-b, Supplementary Table-1). On66

the other hand, as control, expression profiles of human PBMCs were collected from six different studies67

(Supplementary Table-1). About 80% of the CTCs came from various breast cancer studies. CTC68

datasets that we curated were of variable quality. We preprocessed the data to ensure that the poor-quality69

cells and unexpressed genes were discarded (Methods, Supplementary Fig-1). We further normalised70

the combined expression matrix to control for the library depth (Methods). We tracked expression of71

some of the canonical epithelial and leukocyte markers to cross-validate the cell type identities. Elevated72

expression levels of a subset of epithelial markers were observed in a vast majority of the CTCs (Fig73

1-c, Supplementary Fig-2). Significant up-regulation of platelet and fibroblast markers were observed in74

large fractions of CTCs (Fig 1-c, Supplementary Fig-2). This combined data source served as the basis75

for majority of our analysis and development of CTC-immune cell classification system (Fig 1-a).76
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Ubiquity of epithelial-mesenchymal transition in cancer metastasis77

Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) have long been78

postulated to play key roles in cancer metastasis and drug resistance17. Integration of CTC datasets79

presented us with the opportunity to probe into its validity. For each CTC, we computed two scores80

indicating the strength of epithelial and mesenchymal phenotypes respectively (Methods). In this analysis,81

we used tens of canonical markers of each of the concerned phenotypes. We detected near-perfect82

anti-correlation of (ρ = -0.93) the phenotypes across CTCs, coming from all cancer types (Fig 2-a,83

Supplementary Fig-3). Our findings were consistent when we tracked the association between these84

phenotypes for CTCs from individual studies (Supplementary Fig-4). Notably, CTC transcriptomes85

were frequently found on a continuum of epithelial-mesenchymal transition in most of the datasets (Fig86

2-b). In selected studies, in spite of being on a continuum, CTCs were found to form clusters towards87

the epithelial and the mesenchymal poles respectively (Supplementary Fig-4). Melanocytes derive88

from a highly invasive, multi-potent embryonic cell population called the neural crest. It is suggested89

that the high degree of plasticity and the aggressiveness of malignant melanoma originate due to the90

re-activation of the embryonic neural crest program, which is silenced in due course of normal melanocyte91

differentiation18. Unlike the CTCs of most cancer types, circulating melanoma cells were found to92

be clustered exclusively around the mesenchymal pole of the E-M continuum (Supplementary Fig-93

4). Our scores correlate well with EMT cell line score proposed by Tan and colleagues19 (Fig 2-c).94

As a secondary validation, we constructed a network incorporating regulations among E and M genes95

under study (Methods, Supplementary Fig-5). Simulation experiments on this network using Ordinary96

Differential Equations (ODE) resulted in expression anti-correlation (ρ = -0.65) between CDH1 and VIM97

(Methods, Fig 2-d, Supplementary Fig-6).98

Hybrid EMT relates to poor prognosis of the disease99

Related to E-M transition, recent in silico, in vitro, and in vivo studies have indicated that EMT/MET need100

not be a binary phenomenon, Instead cells may acquire stably one or more hybrid epithelial/mesenchymal101

(E/M) phenotype(s)17. More importantly, these hybrid E/M phenotypes may be more aggressive than102

cells on either end of the spectrum, due to their enhanced plasticity, increased tumor-initiation potential,103

resistance to various therapies and anoikis, drug resistance traits, and the ability to migrate collectively to104

form clusters of CTCs - the key drivers of metastasis20. Most of the analysis of EMT has been largely at a105

bulk level with limited markers21, However, individual CTCs can co-express various E and M markers to106

varying extents, and an increased frequency of hybrid E/M cells correlates with aggressiveness22, 23. We107

performed survival analysis by pairing genes within the E and M sets. To mimic the hybrid phenotype,108

we also constructed all possible gene pairs across E and M sets (Methods). Across four cancer types109

(glioblastoma, ovarian, lung, and kidney), E/M gene pairs were found to have higher potential to predict110

cancer survival relative to the exclusive E or M gene pairs (Methods, Fig 2-e, Supplementary Fig-7).111

Clear patterns observed in expression gradient of immune check-point inhibitor and112

stemness marker113

Loss of major histocompatibility complex (MHC) proteins (aka HLAs) and activation of PD-L1 prevent114

cytotoxic T cells from attacking tumor cells. Of late, immune checkpoint inhibitors, targeting the PD-1/PD-115

L1 pathway, have emerged as successful cancer treatment options24. In our curated datasets, we found116

only a minor fraction of CTCs expressing PD-L1. However, PD-L1-MHC anti correlation was evident117

across studies (Fig 3-a). Two datasets containing the maximum number of PD-L1-activated breast CTCs118

showed concurrence of PD-L1 with mesenchymal phenotype (Supplementary Fig-8). To date, multiple119

studies have linked EMT to the formation of cancer stem cells (CSCs). In a seminal paper, Mani and120
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colleagues demonstrated the generation of a CD44high/CD24low, mammary stem cell-like population due121

to the induction of EMT. These cells were able to initiate tumors quite efficiently in the mouse. We tracked122

expression changes in CSC markers along E-M continuum25. CD44high/CD24low CTCs indeed emerge123

late in the spectrum, following EMT induction.(Fig 3-b) This demonstrates how integrative analysis of124

CTC transcriptomes can help pinpoint stem-like phenotypes, with high tumorogenesis potential.125

CTC-PBMC classification system126

We trained a classifier on publicly available single cell expression profiles of human CTCs and PBMCs.127

Expression datasets curated from independent studies were subjected to rigorous data preprocessing steps128

(Methods). Notably, the state of the art batch effect removal methods (mnnCorrect26 and Seurat27) failed129

to improve the performance of the classification algorithms, compared to a simple median normalisation130

baseline. We compared the performance of three classifiers - Naïve Bayes28, Random Forest29, and131

Gradient Boosting Machine30. We evaluated the classifiers by holding out individual CTC and PBMC132

datasets as test data. We also evaluated the classifiers on all CTC-PBMC data pairs (Methods). Best133

performance was observed with Naïve Bayes, with a median accuracy recorded at ∼99% and ∼98%134

respectively (Fig 4-b,c).135

Identification of CTCs captured using novel label-free microfluidic workflow136

Existing technologies enrich CTCs with some level of contaminating white blood cells (WBCs). This137

poses a significant challenge in differentiating CTCs from immune cells. We addressed this challenge by138

integrating two commercially available microfluidic systems namely Biolidics ClearCell FX System31 and139

the Fluidigm PolarisTM system16 (Methods, Fig 4-a). In the proposed workflow CTCs are enriched in two140

steps - size-based enrichment by ClearCell, followed by CD45 (leukocyte marker) and CD31 (endothelial141

cell marker) based negative selection by Polaris16.142

To validate the workflow and the accompanying PBMC-CTC classification system, we processed143

peripheral blood samples of three HER2-, stage IV breast cancer patients (identified as P3, P4, P5) through144

the microfluidic device ensemble (Methods, Supplementary Fig-9). Polaris could retrieve 13, 12 and 32145

cells from the blood samples of patients P3, P4, P5 respectively. 15 of these 57 cells passed the filtering146

criteria (Supplementary Fig-10). All 15 cells were classified as CTCs. We used additional validation147

criteria to determine the carcinogenic origin of the captured cells. When compared to a set of randomly148

selected PBMCs, ClearCell Polaris captured cells showed elevated expression of breast cancer-specific149

markers BRCA1 and MDM232 (Fig 4-d). We also detected up-regulation of CDH1, a canonical epithelial150

cell marker. Expression of CD45 (PTPRC) was considerably low in these cells compared to the PBMC151

transcriptomes (Fig 4-d). Reference component analysis (RCA) allows noise-free single cell clustering,152

by projecting single cell transcriptomes on reference bulk expression data. We subjected all CTC and153

PBMC transcriptomes to RCA analysis33. ClearCell-Polaris captured CTCs grouped with other CTCs,154

whereas the PBMCs formed a separate cluster (Methods, Fig 4-e, Supplementary Fig-11).155

Discussion156

CTCs have been shown to be of prognostic significance in patients with various cancers2, 15, 34. It is157

suspected that a large number of CTCs do not portray the signature of cancer epithelium, largely due158

to their acquired phenotype that is suitable for migration34. The proposed machine learning based159

bioinformatics approach accurately distinguishes CTCs from regular immune cell sub-types. This is160

achieved by the integration of publicly available CTC datasets and machine learning based model training.161

We provide a user-friendly R package for CTC classification that provides a probabilistic score indicating162
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potential carcinogenic origin of individual cells. Our reported ClearCell® Polaris™ workflow, in tandem163

with the machine learning based CTC-immune cell classification system, for the first time, enables truly164

unbiased detection of circulating tumor cells. With declining per cell cost associated with single-cell gene165

expression screening, we speculate a high adoption rate for our proposed approach.166

Integrative study of CTC transcriptomes presented us with the opportunity to discover consistent167

pan-cancer CTC surface-proteins, besides EpCAM. We looked for surface-protein coding genes which are168

deferentially upregulated in CTCs over blood cells (Supplementary Note-5). Most remarkable among169

these were ERBB3, LTBP1, TACSTD2 and EFNA1 (Supplementary Fig-12). In addition to EpCAM,170

some of these markers might be useful to broad-base marker dependent capture of CTCs.171

Methods172

Description of datasets173

We collected single-cell RNA-seq (scRNA seq) data of circulating tumor cells (CTCs) and peripheral174

blood mononuclear cells (PBMCs) from 15 different studies2, 10, 15, 34–40, 40–42 (Supplementary Table-1).175

We acquired 729 single CTCs from 11 of these 15 studies. On the other hand, 6 of these studies supplied a176

total of 37107 PBMCs. Two studies provided both CTCs and PBMCs. The CTC data entailed five cancer177

types breast, prostate, melanoma, lung, and pancreas. Notably, circulating breast tumor cells in the data178

were supplied by seven different studies. Remaining cancer types were represented by single studies.179

Data Pre-processing180

We downloaded raw read count data for every study from their respective sources (Supplementary Table181

1). We also considered 15 CTC transcriptomes with exonic read count > 50000, from three HER2- breast182

cancer patients (details given below). While merging, we found 15043 genes common across all the183

datasets. First, we discarded the poor quality cells that had less than 6% of the genes having non zero184

expression. The filtering step retained about 35% (13235) of the input cells. Genes with read count ≥5 in185

at least 10 cells were retained. A total of 12624 genes were left after this. Among the 13235 cells, 737186

were CTCs. In the remaining 12498 PBMCs, one single study (EGAS00001002560)40 alone supplied187

11697 cells leading to the class-imbalance problem. We decided to retain cells having total read counts ≥188

5000. Our final data contained a 12624 expressed genes and 3079 cells, of which 729 were CTCs. At189

this stage, we standardized the library depths using median normalization. The expression matrix thus190

obtained was loge transformed after addition of 1 as pseudo-count. Different gene selection techniques191

used for the various downstream analyses are mentioned in the subsequent sections.192

Construction of epithelial and mesenchymal signatures193

While integrating, we found 17609 genes common across 729 CTCs coming from 11 publicly available
CTC datasets. After applying the cell and gene filtering steps (as discussed above), we were left with an
expression matrix consisting of 14027 genes and 722 CTCs. We constructed a panel of 180 well-known
epithelial, mesenchymal, and cancer stem cell markers combining information from the CellMarker
database43 and existing literature. The expression matrix of marker genes thus obtained was subjected
to stricter criteria for gene and cell selection. We retained 718 cells that expressed at least 10% of these
marker genes. Marker genes having minimum read count >5 in at least 30% of these cells were selected
for the subsequent analyses. The resulted matrix consisted of 718 cells and 86 marker genes (16 epithelial,
43 mesenchymal, and 27 cancer stem cell markers, see (Supplementary Table 2). We normalized and
log-transformed the matrix as mentioned above. For each cell, we computed a comprehensive score for
both epithelial and mesenchymal phenotype. To compute the score we first applied Z-score transformation
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on each cell. To create the signature for specific phenotype, for each cell we combined Z-transformed
marker expressions using the below formula.

Zphenotype =
∑∀i∈markers Zi√
|markers|

Here Zphenotype is a comprehensive phenotype specific score computed over individual Z-transformed194

marker expressions denoted by Zi, where markers denotes the set of markers corresponding to the195

concerned phenotype.196

Simulation of E-M continuum197

We identified the regulatory interactions among epithelial (E) and mesenchymal (M) genes under study,
together with their connections to canonical regulators of EMT and MET such as the double negative
feedback loops involving miR-200, ZEB and GRHL2 (Supplementary Note-3). For the constructed
network, an ensemble of mathematical models was then created using RACIPE (RAndom CIrcuit PEr-
turbation), which considers a set of kinetic parameters randomly chosen from within the biologically
relevant ranges44. This helps to identify the robust gene expression signatures that can emerge due to a
given network topology. The simulations were performed in triplets to avoid numerical artifacts/variations
due to random sampling. Such ensemble of models are usually based on ordinary differential equations
(ODEs), such as the one mentioned below.

d[V IM]

dt
= lV IMHS+(ZEB,V IM)HS−(ST EP1,V IM)− kV IM[V IM]

where [V IM] is the concentration of VIM, and lV IM and kV IM are its production and degradation198

rates respectively. HS+(X ,Y )/ HS−(X ,Y ) are the shifted Hill functions that result in up-regulation/down-199

regulation caused in the expression of Y due to X.200

Survival analysis for hybrid E/M phenotype201

We investigated the clinical relevance of the E, M, and hybrid E/M phenotypes by leveraging those in202

patient survival prediction for four cancer types from The Cancer Genome Atlas (TCGA) project45. We203

focused our analyses on four TCGA cancer types with high-quality overall survival data i.e kidney renal204

clear cell carcinoma (KIRC), glioblastoma multiforme (GBM), ovarian serous cyst adenocarcinoma (OV)205

and lung squamous cell carcinoma (LUSC)46. We only used data of the patients for whom the survival206

information was available. Raw read count data of TCGA samples were extracted from the Recount247
207

repository. The dataset corresponding to each cancer type was median-normalized and loge transformed208

after addition of 1 as pseudo count. We used all
(16+43

2

)
possible pairs of 16 epithelial and 43 mesenchymal209

markers, one at a time to divide the patient samples into two groups. For each gene in a pair, Z-scores210

were computed across the patient samples. Stouffer’s Z was computed for each gene pair by combining211

the Z-scores, computed independently. For every cancer, patient groups were formed by applying a cutoff212

at the median of the Stouffer’s Z score vector. Survival curves thus obtained were compared using the213

log-rank test. We used survminer R package48 for the survival analyses (Supplementary Table 3).214

Classification of cancer and blood transcriptomes215

To model the phenotypic identities of CTCs and PBMCs, we trained various classification models. To216

broad-base our feature selection we used about 3000 cell-type specific markers (Supplementary Table-4)217

reported in the CellMarker database43. Besides, median normalization, we subjected the data to two218

different batch correction methods - mnnCorrect26 and canonical correlation based batch correction219
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method from the Seurat R package27 (Supplementary Note-1,2). We used the h2o APIs49 of three220

popular classification techniques - Naive Bayes (NB)28, Gradient Boosting Machines (GBM)30 and221

Random Forest (RF)29. To evaluate the model generalisability we performed two different experiments. In222

the first experiment, we held out each dataset to assess the model trained on the remaining datasets. In the223

second experiment, we tested the model by holding out all the possible combinations of one CTC and224

one PBMC data. Besides the accuracy percentage, we reported additional model evaluation metrics such225

as F1 score, Mathews correlation coefficient (MCC) and Cohen’s kappa as applicable (Supplementary226

Table-5,6).227

Sample collection228

Blood specimens of three HER2- breast cancer patients (identified as P3, P4, P5) were obtained from the229

National Cancer Center Singapore, with informed consent in accordance with the approved procedures un-230

der the institutional review board (IRB) guidelines (CIRB no. 2014/119/B). The clinical sample collection231

protocols were reviewed and approved by the Sing Health Centralised Institutional Review Board. All232

three subjects had ER+/PR+/HER2- hormone receptor status as analyzed by immunohistochemistry. The233

determination of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor234

receptor 2 (HER2) status by immunohistochemistry in this study was based on the latest recommendations235

of the American Society of Clinical Oncology and the College of American Pathologists. For P3, blood236

was drawn (baseline) in August, 2016 for CTC enrichment. Following this P3 was on chemotherapy. P4237

and P5 were on chemotherapy before their blood samples were collected for CTC enrichment in August238

and September of 2016, respectively.239

CTC enrichment240

Blood samples were collected in 9 mL K3EDTA blood collection tubes (Greiner Bio-One, 455036). 6 –241

8.5 mL of whole blood was processed for each run. Red blood cells were first removed with the addition242

of red blood cell (RBC) lysis buffer (G-Bioscience, St. Louis, MO, USA) and incubation for 10 minutes at243

room temperature. Lysed RBCs in the supernatant were discarded after centrifugation. The nucleated cell244

pellet was suspended in a ClearCell re suspension buffer prior to CTC enrichment on ClearCell FX system245

(Biolidics Limited)31, performed in accordance with manufacturer’s instructions.246

Immunofluorescence suspension staining247

The enriched CTC blood sample was centrifuged at 300 g for 10 min and concentrated to 70 µL. The cells248

were stained with the addition of the following markers and antibodies for 1 hour: CellTracker Orange249

(CTO) (Thermo Fisher, C34551), Calcein AM (Thermo Fisher, L3224), CD45 antibody- conjugated with250

Alexa 647 (Bio Legend, 304020), and CD31- conjugated with Alexa 647 (Bio Legend, 303111). 15 µL of251

RPMI with 10% FBS (Gibco) and 3 µL of RNase inhibitor (Thermo Fisher, N8080119) were also added252

to improve the viability and RNA quality of the cells. After incubation, 13 mL of PBS was added to dilute253

the staining reagents. The sample was spun down at 300 g for 10 min and concentrated to 45 µL. In order254

to achieve optimal buoyancy in an integrated fluidic circuit (IFC), 45 µL of CTCs was mixed with 30 µL255

Cell suspension Reagent (Fluidigm, 101-0434) to achieve 75 µL of cell mix.256

Integrated Fluidic Circuit (IFC) operation257

The Polaris IFC is first primed using Polaris system (Fluidigm)16 to fill the control lines on the fluidic258

circuit, load cell capture beads, and block the inside of PDMS channels to prevent non-specific absorp-259

tion/adsorption of proteins. To capture and maintain the single cells in the sites, the capture sites (48 sites)260

are preloaded with beads that are linked on-IFC to fabricate a tightly packed bead column during the IFC261
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prime step. After completion of the prime step, the cell mix (cells with suspension reagent) is loaded in262

three inlets (25 µL each of cell mix) on the Polaris IFC and single cells with CTO+ Calcein AM+ CD45-263

CD31- are selected to capture sites. Finally, the single cells are processed through template-switching264

mRNA-seq chemistry for full-length cDNA generation and preamplification on-IFC.265

mRNA-seq library preparation and sequencing266

SMARTer® Ultra® Low RNA Kit for Illumina® Sequencing (Clontech®, 634936) was used to generate267

preamplified cDNA. The selected and sequestered single cells were lysed using Polaris cell lysis mixture.268

The 28-µL cell lysis mix consists of 8.0 µL of Polaris Lysis Reagent (Fluidigm, 101-1637), 9.6 µL of269

Polaris Lysis Plus Reagent (Fluidigm, 101-1635), 9.0 µL of 3 SMART™ CDS Primer II A (12 M, Clontech,270

634936), and 1.4 µL of Loading Reagent (20X, Fluidigm, 101-1004). The thermal profile for single-cell271

lysis is 37°C for 5 min, 72°C for 3 min, 25°C for 1 min, and hold at 4°C. The 48-µL preparation volume272

for reverse transcription (RT) contains 1X SMARTer Kit 5X First-Strand Buffer (5X; Clontech, 634936),273

2.5-mM SMARTer Kit Dithiothreitol (100 mM; Clontech, 634936), 1-mM SMARTer Kit dNTP Mix (10274

mM each; Clontech, 634936), 1.2-µM SMARTer Kit SMARTer II A Oligonucleotide (12 µM; Clontech,275

634936), 1-U/µL SMARTer Kit RNase Inhibitor (40 U/µL; Clontech, 634936), 10-U/µL SMARTScribe™276

Reverse Transcriptase (100 U/µL; Clontech, 634936), and 3.2 µL of Polaris RT Plus Reagent (Fluidigm,277

101-1366). All the concentrations correspond to those found in the RT chambers inside the Polaris IFC.278

The thermal protocol for RT is 42°C for 90 min (RT), 70°C for 10 min (enzyme inactivation), and a final279

hold at 4°C.280

The 90-µL preparation volume for PCR contains 1X Advantage 2 PCR Buffer [not short amplicon281

(SA)](10X, Clontech, 639206, Advantage® 2 PCR Kit), 0.4-mM dNTP Mix (50X/10 mM, Clontech,282

639206), 0.48-µM IS PCR Primer (12 µM, Clontech, 639206), 2X Advantage 2 Polymerase Mix (50X,283

Clontech, 639206), and 1X Loading Reagent (20X, Fluidigm, 101-1004). All the concentrations corre-284

spond to those found in the PCR chambers inside the Polaris IFC. The thermal protocol for preamplification285

consists of 95°C for 1 min (enzyme activation), five cycles (95°C for 20 s, 58°C for 4 min, and 68°C for 6286

min), nine cycles (95°C for 20 s, 64°C for 30 s, and 68°C for 6 min), seven cycles (95°C for 30 s, 64°C for287

30s, and 68°C for 7 min), and final extension at 72°C for 10 min. The preamplified cDNAs are harvested288

into 48 separate outlets on the Polaris IFC carrier. The cDNA reaction products were then converted into289

mRNA-seq libraries using the Nextera® XT DNA Sample Preparation Kit (Illumina, FC-131-1096 and290

FC-131-2001, FC-131-2002, FC-131-2003, and FC-131-2004) following the manufacturer’s instructions291

with minor modifications. Specifically, reactions were run at one-quarter of the recommended volume,292

the tagmentation step was extended to 10 min, and the extension time during the PCR step was increased293

from 30 to 60 s. After the PCR step, samples were pooled, cleaned twice with 0.9× Agencourt AMPure294

XP SPRI beads (Beckman Coulter), eluted in Tris + EDTA buffer and quantified using a high-sensitivity295

DNA chip (Agilent). The pooled library was sequenced on Illumina MiSeq™ using reagent kit v3 (2x75296

bp paired-end read). The sequencing data generated was processed by standard bioinformatic pipeline297

(Supplementary Note 4).298

Reference component analysis of CTCs and PBMCs299

For reference component analysis (RCA), we used the global panels supplied as part of the RCA R300

package33. Each of the global panels consisted of numerous tissue samples. RCA33 uses cell type specific301

genes for measuring correlation between the tissue types and the input single cells. Due to low amount302

of starting RNA, single cell expression data is far noisier than bulk expression data. As a result, tissue303

types represented by lowly expressed feature genes can potentially give rise to significant levels of noise.304

In each global panel, we therefore retained 50% of the tissue types with highest median expression of305
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the feature genes. RCA33 analysis provided us with both single cell - tissue correlation heat-map and 2D306

projection of the individual transcriptomes.307

Data and Code Availability308

The data-set used in the study are available from links mentioned in the Supplementary Table-1. Single309

cell sequencing data generated for this paper is deposited at GEO with accession number GSE129474310

[Token: qdkvyayyprwjvix]. Code used for analysis is available at this link and a R package is available at311

link.312
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a ba b cc

Figure 1. Integrative analysis of CTC transcriptomes: (a) Schematic of study. (b) Cancer types
represented by the integrated CTC population. (c) Expression of canonical epithelial and immune cell
markers in CTCs and a sub-sample (equal in number as CTCs) of the PBMCs under study.
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Figure 2. Epithelial-mesenchymal transition in cancer metastasis: (a) Scatter plot showing
anti-correlation between epithelial and mesenchymal phenotypes across studies.(b) The moving average
smoothen loge(expression+1) of CTC dataset on epithelial and mesenchymal markers where cells are
ordered based on the ratio of epithelial and mesenchymal signatures calculated as described in the main
methods. (c) Correlation plot of our method E:M score with Tan and colleagues EMT cell line score
where negative EMT cell line score corresponds to epithelial like cells and higher E:M score means more
epithelial like cells. (d) CDH1 -VIM anti-correlation observed due to simulation of EMT associated
regulatory network. (e) Box-plot showing the superiority of the E-M gene pairs, over the E-E and M-M
pairs for predicting cancer survival
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a b

Figure 3. Patterns observed in expression gradient of immune check-point inhibitor and
stemness markers. (a) The scatter plot of PDL1 and HLA-B expression in each study. (b) The moving
average smoothen loge(expression+1) of specific epithelial, mesenchymal and cancer stem cell markers,
across breast CTCs,ordered based on the ratio of epithelial and mesenchymal signatures calculated as
described in the main methods.
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Wilcoxn p=3.483487e-55 Wilcoxn p=5.350939e-73

Wilcoxn p=6.387471e-18 Wilcoxn p=1.426647e-06

Figure 4. Label free detection and characterisation of CTCs. (a) ClearCell-Polaris workflow
involving size-based CTC enrichment by ClearCell FX system, followed by single cell selection and
CD45/CD31 depletion using Polaris. (b) Performance of various machine learning algorithms in
distinguishing between CTCs and PBMCs. Cells in each dataset were tested against a classifier trained on
the remaining datasets. Box plots show the prediction accuracy’s for different choices of classification
algorithms (Naive Bayes or NB, Random Forest or RF, Gradient Boosting Machine or GBM) and
normalisation/batch-effect correction methods. (c) Box plots showing accuracy’s on held out dataset pairs
consisting of a blood and a CTC study.(d) Box-plots showing canonical epithelial/breast cancer specific
markers, up-regulated in the CTC population compared to the PBMCs. As expected, PTPRC, a pan
leukocyte maker shows elevated expression levels in PBMCs as compared to CTCs. (e) Reference
Component Analysis (RCA) based 2D projection of CTCs. PBMCs (red) are visibly separated from CTCs.
CTCs enriched using the ClearCell-Polaris workflow cluster with CTCs of other types
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